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The surface electromyography (sEMG) signal has been used for volitional control of
robotic assistive devices. There are still challenges in improving system performance
accuracy and signal processing to remove systematic noise. This study presents
procedures and a pilot validation of the EMG-driven speed-control of exoskeleton
and integrated treadmill with a goal to provide better interaction between a user
and the system. The gait cycle duration (GCD) was extracted from sEMG signals
using the autocorrelation algorithm and Bayesian fusion algorithm. GCDs of various
walking speeds were then programmed to control the motion speed of exoskeleton
robotic system. The performance and efficiency of this sEMG-controlled robotic assistive
ambulation system was tested and validated among 6 healthy volunteers. The results
demonstrated that the autocorrelation algorithm extracted the GCD from individual
muscle contraction. The GCDs of individual muscles had variability between different
walking steps under a designated walking speed. Bayesian fusion algorithms processed
the GCDs of multiple muscles yielding a final GCD with the least variance. The fused
GCD effectively controlled the motion speeds of exoskeleton and treadmill. The higher
amplitude of EMG signals with shorter GCD was found during a faster walking speed.
The algorithms using fused GCDs and gait stride length yielded trajectory joint motion
tracks in a shape of sine curve waveform. The joint angles of the exoskeleton measured
by a decoder mounted on the hip turned out to be in sine waveforms. The hip joint
motion track of the exoskeleton matched the angles projected by trajectory curve
generated by computer algorithms based on the fused GCDs with high agreement.
The EMG-driven speed-control provided the human-machine inter-limb coordination
mechanisms for an intuitive speed control of the exoskeleton-treadmill system at the
user’s intents. Potentially the whole system can be used for gait rehabilitation of
incomplete spinal cord hemispheric stroke patients as goal-directed and task-oriented
training tool.
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INTRODUCTION

Robotic ambulatory exoskeletons for physical rehabilitation
have been utilized for spinal cord injury (SCI) and stroke
patients’ rehabilitation to enhance motor recovery in recent
years. Interactive control of a rehabilitative robotic assistive
device with the patient intention resulted in better clinical
treatment outcomes (Jin et al., 2014; Zhang et al., 2018).
There are several human-robot interactive control strategies
for a rehabilitation robot including trajectory control and
impedance control (Hussain et al., 2011). Trajectory control
guides the exoskeleton to move on fixed trajectory tracks
(Lum et al., 2002; Emken et al., 2007) and does not provide
volitional control of the exoskeleton motions. Impedance control
mechanisms (Wen et al., 2011) adjust the robotic stiffness,
actuator force and position to get a designated interaction.
This impedance control has been used in the Lokomat robot
for rehabilitation training among patients (Jezernik et al.,
2004; Maggioni et al., 2018), but the impedance parameters
need to be manually adjusted for different patients making
it difficult to select the appropriate impedance parameters
(Riener et al., 2005). These researches demonstrated a trend
that neurorehabilitation technologies have been directed toward
creating robotic exoskeletons to restore motor function in
impaired individuals. However, current robotic exoskeletons
have had only modest clinical impact due to the inability to
enable exoskeleton voluntary control in neurologically impaired
individuals. This hinders the possibility of optimally inducing
the activity-driven neuroplastic changes for a better function
recovery (Durandau et al., 2019).

Bio-electrical signal control methods for robot-assisted
rehabilitation have showed positive and promising outcomes
with moderate evidence of improvement in walking and motor
recovery using robotic devices compared to traditional practice
(Soekadar et al., 2011, 2015; Hobbs and Artemiadis, 2020).
A robotic assistive device with volitional control of walking speed
may produce better rehabilitation outcomes (Manurung et al.,
2010). The patients with disability desire to have the ability to
control their walking speed with assistance from a rehabilitative
robotic system. This can encourage a patient to actively engage in
rehabilitation training (Koenig et al., 2009; Zhang et al., 2018).

The real-time volitional control algorithms using
electromyogram (EMG) signals can be an optimal way to
achieve harmonic interactions between the user and the robotic
assistive ambulatory device. EMG signals have been used to
control assistive rehabilitative devices (Kiguchi and Hayashi,
2012; Tong et al., 2014; Young et al., 2017; Choi et al., 2018;
Gandolla et al., 2018; Durandau et al., 2019). However, machine
motion control based on EMG signal can be affected by
signal-noise-ratio (SNR) and artifacts (Gwin and Ferris, 2012).
There are challenges of bioelectrical signal processing including
removal of systematic noise, identification of EMG unrelated to
walking, overcoming signal variability, classification algorithm
robustness, and quantifiable performance feedback indicators
(Tariq et al., 2018). These challenges are required to be solved for
the methods to become viable parts of rehabilitation, especially
in exoskeleton implementations (Ison and Artemiadis, 2014).

Assistive exoskeleton device control techniques include assist-
as-needed (AAN) control using a model predictive control
approach (Teramae et al., 2018) and EMG based impedance
control for assistive exoskeletons (Kiguchi and Hayashi, 2012).
Unfortunately, the motion speeds of these control methods
are not adjustable.

The walking speed can be determined by a gait stride distance
over a gait cycle duration (GCD) (Ardestani et al., 2016). A gait
cycle is defined as the interval of time between two repetitive
events of walking. One full gait cycle begins at the heel strike of
one foot and continues until the heel strike of the same foot in
preparation for the next step. The average duration of one gait
cycle for men ranges from 0.98 to 1.07 second (Murray et al.,
1964; Mark Burden et al., 2014). The speed should be precisely
controlled by GCD when a gait stride distance is constant. We
hypothesized that GCD can be extracted from EMG signals for
machine motion speed control. Using EMG signal and derived
gait cycle duration (GCD) to control an assistive ambulation
system and a treadmill simultaneously has not been reported.

Many of the exoskeletons also use a treadmill as a combined
system for training in order to keep certain variables consistent,
such as average walking speed. The treadmill allows for the
execution of walking cycles in a relatively small and controlled
space (Hesse, 2008). Training with a treadmill has improved
the long-term effects in post-stroke (Reisman et al., 2005).
Methods for treadmill speed control have been reported. Minetti
et al. (2003) measured the patient’s position on a treadmill and
used a proportion-integral-derivative (PID) control algorithm to
calculate the treadmill velocity. Treadmill velocity control can
be implemented by using the ground reaction force between the
subject’s foot and the ground (Von Zitzewitz et al., 2007; De Luca
et al., 2009; Feasel et al., 2011). An algorithm was optimized
to limit the maximum acceleration and balance the treadmill
speed (Souman et al., 2010). Liu et al. (2015) used pressure
sensors mounted on the treadmill to obtain the force signal
and determine the acceleration and deceleration of the subject’s
movements. In a combined system including exoskeleton
ambulation assistive system and a treadmill, exoskeleton walking
velocity should be the same speed of treadmill moving speed, as
long as GCD can be used for exoskeleton speed control, it also
can be sued for treadmill speed control.

The motivation of our research is to use voluntary-controlled
task-orientated robotic device for clinical rehabilitation of stork
and incomplete SCI, hopefully to yield better clinical function
recovery. Because the SNR (signal-to-noise ratio) is one of
major concerns for signal processing and system performance,
one of our motivations is to discover a better method of
EMG signal processing with less artifact and noise. We have
developed a prototype of a rehabilitative exoskeleton integrated
with a customized treadmill. sEMG signal processing methods
and algorithms to simultaneously control both exoskeleton
and treadmill motions. The aims of this research were to
develop novel EMG signal processing algorithms for volitional
control an exoskeleton and integrated treadmill and to remove
artifacts and systematic noise. We investigated the EMG-derived
GCD extraction methodologies and tested efficiency of GCD
in exoskeleton and treadmill motion velocity control at user’s
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FIGURE 1 | The illustration of assistive exoskeleton ambulation system. (A) The main components of exoskeleton showing adjustable frame and joint angle decoder.
(B) The setup of the whole system showing exoskeleton and treadmill and the location of EMG electrode placement.

intent when gait stride was set as a constant parameter. Real-
time GCDs were obtained using autocorrelation algorithm with
fusion algorithm. The performance of whole system was validated
among health subjects. Potentially, our methods can be used to
process weak remnant EMG signals in incomplete SCI and stroke
patients for their rehabilitation trainings.

MATERIALS AND METHODS

System Overview
Our EMG controlled robotic assistive ambulation rehabilitation
system includes a lower limb exoskeleton, EMG sensors and
signal processing system, a treadmill, and a motion control
software and firmware. The lengths of exoskeleton thigh and
calf sections were adjustable to fit patients with different heights.
Servo motors were used as the actuators to drive the knee
and hip joint in the exoskeleton system. The Intrepid MTC-
2.2A treadmill was used and integrated with the exoskeleton
(Figure 1). Position encoders were installed at knee and hip joints
to track the joint angle.

Surface EMG Signal Recording and
Processing
An 8-channel wireless EMG acquisition device (Nuocheng
Electronic Company, Shanghai, China) was used for downstream
EMG signal recording with dry copper electrodes. Surface EMG
(sEMG) signals were recorded from 5 lower limb muscles,
including: the vastus medialis (VM), vastus lateralis (VL),
sartorius (SR), tensor fascia lata (TL), and soleus (SL). The sample
rate was set at 1000 Hz. The sEMG signals were filtered by a 50 Hz
(electrical power noise frequency) notch filter and a 20 Hz zero-
lag fourth-order recursive Butterworth filter and then rectified.
The magnitude of sEMG signals was measured by using the root
mean square (RMS) method (Equation 1). Time window length
of sliding/moving RMS method was set at 0.1 s (Mark Burden
et al., 2014) for calculation of EMG RMS.

Extraction of GCD From EMG Signals
The EMG-derived GCD in this study was defined as the duration
between the heel-lifting ground and heel landing on the ground
(Murray et al., 1964) (Figure 2). The GCD measured from
the right foot stride was used for speed control of both left
and right legs alternately. Because subjects had different height
leading to different stride length, the hip joint angle (θ) of a full
stride was kept constant during exoskeleton walking, only EMG-
derived GCD changed corresponding to muscle contraction
duration (Figure 2).

The GCD was measured using two methods: the first method
was the measurement of onset-to-onset time interval between
two adjacent autocorrelation curves (Figure 5C), the second
method was the peak-to-peak interval between two adjacent
autocorrelation curves (Figure 5C). The first GCD measurement
was synergized with the duration between the heel-lifting ground

FIGURE 2 | Measurement of stride length in walking, showing the right foot
stride length. The hip joint angle of a full stride was constant. The change of
GCD caused speed changes.
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and heel landing on the ground. The second measured GCD was
used in computer algorithms for machine velocity control.

Autocorrelation and Bayesian Redundant
Fusion Algorithms
Each muscle contraction yielded a specific autocorrelation curve.
The RMS of sEMG voltage was obtained and processed using
an autocorrelation and Bayesian fusion algorithms to extract the
GCD. Formula for RMS calculation is shown in Equation 1.

xRMS =

√√√√ 1
N

N∑
i=1

x2
i (1)

Where xRMS represents the RMS value of the sEMG signal,
N represents the window length, and xi is the instantaneous
amplitude value of a sEMG voltage reading. The 50 and 80 ms
window lengths showed undulating envelopes. A window length
greater than 100 ms made the system sluggish. The optimum
window length of 100 ms was chosen.

The autocorrelation function is shown in Equation 2:

Rx(t1, t2) = E[x(t1)x(t2)] =
∫
∞

−∞

∫
∞

−∞

x1x2fx(x1, x2; t1, t2)dx1dx2

(2)

Where Rx(t1, t2) represents the autocorrelation value of
the RMS for sEMG signal x. x1 and x2 represent the RMS
of sEMG signals at time t1 and t2. fx(x1, x2; t1, t2) represents
the probability density function of the sEMG signals with
respect to time.

The autocorrelation algorithm continuously calculated the
correlation value of RMS associated with the gait cycle at each
sampling point to generate autocorrelation curves. There is a
peak point of the autocorrelation curve during each gait cycle,
regardless of the initial gait phase. Duration between adjacent
peak points of autocorrelation curve is defined as GCD (Lihong
et al., 2010) (Equation 3).

T = tsEMG(i) − tsEMG(i−1) (3)

Where T represents the extracted GCD, T = tsEMG(i) and
tsEMG(i−1) represent the time of the i-th peak point and the time
of the [(i-th)-1] peak point, respectively.

The final GCD was obtained by averaging individual GCDs
from five muscle sensors using the Bayesian redundant fusion
algorithm. The sEMG sensor was modeled as a Gaussian
distribution function with a mean about the true value and a
variance about the uncertainty due to noise. The GCD extracted
by the single-channel probabilistic sensor is shown in Equation 4:

p(Tj|y) =
1

σj
√

2π
e
−(y−Tj)

2

2σ2
j , j = 1, 2, . . . , 5 (4)

Where p(Tj|y) is the probability distribution of each single-
channel sEMG sensor, σj is the standard deviation of each single
sEMG sensor, and they are: σ1 = 1.58, σ2 = 0.96, σ3 = 2.91,
σ4 = 0.91, σ5 = 1.18, respectively. y represents the true value

of the gait cycle, Tj is the GCD extracted by each single sEMG
sensor, and j denotes each different sEMG channel.

Bayesian redundant fusion was used to process the selected
gait cycle datasets. The fused GCD was the mean of the
fusion distribution function. The mean and variance of the
fusion distribution function were expressed as, and shown in,
Equations 5 and 6:

σ2
fus =

1
σ−2

1 + σ−2
2 + σ−2

3 + σ−2
4 + σ−2

5
(5)

Tf = µfus = σ2
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(
T1

σ2
1
+

T2

σ2
2
+

T3

σ2
3
+

T4

σ2
4
+
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σ2
5

)

=
σ−2

1 T1 + σ−2
2 T2 + σ−2

3 T3 + σ−2
4 T4 + σ−2

5 T5

σ−2
1 + σ−2

2 + σ−2
3 + σ−2

4 + σ−2
5

(6)

Where σ2
fus and µfus represent the variance and the mean of

the fusion distribution, respectively. Tf is the fused GCD.
In summary, After GCD curve was generated by

autocorrelation algorithms, computer algorithms then
determined the peak-to-peak time reading to generate a
measured GCD. Bayesian fusion algorithm generated a fused
GCD from multiple EMG channels. The final fused GCD was
used for servo motor speed rotation speed control.

Determination of Treadmill Motion Speed
for Volitional Control
The exoskeleton and treadmill motion speed were determined by
stride length over GCD (Figure 3). In this study, the stride length
was a constant over walking, while GCD changed according to
EMG signals. The shorter GCD produced a faster motion of
machine. The machine movement velocity of the first two steps
was set at default 0.4 m/s. The subject contracted muscle to
follow the machine. The second step, the subject controlled the

FIGURE 3 | Shows a modified treadmill driver profile; servo motor was
installed to drive the treadmill.
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muscle contraction duration at subject’s intent during walking.
Computer calculated the GCD between these two muscle
contractions for the next step’s movement velocity control.

The stride length formula is shown in Equation 7:

LG = 2(lh + lk)[sin(θhamax)− sin(θhamin)] (7)

Where LG represents the subject’s stride length, lh represents
the subject’s thigh length, lk represents the subject’s calf length,
and θhamax and θhamin represent the maximum and minimum hip
angle, respectively.

The exoskeleton’s walking speed was calculated by dividing the
stride length divided from the fused GCD. The treadmill speed
was set at the same speed of exoskeleton walking speed by setting
treadmill belt moving distance same as the stride length over the
same GCD.

Vgait =
LG
Tf

(8)

Where Vgait represents the subject’s walking speed, and Tf
represents the fused GCD.

The treadmill speed was set at the same as the exoskeleton
walking speed in the opposite direction, this can be expressed as
shown in equation 9:

Vtread = −Vexo = −Vgait (9)

Where Vtread represents the treadmill speed, and Vexo
represents the speed of the exoskeleton.

The treadmill motor drove the treadmill through the motor
shaft and the pulley. The treadmill velocity was controlled by the
rotation speed of a servo motor (Figure 3). The outer diameters
of servo motor shaft and treadmill pulley were constant with a

fixed ratio. Accordingly, the treadmill motor speed was controlled
based on the following equation:

Vm =
Vtread

Kπdtread
(10)

Where Vm is the driving motor speed, Vtread is the treadmill
velocity, K is the speed ratio of the treadmill motor to the
pulley, π = 3.14, and dtread is the outer diameter of the strip
shaft (Figure 3).

Exoskeleton Walking Velocity Control
Mechanisms
The range of motion (ROM) of the joints were set at a
fixed degree from normal gait angle reference trajectory, EMG-
derived GCD determined the angular speed of joints and the
consequent walking speed. Shorter GCD yielded a faster walking
speed. Close loop servo motors were used for exoskeleton and
treadmill actuation. The speed of servo motors of exoskeleton
and treadmill was controlled by pulse width modulation (PWM)
output by microcontrollers (PMAC Clipper, Delta Tau Company,
Beijing, China) based on obtained GCD. Frequency of out
pulses was determined by GCD to control the rotation speed of
servo motors. Computer C language was used to compile files,
Matlab software was used to execute the controlling commands.
PMAC Clipper is a multi-axis motion controller. Subject’s
muscle contraction duration determined GCD and consequent
machine motion speed. The exoskeleton joint angular speed was
generated in the host controller by the sEMG based volitional
control and then it was sent to the PMAC Clipper, which is
a multi-axis motion controller (Delta Tau Company, Beijing,
China) (Figure 4).

FIGURE 4 | The schematic flowchart of EMG-controlled exoskeleton and treadmill system.
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Experimental Protocol for System
Performance Validation
Six healthy subjects (3 males and 3 females, ages 23–32 years old,
1.70 ± 0.14 m in height (Mean ± SD) and weight 61.6 ± 5.4 kg)
were recruited to participate the system performance validation
testing. All procedures have been approved by the Medicine
Biomedical Ethics Committee in Xi’an Jiaotong University.

Warming-up exercise was performed by subjects to get them
familiar with the whole system. Subjects were instructed to walk
at a normal speed of approximately 1 m/s, with the starting
position at the normal standing state. The sEMG signals were
collected and the GCD was extracted from the sEMG signals to
determine the accuracy of the GCD extraction algorithm. The
speed was controlled by the subjects to be approximately 0.4,
0.6, and 1.0 m/s, respectively. The purpose was to obtain the
peak values of autocorrelation curves under different speeds for
writing codes in speed control algorithms.

The GCD extracted from sEMG signals was used to control
the machine movement speed. Angular speed obtained from
the decoder mounted at the hip joint was recorded. The GCD
recorded at real-time was compared with the GCD obtained
from EMG to measure the agreement between two readings to
determine the accuracy of system performance.

Then the subject walked on the treadmill by wearing the
exoskeleton under different speeds from slow (0.4 m/s) to fast
(1 m/s) respectively for 10 min. During each trial, the zero degree
of the knee and hip joints were set as the starting phase of the gait
cycle at a preset speed of 0.4 m/s for the first step. User was not
able to change the first step’s motion speed. However, user could
change the muscle contraction duration to control the next step
motion speed of exoskeleton and treadmill.

Data Analysis
SPSS software (Version 25, IBM, Chicago, United States)
was used for statistical analysis to determine the difference
between measured outcomes by different methods. Reliability
analysis was performed to determine the difference between the
measured joint angle and algorithm predicted joint angle used
for inter-rater agreement analysis. P-value smaller than 0.05 was
considered to be a statistically significant level.

RESULTS

GCDs for Normal Walking Speed
Muscle contractions during walking produced corresponding
EMG signals (Figure 5A, arrows) and some noise signals
(Figure 5A, arrow heads). True muscle contraction produced
high amplitude of RMS curves while the amplitude of the
noise’s EMG RMS curves was much smaller (Figures 5A,B). Raw
EMG signal processing after RMS calculation yielded smooth
curves corresponding to muscle contractions (Figure 5B). The
muscle contractions yielded the characteristics of periodicity of
the RMS of sEMG signals. The EMG signal processing method
using autocorrelation algorithm yielded autocorrelation curves

that clearly showed onset points and peak points of muscle
activations. The autocorrelation curves were speared of the noise
from EMG artifact and systemic noise. Signals from artifacts and
unrelated muscle contractions did not fit into autocorrelation
curve thus were removed from the autocorrelation curves.

The GCDs of individual muscles were different during a
step of walking under a fixed walking speed (Table 1 and
Figure 6A); the sartorius muscle had the largest variance or
standard deviation of GCD measurement (green line, Figure 6A).
The GCDs of individual muscles were different between different
walking steps under a designated walking speed; the sartorius
muscle had the largest variance of GCDs over the steps (green
line, Figure 6B). Bayesian redundant fusion algorithms processed
GCDs of all 5 muscles yielding a GCD with the least variance of
GCD in one step of walking (Figure 6A, gray line) and over the
steps of walking (Figure 6B, gray line).

Profile of Joint Angle Kinematics
The results showed that the higher amplitude of EMG signals
with shorter GCD was found during a faster walking speed
(Figure 7A). The algorithms based on fused GCDs and gait
strike length yielded trajectory joint motion track in a shape of
sine curve (Figure 7B, black line). The hip joint angles of the
exoskeleton measured by a decoder mounted the hip joint turned
out to be in a track of sine waveforms. The exoskeleton hip joint
motion waveform matched the angles projected by hip motion
encoding curve based on GCD (Figure 7B) with high agreement
(Reliability analysis, Cronbach value = 0.85, p = 0.001).

DISCUSSION

Summary
This study demonstrated a novel approach to extract GCD
from sEMG signals for exoskeleton motion speed control. The
autocorrelation algorithm extracted GCDs from muscles that
removed noise from EMG signals. Different muscles had different
GCDs in a step of walking as well as over the different steps of
walking. Bayesian fusion algorithm processed GCDs of multiple
muscles to yield a fused GCD. The fused GCD was encoded
to control the motion speeds of exoskeleton and treadmill
yielding a volitional EMG-controlled exoskeleton integrated with
a treadmill system.

Significance of Processing EMG for
Exoskeleton Motion Control
EMG signals have been used for robotic assistive motion control
using the trajectory control mechanism (Kiguchi and Hayashi,
2012; Tong et al., 2014; Teramae et al., 2018). Unfortunately,
the motion speeds of these control methods are not adjustable.
Adjustable walking speed control can be used for task-oriented
rehabilitation train to encourage patients into the rehabilitation
training. EMG signal amplitude has been used to trigger
trajectory motions along the designated tracks. Due to the
fluctuated EMG signal baseline and artifact, unwanted motion
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FIGURE 5 | The raw sEMG signal from a subject’s vastus medialis (VM) and its autocorrelation value curve. (A) The raw sEMG signals corresponding with gait cycle
during walking; (B) The corresponding EMG RMS curve; (C) The autocorrelation value extracted from the VM muscle. GCD was obtained based on the duration
between two peaks of adjacent autocorrelation curves.

TABLE 1 | Individual GCDs and fused GCD (Mean ± SD).

Channel Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

sEMG(VM) 1.103 ± 0.088 0.992 ± 0.039 1.053 ± 0.039 1.055 ± 0.100 1.131 ± 0.101 1.016 ± 0.032

sEMG(TL) 0.987 ± 0.031 0.977 ± 0.052 0.964 ± 0.062 0.991 ± 0.044 1.011 ± 0.039 0.971 ± 0.064

sEMG(VL) 0.900 ± 0.092 0.839 ± 0.0117 0.916 ± 0.100 0.882 ± 0.104 0.936 ± 0.081 0.938 ± 0.090

sEMG(SR) 1.028 ± 0.038 1.200 ± 0.131 1.163 ± 0.104 1.036 ± 0.050 0.998 ± 0.032 1.131 ± 0.118

sEMG(SL) 1.005 ± 0.027 1.002 ± 0.028 1.025 ± 0.030 1.011 ± 0.038 1.018 ± 0.030 1.021 ± 0.038

Fused 1.005 ± 0.010 1.002 ± 0.012 1.024 ± 0.017 0.998 ± 0.016 1.019 ± 0.018 1.015 ± 0.021

Table 1 shows individual GCDs and fused GCD with walking speed of 1 m/s. The maximum variance of fused GCD obtained by using the multi-channel sEMG fusion
algorithm for this walking speed ranged from 0.010 to 0.021 in this study.

A B

FIGURE 6 | GCD profile of walking under the speed of 1 m/s. (A) Bayesian distribution GCD curves of 5 muscles in one step of walking; the fused GCD has the least
SD (gray line), while GCD from the Sartorius has the largest SD (green line); (B) GCDs from different muscles, the Sartorius muscle has the higher variance over
different steps (green line), while the fused GCD has the least variance (gray line).

of the robotic system could be accidently triggered. Hence the
trigger threshold is set high, but the higher triggering threshold
leads to system response insensitive. Autocorrelation approach
has been studied for EMG signal processing (Enders and Nigg,
2015). This study demonstrated EMG-derived autocorrelation

algorithm generated a corresponding GCD curve without being
affected by noise or artifacts.

The GCDs of individual muscles were different due to bio-
variability from different individuals. Bayesian fusion algorithms
has been using in handling the problem of uncertainty and
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FIGURE 7 | The raw sEMG and corresponding a hip joint angle profile. (A) Raw sEMG signals showing increase of EMG amplitude with shorter duration between
two muscle contractions with increased walking speed; (B) the GCD-based computer-generated hip joint angles (blue line) matches the measured exoskeleton hip
joint angles during walking (black line). The left column is the results of subject 1 and right column is the results of subject 6.

inconsistency of the data in both centralized and decentralized
data fusion architectures (Waleed and Abdulhafiz, 2013).
This study demonstrated that Bayesian fusion algorithms by
combining data from several sources using multiple sensor data
and fusion algorithms reduced signal uncertainty. The fused
GCD removed the variance of GCDs from multiple muscles
EMG recording, yielding a stable GCD that better reflected user’s
walking speed intents. The maximum variance of fused GCD
obtained using the multi-channel sEMG fusion algorithm was
0.021 s in this study, which was smaller than that reported in
the literature (0.046 0.055 s) (Lihong et al., 2010). This indicates
that the Bayesian redundant fusion algorithm is an effective signal
processing method to obtain optimal GCD with less deviation.

To date, the joint motion speed is predefined and cannot
be used to achieve variable velocity control based on subject’s
intended motion (Teramae et al., 2018). It is difficult to get the
harmonic interactions between subject and assistive ambulation
system with volitional control. In our study, the joint motion
speed was encoded by fused GCDs extracted from user’s muscle
contraction generated EMG signals. The results demonstrated
that exoskeleton walking speed could be adjusted by measuring
the sEMG signals to adjust exoskeleton motion speed. Faster

walking speed led to high amplitude of EMG signals and
shorter GCDs hence increasing the exoskeleton motion speed
by computer programming. This suggested that using fused
GCD as a single variable to control exoskeleton walking speed
is an effective method while keeping the angle range of joint
motion unchanged.

EMG based approach is an alternative approach to the
wearable sensor approach. In incomplete spinal cord injury
(iSCI) patients, for example, patients with ASIA grade B and
C severity, these patients have very weak muscle contraction
which cannot lift limb against gravity. Wearable sensor approach
(Hassan et al., 2014) may be difficult to detect force changes
and joint angle changes among patients with ASIA grade
B and C severity, but EMG signal can be detected. Under
this circumstance, EMG based approach better fits the iSCI
rehabilitation training requirement.

Significance of Processing EMG for
Treadmill Motion Control
In this study, EMG based modular control of treadmill
mechanism was utilized for treadmill speed control synchronized
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with exoskeleton walking speed. EMG based modular control
approach has been used for treadmill speed for running (Oliveira
et al., 2016). Modulation of locomotor-like EMG activity has
been found in patients with incomplete spinal cord injury and
EMG based modular control of treadmill has been used SCI
patient rehabilitation (Dobkin et al., 1995). Our study also
demonstrated the feasibility of using EMG for modular control of
both exoskeleton and treadmill with inter-machine coordination.

Exoskeleton integrated with a treadmill for rehabilitation
training has been used clinically with a consistent walking speed.
However, treadmill training can be used without use of any
direct attachment of robotic device. The treadmill allows for
the execution of many walking cycles in a relatively small and
controlled space (Hesse, 2008). Rehabilitation training with a
treadmill have showed to have improved long-term effects in
post-stroke gait (Reisman et al., 2010).

Clinical Relevance
Robotic-assisted exoskeleton and treadmill training systems have
been used in clinical rehabilitation for patients with neurological
disorders. Exoskeleton ambulation systems can in the lower
limb movements during walking training for rehabilitation
for improvement and better outcomes including rehabilitation
of spinal cord injuries (SCI) (Ungerleider et al., 2002) and
stroke (Moucheboeuf et al., 2020). Volitional-controlled assistive
rehabilitation devices has been reported to yield better functional
recovery among stroke patients (Bundy et al., 2017). The
improvement of motor function in stroke patients is associated
with accuracy of motion-intention-associated signal processing
performance (Bundy et al., 2017). Residual electromyography
activity in stroke patients with complete paralysis has been
shown to be decodable, even in cases when the movement
is not possible (Loopez-Larraz et al., 2018) and incomplete
spinal cord injury patients (Escalona et al., 2020; Murray
et al., 2020). Because a large proportion of severe stroke
patients have residual EMG signals, this yields a direct and
practical way to trigger a novel rehabilitation using robotic
rehabilitation engineering techniques (Balasubramanian et al.,
2018). Our study provides a novel approach of EMG signal
processing for volitional control of exoskeleton system for
rehabilitation. Because the walking speed can be controlled
at user’s intent, it can be used as a tool for task-orientated
rehabilitation training, hopefully yielding a better clinical neural
function recovery.

Limitations
Limitations of this study are that the systematic validation has
not been performed clinically among SCI or stroke patients. EMG
derived GCD can change exoskeleton walking speed. It appeared
to be that there were not irregularities when autocorrelation and
fusion algorithms in healthy subject. It is not clear about the
effectiveness of this signal processing method in the patients
of sever gait impairments, although it has been reported in
conference that autocorrelation may be feasible for lower limb
EMG signals for the initial evaluation of hemiparetic gaits (Wang,
2016). Our clinical investigation will be conducted soon. GCD

based velocity control algorithm could only be applied to the next
steps of walking speed control. The kinematics of joint angle was
programmed in sine waveform which does not match the real
lower limb joint angular kinematic profile.

CONCLUSION

This paper presented a novel approach to extract GCD
from sEMG signals for exoskeleton motion control. The
autocorrelation algorithm and the Bayesian redundant fusion
algorithm extracted GCDs which were encoded for the
exoskeleton and treadmill motion speed control according to
user’s intent. Systematic noise and unrelated sEMG signals
were automatically removed from the commanding signals for
machine operations. GCD-based sEMG-controlled algorithms
provided an adaptive interaction between the exoskeleton
assistive ambulation system and the user.
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