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Natural language provides an intuitive and effective interaction interface between human

beings and robots. Currently, multiple approaches are presented to address natural

language visual grounding for human-robot interaction. However, most of the existing

approaches handle the ambiguity of natural language queries and achieve target

objects grounding via dialogue systems, which make the interactions cumbersome and

time-consuming. In contrast, we address interactive natural language grounding without

auxiliary information. Specifically, we first propose a referring expression comprehension

network to ground natural referring expressions. The referring expression comprehension

network excavates the visual semantics via a visual semantic-aware network, and

exploits the rich linguistic contexts in expressions by a language attention network.

Furthermore, we combine the referring expression comprehension network with scene

graph parsing to achieve unrestricted and complicated natural language grounding.

Finally, we validate the performance of the referring expression comprehension network

on three public datasets, and we also evaluate the effectiveness of the interactive

natural language grounding architecture by conducting extensive natural language query

groundings in different household scenarios.

Keywords: interactive natural language grounding, referring expression comprehension, scene graph, visual and

textual semantics, human-robot interaction

1. INTRODUCTION

Natural language grounding aims to locate target objects within images given natural language
queries, and grounding natural language queries in visual scenes can create a natural
communication channel between human beings, physical environments, and intelligent agents.
Moreover, natural language grounding is widely used in image retrieval (Gordo et al., 2016), visual
question answering (Li et al., 2018), and robotics (Paul et al., 2018; Mi et al., 2019).

With applications of robots becoming omnipresent in varied human environments such as
factories, hospitals, and homes, the demand for natural and effective human-robot interaction
(HRI) has become urgent. Natural language grounding-based HRI is also attracting considerable
attention, and multiple approaches have been proposed (Schiffer et al., 2012; Steels et al., 2012;
Twiefel et al., 2016; Ahn et al., 2018; Hatori et al., 2018; Paul et al., 2018; Shridhar and Hsu, 2018;
Mi et al., 2019; Patki et al., 2019).
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Natural language grounding-based HRI requires a
comprehensive understanding of natural language instructions
and working scenarios, and the pivotal issue of is to locate
the referred objects in working scenarios according to given
instructions. Although the existing models achieve promising
results, some of them either do not take the inherent ambiguity of
natural language into consideration (Paul et al., 2018; Katsumata
et al., 2019; Mi et al., 2019; Patki et al., 2019), or alleviate the
ambiguity via drawing support from auxiliary information, such
as dialogue system (Ahn et al., 2018; Hatori et al., 2018; Shridhar
and Hsu, 2018) and gestures (Shridhar and Hsu, 2018). However,
the dialogue-based disambiguation systems entail time cost and
cumbersome interactions.

Tasks that utilize textual descriptions or questions to help
human beings to understand or depict images and scenes are in
agreement with the human desire to understand visual contents
at a high semantic level. Examples of these tasks include dense
captioning (Johnson et al., 2016), visual question answering
(Antol et al., 2015), referring expression comprehension (Yu
et al., 2016), etc. Referring expression comprehension imitates
the role of a listener to locate target objects within images
given referring expressions. Compared to other tasks, referring
expression comprehension focuses on objects in visual images
and locates specific targets via modeling the relationship between
objects and referring expressions.

Inspired by the role of referring expression comprehension,
we propose an interactive natural language grounding
architecture based on referring expression comprehension.
Specifically, we propose a semantic-aware network for referring
expression comprehension task. The proposed semantic-aware
network is composed of a visual semantic-aware network, a
language attention network, and a target localization module.
The visual semantic-aware network highlights the visual
semantics of regions by fully utilizing the characteristics of
deep features extracted from a pretrained CNN (Convolutional
Neural Network). The language attention network learns
to assign different weights to each word in expressions and
parse expressions into phrases that embed information of
target candidate, relation between objects, and spatial location,
respectively. And the target localization module combines
the visual and textual representations to locate target objects.
We train the proposed network on three popular referring
expression datasets: RefCOCO (Yu et al., 2016), RefCOCO+ (Yu
et al., 2016), and RefCOCOg (Mao et al., 2016).

In real applications, natural language queries are complicated
and ambiguous.While the expressions in the referring expression
datasets are simple sentences and only indicate one target, so the
complicated queries can not be grounded only by the trained
referring expression comprehension model. Inspired by the role
of scene graph which describes objects within visual images
and the relationship between objects, we integrate the referring
expression comprehension network with scene graph parsing
(Johnson et al., 2015) to ground unconstrained and complicated
natural language queries.

Moreover, we conduct extensive experiments on test sets of
the three referring expression datasets to validate the proposed
referring expression comprehension network. In order to

evaluate the performance of the interactive natural language
grounding architecture, we collect plenty of indoor working
scenarios and diverse natural language queries. Experimental
results demonstrate that the presented natural language
grounding architecture can ground complicated queries without
the support from auxiliary information.

To sum up, our major contributions are two-fold. First,
we propose a semantic-aware network for referring expression
comprehension, in which we take full advantage of the
characteristics of the deep features and exploit the rich contexts
of referring expressions. Second, we present a novel interactive
natural language grounding architecture by combining the
referring expression comprehension network with scene graph
parsing to ground complicated natural language queries.

2. RELATED WORK

2.1. Natural Language Grounding for HRI
Multiple approaches have been proposed to address natural
language grounding for HRI. Schiffer et al. (2012) adopted
decision-theoretic planning to interpret spoken language
commands for natural language-based HRI in domestic service
robotic applications. Steels et al. (2012) presented Fluid
Construction Grammar (FCG) to understand natural language
sentences, and FCG was suitable for real robot requires because
of its robustness and flexibility. Fasola and Matarić (2014)
proposed a probabilistic method for service robots to interpret
spatial language instructions.

Twiefel et al. (2016) combined an object classification
network, a language understanding module with a knowledge
base to understand spoken commands. Paul et al. (2018)
proposed a probabilistic model named adaptive distributed
correspondence graph to understand abstract spatial concepts,
and an approximate inference procedure to realize concrete
constituents grounding. Patki et al. (2019) utilized distributed
correspondence graph to infer the environment representation
in a task-specific approach. Katsumata et al. (2019) introduced
a statistical semantic mapping method that enables the robot to
connect multiple words embedded in spoken utterance to a place
in a semantic mapping processing. However, these models did
not take into account the inherent vagueness of natural language.
Our previous work (Mi et al., 2019) first presented an object
affordances detection model, and then integrated the object
affordances detection with a semantic extraction module for
grounding intention-related spoken language instructions. This
model, however, was subject to limited categories of affordances,
so it can not ground unconstrained natural language.

Shridhar and Hsu (2018) adopted a pretrained captioning
model, DenseCap (Johnson et al., 2016), to generate expressions
for detected regions in uncluttered working scenarios, and
through conducting K-means clustering to identify the
relativeness of input instructions and the generated expressions.
The expressions generated by DenseCap (Johnson et al., 2016)
do not include the interaction information between objects, such
as the relationship between objects. Therefore, the authors of
work (Shridhar and Hsu, 2018) employed gestures and a dialogue
system to disambiguate spoken instructions. Hatori et al. (2018)
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drew support from a referring expression comprehension model
(Yu et al., 2017) to identify the target candidates, and tackled with
the ambiguity of spoken instructions via conversation between
human users and robots. Ahn et al. (2018) first employed
hourglass network (Newell et al., 2016) to generate position
heatmap for working scenarios, and combined the generated
heatmap with a question generation module to locate targets
according to the answers for the generated questions. Thomason
et al. (2019) translated the spoken instructions into discrete robot
actions and improved objects grounding through clarification
conversations with human users. Nevertheless, dialogue systems
usually make HRI cumbersome and time-consuming.

Thomason et al. (2016) took into account visual, haptic,
auditory, and proprioceptive data to predict the target objects,
and the natural language grounding supervised by an interactive
game. However, this model needs to gather language labels
for objects to learn lexical semantics. Magassouba et al. (2018)
presented a multi-modal classifier generative adversarial network
to enable robots to implement carry-and-place tasks, and
disambiguates the natural language commands by utilizing
the contexts of working environments and the states of
the robots.

By contrast, we disambiguate natural language queries
by a referring expression comprehension network and
achieve interactive natural language grounding without
auxiliary information. To alleviate the ambiguity of natural
language queries, we take into consideration the relations, the
region visual appearance difference, and the spatial location
information during the referring expression comprehension
network training. Besides, we integrate the trained referring
expression comprehension model with scene graph parsing
to achieve unrestricted and complicated interactive natural
language grounding.

2.2. Referring Expression Comprehension
Referring expression comprehension aims to locate the most
related objects in images according to given referring expressions.
Compared with image captioning and visual question answering,
referring expression comprehension is widely used in image
retrieval (Chen k. et al., 2017), video question answering (Gao
et al., 2017), and natural language based HRI (Hatori et al., 2018;
Shridhar and Hsu, 2018).

In terms of representations of image regions and natural
language referring expressions, existing approaches for referring
expression comprehension can be generalized into two
categories: (1) visual representations un-enriched models,
which directly extract deep features from a pretrained CNN as
the visual representations of detected image regions (Mao et al.,
2016; Yu et al., 2016, 2017; Hu et al., 2017; Deng et al., 2018;
Zhang et al., 2018; Zhuang et al., 2018). (2) visual representations
enriched models, which enhance the visual representations
by adding external visual information for regions (Liu et al.,
2017; Yu et al., 2018a,b). Liu et al. (2017) leveraged external
knowledge acquired by an attributes learning model to enrich
the information of regions. Yu et al. (2018b) trained an object
detector on the Visual Genome dataset (Krishna et al., 2017)
to generate diversified and discriminative proposals. Yu et al.

(2018a) extracted deep features from two different convolutional
layers to predict region attribute cues. However, these mentioned
approaches neglected the rich information embedded in the
extracted deep features.

Attention mechanism was introduced for image captioning
(Xu et al., 2015) and become an indispensable component
in deep models to acquire superior results (Anderson et al.,
2018; Yu et al., 2018a). Due to the excellent performance of
attention mechanisms, they have also been utilized in referring
expression comprehension (Hu et al., 2017; Deng et al., 2018;
Yu et al., 2018a; Zhuang et al., 2018). Hu et al. (2017) parsed
the referring expressions into a triplet (subject, relationship,
object) by an external language parser, and computes the weight
of each part of parsed expressions with soft attention. Deng
et al. (2018) introduced an accumulated attention network that
accumulated the attention information in image, objects, and
referring expression to infer targets. Zhuang et al. (2018) argued
that the image representation should be region-wise, and adopted
a parallel attention network to ground target objects recurrently.
Notwithstanding, these models processed expressions as holistic
and ignored the rich context of expressions. Wang et al. (2019)
introduced a graph-based attention mechanism to address the
target candidates and the relationships between objects within
images, while the visual semantic in images was neglected.

Unlike the above mentioned approaches, we address the
visual semantics of regions by taking advantage of the inherent
semantic attributes of deep features, i.e., channel-wise and
spatial characteristics of extracted deep features. Additionally,
we explore the textual semantics by adopting BERT to generate
word representations and employ a language attention network
to learn to decompose expressions into phrases to ground
target objects.

3. ARCHITECTURE OVERVIEW

Natural language provides a more intuitive interface to achieve
natural and effective HRI. For grounding unrestricted and
complicated interactive natural language queries, we propose a
novel architecture, as shown in Figure 1. We decompose the
interactive natural language grounding into two subtasks: (1)
parse the complicated natural language queries into scene graph
legends by scene graph parsing. The scene graph legend is a data
structure consisting of nodes that denote objects with attributes
and edges that indicate the relations between objects; (2) ground
the parsed natural language queries by the referring expression
comprehension network.

In this work, we aim to locate the most related referents in
working scenarios given interactive natural language expressions
without auxiliary information. The inputs consist of a working
scenario given as an RGB image and an interactive natural
language instruction given as text, and the outputs are the
bounding boxes of target objects. We parse the input natural
language instructions into scene graph legends by scene graph
parsing, and then we ground the acquired scene graph legends
via the referring expression comprehension network.
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FIGURE 1 | The architectural diagram of the proposed interactive natural language grounding. We first parse the interactive natural language queries into scene graph

legends by the scene graph parsing. We then ground the generated scene graph legends via the referring expression comprehension network. The mark rectangle in

bottom encompasses the scene graph parsing result for the input natural language query. The rounded rectangles with black dashed lines denote the parsed scene

graph legends, color shaded rectangles represent referents, no color shaded rectangle is an object, ovals indicate objects attributes, rounded rectangles act for edges

which indicate relations between target and other objects. The same color of the bounding boxes in the output image and the referents in the generated scene graph

legends denotes a grounding.

We elaborate the details of the referring expression
comprehension network in section 4, and we describe the
scene graph parsing in section 5. Following this, we outline
the experiments conducted to evaluate the referring expression
comprehension network and the interactive natural language
grounding architecture in section 6.

4. REFERRING EXPRESSION
COMPREHENSION VIA
SEMANTIC-AWARE NETWORK

Given a referring expression r with M words r = {wi}
M
i=1 and

an image I with N region of interests (RoIs) I = {oj}
N
j=1, we

model the relation between wi and oj to locate the target object.
In this study, we propose a referring expression comprehension
network comprises: (1) a language attention network learns
to assign different weights to each word in expressions, and
parse the expressions into phrases that denote target candidate,
relation between target candidate and other objects, and location
information; (2) a visual semantic-aware network generates
semantic-aware visual representation, which is acquired by
the channel-wise and the region-based spatial attention; (3)
a target localization module achieves targets grounding by
combining the outputs of the language attention network,
the output of the visual semantic-aware network with the

components of the target localizationmodule. Figure 2 illustrates
the details of the proposed semantic-aware network for referring
expression comprehension.

4.1. Language Attention Network
We propose a language attention network to learn the different
weights of each word in referring expressions, and also to
learn to parse the expressions into target candidate embedding
rtar , relation embedding rrel, and spatial location embedding
rloc, respectively.

For an expression r, we employ BERT (Devlin et al., 2019) to
tokenize and encode r into contextualized word embeddings Er
= [e1, e2, ..., eM], where ei ∈ R

1×1024. We then feed Er into an
one-layer BiLSTM:

Lout = BiLSTM(Er) (1)

where Lout is the output of the BiLSTM.
To acquire the different weight of each word, we compute

attention distribution over the expressions by:

αl = softmax(F(Lout))

L =

g∑

i

αl,iLout,i
(2)
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FIGURE 2 | Semantic-Aware network for referring expression comprehension. We adopt the language attention network to compute the different weights for each

word in expressions, and learn to parse the expressions into phrases that embed the information of target candidate, relation, and spatial location, respectively. We

conduct both channel-wise and region-based spatial attention to generate semantic-aware region visual representation. We further combine the outputs of the visual

semantic-aware network, the language attention network, and the relation and location representations to locate the target objects. In the figure, f
′

v denotes the

projected deep features, VC represents the channel-wise weighted deep feature, VS is the spatial weighted feature, fSv is the generated semantic-aware visual

representation by concatenating f
′

v and VS, the details are described in section 4.2. The relation representation urel , the location representation uloc, and the details of

the target candidate module, the relation module, and the location module are introduced in section 4.3. 9 denotes a channel-wise multiplication for f
′

v and the

generated channel-wise attention weight σ , 8 represents element-wise multiplication for VC and the acquired spatial attention weight γ (Best viewed in color).

where αl denotes the calculated attention weight, and

M∑

m=1

αl = 1.

In the implementation, F is modeled by two convolution layers.
The generated expression representation L ∈ R

d×2048, d is length
of expressions in different dataset.

Expressions like “cup with printed red flowers,” some words
should be parsed to a phrase to represent specific information,
e.g., “with printed red flowers.” To this end, we employ a single
perceptron layer and a softmax layer to learn to parse the
expression into three module embeddings:

L = ϕ(WtL+ bt)

[wtar ,wloc,wrel] = softmax(L)
(3)

where ϕ is a non-linear activation function, in this paper, we
use hyperbolic tangent. Wt is a trainable weight matrix and bt
represents a bias vector. wtar , wloc, wrel represent weights guided
by target embedding rtar , relation embedding rrel, and spatial
location embedding rloc, respectively.

4.2. Visual Semantic-Aware Network
We take full advantage of the characteristics of deep features
extracted from a pretrained CNN model, and we conduct
channel-wise and region-based spatial attention to generate
semantic-aware visual representation for each detected region.
This process can be deemed as visual representation enrichment
for the detected regions.

4.2.1. RoI Features
Given an image, we adopt Faster R-CNN (Ren et al., 2015) to
generate RoIs, andwe extract deep feature fv ∈R

7×7×2048 for each
oj from the last convolutional layer of the 4th-stage of ResNet101
(He et al., 2016), where 7×7 denotes the size of the extracted deep
feature, 2048 is the output dimension of the convolutional layer,
i.e., the number of channels. We then project the deep feature fv
into a 512-dimension subspace by a convolution operator with

1×1 kernel, i.e., the projected deep feature f
′

v ∈ R
7×7×512.

4.2.2. Channel-Wise Attention
Essentially, deep features extracted from CNN are spatial,
channel-wise, and multi-layer. Each channel of a deep feature
correlates with a convolutional filter which performs as a pattern
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detector (Chen L. et al., 2017). For example, the filters in lower
layers detect visual clues such as color and edge, while the filters in
higher layers capture abstract content such as object component
or semantic attributes. Accordingly, performing channel-wise
attention on higher-layer features can be deemed as a process of
semantic attributes selection.

We first reshape the projected RoI deep feature fv
′ to V=[v1,

v2, ..., vdv ], where vi ∈R
7×7 is the i-th channel of the deep feature

fv
′, dv=512. We then perform average pooling on each channel to

generate the channel-wise vector V = [v1, v2, ..., vdv ], where V ∈

R
1×512, vi represents the i-th pooled channel feature.
After the feature pooling, we first utilize L2-normalization

to process channel-wise vector V and expression representation
L to generate more robust representations, we then perform
channel-wise attention by a channel-wise attention network
which is composed of an MLP (multi-layer perceptron) and a
softmax layer. For the detected image region, the input of the
attention network is average-pooled feature V and the weighted
expression representation L. The channel-wise attention weight
is acquired by:

Ac = ϕ((Wv,cV + bv,c)⊗ (Wt,cL+ bt,c))

σ = softmax(Ac)
(4)

where Wv,c and Wt,c are learnable weight matrices, bv,c and
bt,c are bias vectors, Wv,c and bv,c are the parameters of
the MLP for visual representation, while Wt,c and bt,c for
textual representation. ⊗ denotes outer product, σ ∈ R

1×512

is the learned channel-wise attention weight which encodes
the semantic attributes of regions. In the following, Wv,. and
bv,. represent the weight matrix and bias vector for visual
representation, whileWt,. and bt,. denote the trainable parameters
for textual representation.

4.2.3. Region-Based Spatial Attention
The channel-wise attention attempts to address the semantic
attributes of regions, while the region-based spatial attention
is employed to attach more importance to the referring
expressions related regions. To acquire region-based spatial
attention weights, we first combine the learned channel-wise

attention weight σ with the projected deep feature f
′

v to generate
channel-wise weighted deep feature VC.

VC = 9(fv
′, σ ) (5)

where9 is a channel-wisemultiplication for deep feature channel
and the corresponding channel weights,
VC ∈ R

49×512.
We put the weighted channel-wise deep features VC and the

weighted expressions into an attention network similar to the
channel-wise attention to calculate the spatial attention γ :

As = ϕ((Wv,sV
C + bv,s)⊗ (Wt,sL+ bt,s))

γ = softmax(As)
(6)

The acquired γ ∈R
49×1 denotes the weight of each region related

to the expressions. We further fuse the γ with channel-wise

weighted feature VC to obtain spatial weighted deep feature VS:

VS = 8(VC, γ ) (7)

where 8 denotes element-wise multiplication for generated VC

and the corresponding γ .
Spatial weighted deep feature VS ∈ R

7×7×512 comprises
the semantics guided by the channel-wise attention as well
as the spatial weight of each region. Therefore, we define
VS as semantic-aware deep feature. Finally, we concatenate

VS with projected feature f
′

v to obtain semantic-aware visual

representation for each region, i.e., f Sv = [f
′

v ;V
S], f Sv ∈R

7×7×1024,
[· ; ·] denotes the concatenate operation.

4.3. Target Localization Module
In order to locate target objects for given expressions, we need
to sort out the relevant candidates, the spatial location, and the
appearance difference between the candidate and other objects.
For instance, to understand the expression “the cow directly to
the right of the largest cow,” we need to understand the spatial
location “the right of,” and the appearance difference “largest”
between the cows to identify the target “cow.” To this end, we
deal with the relevant candidates, the relation and spatial location
through a target candidate module, a relation module, and a
spatial location module, respectively.

4.3.1. Target Candidate Module
We compute the target candidate phrase matching score by
the target candidate module. For a given region semantic-aware
representation f Sv and target candidate phrase guided expression
embedding rtar , we process f

S
v and rtar by L2-normalization and

linear transform to compute the attentionweights on each region:

t = ϕ((Wvf
S
v + bv)⊗ (Wtrtar + bt))

β = softmax(t)
(8)

where β denotes the learned region-based attention weight.
We fuse β and f Sv to obtain the target candidate phrase

attended region visual representation utar , and we further
compute the target candidate matching score star by:

utar = β ⊗ f Sv

utar = Wv,tarutar + bv,tar

rtar = Wt,tarrtar + bt,tar

star = D(utar , rtar)

(9)

where D(·, ·) represents the consine distance measurement.

4.3.2. Relation Module
We adopt a relationmodule to obtain thematching score of a pair
of candidates and relation embedding rrel. We use the average-
pooled channel vector V as the appearance representation
for each candidate. To tackle with the appearance difference
between candidates, e.g., “the largest cow,” we calculate the visual

appearance difference representation δvi=
1
n

∑
j 6=i

vi−vj
||vi−vj||

as (Yu

et al., 2016), where n is the number of candidates chosen for
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caparison (in our implementation n = 5). We concatenate V and
δvi as the candidates visual relation representation urel, i.e., urel =
[V ; δvi]. We calculate the relation matching score by:

urel = Wv,relurel + bv,rel

rrel = Wt,relrrel + bt,rel

srel = D(urel, rrel)

(10)

4.3.3. Spatial Location Module
We calculate the location matching score through the location
module. To deal with the spatial relation of candidates in
images, following (Yu et al., 2016), we adopt a 5-dimensional

spatial vector ul = [
xtl
W ,

ytl
H ,

xbr
W ,

ybr
H , w·h

W·H ] to encode the top
left position, bottom right position, and the relative size of the
candidates in images. In order to address the relative position
expression like “the right of,” “in the middle,” we adopt the

relative location vector 1uij = [
[1xtl]ij

wi
,
[1ytl]ij

hi
,
[1xbr]ij

wi
,
[1ybr]ij

hi
,

wj·hj
wi·hi

] which is obtained by comparing with five surrounding

objects and concatenate with ul to generate candidate location
representation uloc = [ul ; 1uij].

Similar to the target candidate module, we process uloc and
location phrase rloc, and then combine the transformed uloc and
rloc to generate the location matching score sloc:

uloc = Wv,loculoc + bv,loc

rloc = Wt,locrloc + bt,loc

sloc = D(uloc, rloc)

(11)

4.4. Learning Objective
Given a referring expression r and an image I with multiple
RoIs pair, we calculate the target candidate score, the relation
score, and the location score, through the three above introduced
modules. We locate the target object by the final grounding score:

G(oi|r) = wtarstar + wrelsrel + wlocsloc (12)

In the implementation, we adopt a combined max-margin loss as
the objective function:

Lθ =
∑

i

[max(0, ξ − G(oi|ri)+ G(oi|rj))

+ max(0, ξ − G(oi|ri)+ G(ok|ri))] (13)

where θ denotes the parameters of the model to be optimized,
ξ is the margin between positive and negative samples. During
training, we set ξ = 0.1. For each positive target and expression
pair (oi, ri), we randomly select negative pairs (oi, rj) and (ok, ri),
where rj is the expression for other objects, ok is the other object
in the same image.

5. SCENE GRAPH PARSING

The introduced referring expression comprehension network
is trained on RefCOCO, RefCOCO+, and RefCOCOg. The
referring expressions in RefCOCO and RefCOCO+ were
collected by an interactive manner (Kazemzadeh et al., 2014),

and the average length of expressions in RefCOCO is 3.61,
and the average number of words in RefCOCO+ expressions
is 3.53. While RefCOCOg expressions were collected in a non-
interactive way, therefore produces longer expressions and the
average length is 8.43. From the perspective of expression length
distribution, 97.16% expressions in RefCOCO contain less than
9 words, the proportion in RefCOCO+ is 97.06%, while 56.0%
expressions in RefCOCOg comprise less than 9 words. Moreover,
the expressions in the three datasets only indicate one referent, so
the trained model cannot ground natural language instructions
with multiple target objects.

Considering the richness and diversity of natural language,
and the relatively simple expressions in the three datasets,
the trained referring expression comprehension model can
not achieve complex natural language grounding. To this
end, we combine scene graph with the referring expression
comprehension network to ground unconstrained and
sophisticated natural language.

Scene graph was introduced in Johnson et al. (2015), in
which the scene graph is used to describe the contents of a
scene. Compared with dependency parsing, scene graph parsing
generates less linguistic constituents. Given a natural language
sentence, scene graph parsing aims to parse the natural language
sentence into scene graph legends, which consist of nodes
comprise objects with attributes and edges express the relations
between target and objects. For instance, for the sentence “red
apple next to the bottle,” the generated scene graph legend
contains node (“red apple”) and node (“bottle”), and edge
(“next to”).

Formally, a scene graph legend is defined as a tuple G(S) =
(N (S), E(S)), where N (S) = {N1(S), N2(S), ..., Nn(S)} is a set
of nodes that encode objects with attributes, and E(S) = {E1(S),
E2(S), ..., Em(S)} is a set of edges that express the relations between
objects. Specifically, a node Ni(S) ⊆ ni × Ai represents attribute
Ai of an object ni (e.g., red apple). An edge Ei(S)⊆ (no × R× ns)
denotes the relation R between a subject no and an object ns, (e.g.,
next to).

In general, a scene graph parser can be constructed on a corpus
consisting of paired node-edge labels. However, no such dataset
is released for interactive natural language grounding. In order to
ensure the natural language is parsed correctly, we adopt a simple
yet reliable rule, i.e., word-by-wordmatch, to achieve scene graph
alignment. Specifically, for a generated scene graph, we check the
syntactic categories of each word in a node and an edge by part of
speech. A parsed node should consist of a noun or an adjective,
and an edge contains an adjective or an adverb. In practice, we
adopt the language scene graph (Schuster et al., 2015) and the
natural language toolkit (Perkins, 2010) to complete scene graph
generation and alignment.

6. EXPERIMENTS AND RESULTS

6.1. Referring Expression Comprehension
Benchmark
6.1.1. Datasets
We train and validate the referring expression comprehension
network on RefCOCO, RefCOCO+, and RefCOCOg. The images
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of the three datasets were collected from MSCOCO dataset (Lin
et al., 2014).

RefCOCO comprises 142,210 expressions for 50,000 referents
in 19,994 images. We adopt the same split with (Yu et al.,
2016). The dataset is divided into training, validation, and
test, respectively. The training set contains 120,624 expressions
for 42,404 objects in 16,994 images, the validation set has
10,834 expressions for 3,811 objects in 1,500 images. The testing
partition comprises two splits, testA and testB. TestA includes
5,657 expressions for 1,975 objects in 750 person-centric images,
while testB owns 5,095 object-centric expressions for 1,810
objects in 750 images.

RefCOCO+ consists 141,564 expressions for 49,856 referents
in 19,992 images. The split we use is same as (Yu et al.,
2016). The training set consists of 120,191 expressions for
42,278 objects in 16,992 images, the validation partition contains
10,758 expressions for 3,805 objects in 1,500 images. TestA
comprises 5,726 expressions for 1,975 objects in 750 images,
and testB encompasses 4,889 expression for 1,798 objects in
750 images. Compared to RefCOCO, RefCOCO+ discards
absolute location words and attaches more importance to
appearance differentiators.

RefCOCOg contains 95,010 expressions for 49,822 referents
in 25,799 images. As they are collected in a non-interactive
pattern, the length of referring expressions in RefCOCOg are
longer than RefCOCO and RefCOCO+. RefCOCOg has two
types of data splitting, (Mao et al., 2016) splits the dataset into
train and validation, and no test set is published. Another data
partition (Nagaraja et al., 2016) split the dataset as training,
validation, and test sets. We run experiments on the second
division, in which the training set contains 80,512 expressions
for 42,226 objects in 21,899 images, the validation split includes
4,896 expressions for 2,573 objects in 1,300 images, and the test
partition has 9,602 expressions for 5,023 objects in 2,600 images.

6.1.2. Experimental Setup
In practice, we set the length of the sentences to 10 for the
expressions in RefCOCO and RefCOCO+, and pad with “pad”
symbol to the expressions whose length is smaller than 10. We
set the length of the sentences to 20 and adopt the same manner
to process the expressions in RefCOCOg.

We employ “bert-large-uncased” model1 to generate
contextualized word embedding Er . According to Devlin et al.
(2019), the word embedding from the sum of the last four layers
acquire better results than the embedding extracted from the last
layer. We select the embedding of the sum of the last four layers
of BERT as Er . Therefore, the obtained expression representation
q ∈ R

10×1024 for RefCOCO and RefCOCO+, and q ∈ R
20×1024

for RefCOCOg.
Given an image and referring expression pair, we utilize

the final ground score defined in Equation 12 to compute the
matching score for each object in the image, and pick the one
with the highest matching score as the correct one. We calculate
IoU (Intersection over Unit) between the selected region and the

1https://github.com/huggingface/pytorch-pretrained-BERT

ground truth bounding box, and select the IoU value larger than
0.5 as the correct visual grounding.

We train our model with Adam optimizer with β1 = 0.9 and
β2 = 0.999, we set the initial learning rate 0.0004 and decay every
5,000 iterations with weight decay 0.0001, and the total number
of iterations is up to 30,000.

6.1.3. Ablation Analysis
We adopt different combinations to validate the performance of
each module, the results are shown in Table 1. According to (Yu
et al., 2018b) and (Yu et al., 2018a), the models trained by the
deep features extracted from VGG16 (Simonyan and Zisserman,
2014) generates lower accuracy than the features generated by
ResNet101, so we do not train our model use VGG features.

First, we validate the performance of our model from the
visual perspective. We concatenate the project feature fv

′ and
location representation uloc as the visual representation for each
region, and adopt the output of the BiLSTM as the representation
for expressions. We set this combination as the baseline, and the
results are listed in Line 1. We then add relation representation
urel to evaluate the benefits of the relation module, and the results
are listed in Line 2.

Second, we test the effectiveness of the visual semantic-aware
network. We adopt the semantic-aware visual representation
f Sv combined with the location and relation representation,
respectively. Compared to Line 1 and Line 2, the results listed in
Line 3 and Line 4 show the benefits of the visual semantic-aware
network, and the accuracies are improved by nearly 2%.

Third, We employ two manners to evaluate the performance
of the language attention network. We first select fv

′ as the
visual representation for the target candidate, and combine the
language attention network with the target localization module.
It is clear that the results outperform than the results listed in
Line 2. An interesting finding is that the results listed in Line 4
are close to Line 5, which also demonstrates the benefits of the
visual semantic-aware network. We then adopt f Sv to represent
the target candidate, and coalesce the language attention network
with the other two modules. This combination acquires the best
accuracies on the three datasets.

Fourth, we compare the influence of different word
embeddings. We extract the embeddings from the last layer
of BERT as the contextual representation for expressions and
feed them into the language attention network, we denote this
word embedding as LangAtten(I). Line 7 illustrates the obtained
results. Compared with Line 6, the results show the advantage
of the embeddings generated from the sum of the last four
layers of BERT.

Finally, we list some example results acquired by the referring
expression comprehension network in Figure 3. According to
the experimental results, the presented model is able to locate
the target objects for complex referring expressions, as shown
in the experiments on RefCOCOg. As shown in Table 1,
compared with the results on RefCOCO+ and RefCOCOg, our
model acquires better results on RefCOCO. We found the
expressions in RefCOCO frequently utilize the attributes and
location information to describe objects, while the expressions
in RefCOCO+ abandon the location descriptions while utilize
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TABLE 1 | Ablation studies of our model using different module combinations.

RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val(%) test(%)

1 sub(ProjFeat)+loc 79.28 79.57 80.37 64.77 65.29 62.41 69.63 69.28

2 sub(ProjFeat)+loc+rel 79.99 80.24 80.82 64.89 66.00 63.57 70.14 69.96

3 sub(SemanAware)+loc 80.59 80.61 81.73 64.20 65.89 63.47 72.94 72.72

4 sub(SemanAware)+loc+rel 81.24 81.42 82.20 65.11 66.03 63.76 72.98 72.76

5 sub(ProjFeat)+loc+rel+LangAtten 81.83 82.10 82.20 66.42 67.46 63.84 73.33 72.81

6 sub(SemanAware)+loc+rel+LangAtten 83.51 83.74 83.18 68.16 69.66 64.66 76.00 74.81

7 sub(SemanAware)+loc+rel+LangAtten(I) 83.25 82.55 82.55 67.77 69.70 64.00 74.53 73.61

The bold values show the best grounding accuracy on each dataset split acquired by the proposed network.

FIGURE 3 | Example results of referring expression comprehension on test sets of RefCOCO, RefCOCO+, and RefCOCOg. Referring expressions are listed under the

related images. In each image, the red box represents the correct grounding, and the green bounding box denotes the ground truth.

more appearance difference to depict objects. In addition,
the expressions in RefCOCOg involve the descriptions of
neighborhood objects of referents and frequently use the relation
between objects to define the target objects.

6.1.4. Comparison With State-of-the-Art
Table 2 lists the results acquired by the proposed model and the
state-of-the-art models. The table is split into two parts over the
rows: the first part lists the approaches without introducing the
attention mechanism. The second illustrates the results acquired
by attention integrated models.

First, the proposed model outperforms the other approaches
and acquire competitive results with the current state-of-the-art

approach (Wang et al., 2019). (Wang et al., 2019) built the
relationships between objects via a directed graph constructed
over the detected objects within images. Based on the directed
graph, this work identified the relevant target candidates by a
node attention component and addressed the object relationships
embedded in referring expressions via an edge attention module.
This work focused on exploiting the rich linguistic compositions
in referring expressions, while neglected the semantics embedded
in visual images. In our proposed network, we address both the
linguistic context in referring expressions and visual semantic
in images.

Second, through the experiments on the three datasets,
the introduced model acquires better results on RefCOCO
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TABLE 2 | Comparison with the state-of-the-art approaches.

RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val*(%) val(%) test(%)

1 visdif (Yu et al., 2016) - 67.57 71.19 - 52.44 47.51 59.25 - -

2 MMI (Mao et al., 2016) - 63.15 64.21 - 48.73 42.13 55.16 - -

3 attr+MMI+visdif (Liu et al., 2017) - 78.85 78.07 - 61.47 57.22 69.83 - -

4 Speaker (Yu et al., 2017) 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

5 Listener (Yu et al., 2017) 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72

6 VC (Zhang et al., 2018) - 78.98 82.36 - 62.56 62.90 73.98 - -

7 DDPN+VGG16 (Yu et al., 2018b) 76.9 67.5 73.4 67.0 50.2 60.1 - - -

8 DDPN+ResNet101 (Yu et al., 2018b) 80.1 72.4 76.8 70.5 54.1 64.8 - - -

9 CMN (Hu et al., 2017) - - - - - - 69.30 - -

10 AccuAtten (Deng et al., 2018) 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -

11 PLAN (Zhuang et al., 2018) 81.67 80.81 81.32 64.18 66.31 61.46 69.47 - -

12 MAttNet+VGG16 (Yu et al., 2018a) 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.7

13 LGRANs (Wang et al., 2019) 82.0 81.2 84.0 66.6 67.6 65.5 - 75.4 74.7

14 VisSemanAware+LanAtten 83.51 83.74 83.18 68.16 69.96 64.66 - 76.00 74.81

The bold values show the best grounding accuracy on each dataset split.

compared with the results on RefCOCO+ and RefCOCOg. The
expressions in RefCOCO frequently utilize the location or other
details to describe target objects, the expressions in RefCOCO+
abandon the location descriptions and adopt more appearance
difference. While the expressions in RefCOCOg attach more
importance to the relation between the target candidates and
their neighborhood objects to depict the target objects.

Finally, we show some failure cases on the three datasets in
Figure 4. For complex expression, similar to “small table next
to the chair,” our model generates closest weights for “table” and
“chair.” Moreover, to locate the object with vague visual features,
such as the target for “black sleeves” in the first left image and
“guy leg out” in the third image of the second row, our model
frequently generates wrong predictions. For the long expression
and image with the complex background, such as the two images
in RefCOCOg, our model fails to generate correct predictions.

6.2. Interactive Natural Language
Grounding
We evaluate the effectiveness of the presented interactive natural
language grounding architecture in two different manners.
First, we collect 133 indoor scenarios from the test datasets
of RefCOCO, RefCOCO+, and RefCOCOg, and collect 187
expressions that contain 2 referents for the selected images. These
collected scenarios consist of the household objects that can be
manipulated by robots. The average length of the expressions for
MSCOCO images is 10.75. Second, we use a Kinect V2 camera
to collect 30 images which are composed of the commonly used
household objects and can be manipulated by robots. We collect
228 expressions, which contain 132 expressions with 2 referents
and 96 expressions with 3 targets. The average number of words
in these expressions is 14.31.

In order to collect diverse expressions for the collected images,
we recruit 10 participants and show them different scenarios.
For the MSCOCO images, we ask the participants to give

expressions to depict two specific targets for each scenario,
such as “the bottom row second donut from the left and the
bottom rightmost mug.” For the self-collected scenarios, we ask
the participants to give expressions with two or three referents
for each image, for example, “move the red apple outside the
box into the box and take the second water bottle from the
right.” The collected working scenarios and expressions can be
downloaded from the following link: https://drive.google.com/
open?id=1k4WgpHTGaYsIE9mMmDgE_kiloWnYSPAr.

In order to validate the performance of the proposed
interactive natural language grounding architecture, we conduct
grounding experiments on the collected indoor scenarios and
natural language queries. We adopt the available scene graph
parser source2 introduced (Schuster et al., 2015) to parse the
complicated queries into scene graph legends (e.g., the parsing
results listed in the rounded rectangles in the second row in
Figure 5), and the trained referring expression comprehension
model to locate target objects within given scenarios.

Figure 5 lists some grounding results on the collected
MSCOCO images. We adopt the referring expression
comprehension network trained on the three datasets to ground
the collected expressions, respectively. The accuracies of the
collected expressions grounding for MSCOCO images acquired
by the three models are RefCOCO 86.63%, RefCOCO+ 79.41%,
and RefCOCOg 80.48%. Figure 6 shows the grounding example
results on the self-collected scenarios. The grounding accuracies
attained by the three models are RefCOCO 91.63%, RefCOCO+
87.45%, and RefCOCOg 88.44%. From these experimental
grounding results, it is clear that the trained referring expression
comprehension models have superior robustness.

Because of the properties of referring expressions in the
RefCOCO, RefCOCO+, and RefCOCOg, the model trained
on RefCOCO acquired the best results on the self-collected

2https://nlp.stanford.edu/software/scenegraph-parser.shtml
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FIGURE 4 | Examples of incorrect predictions. The red boxes show wrong visual groundings, and the green boxes denote the ground truth bounding boxes.

FIGURE 5 | Example results of interactive natural language grounding on MSCOCO images. The input natural language instructions are listed in the third row with

rectangle, the scene graph parsing results are shown in the second row with rounded rectangle.

working scenarios. Instead of discarding spatial location
words in expressions provided by RefCOCO+ expressions,
and highlighting relationships between objects in RefCOCOg
expressions, the collected expressions are more similar to the
expressions in RefCOCO. Specifically, we take into consideration
of descriptions of target attributes, spatial location of targets

within images, and the relation between targets and their
neighborhood objects in the collected natural language queries.

We also analyze the failure target object grounded working
scenarios and related expressions, we found that the expressions
with more “and” cannot be parsed correctly. For instance, the
expression “take the apple between the bottle and the glass and
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FIGURE 6 | Example results of interactive natural language grounding on self-collected scenarios. The input natural language are listed in the rectangles, and the

parsed scene graph legends are covered with related colors.

the red cup” will be parsed into four nodes “apple,” “bottle,”
“glass,” and “red apple,” while the relation between “apple,”
“bottle,” and “glass” is lost, which leads to a failure grounding.

7. CONCLUSION

We proposed an interactive natural language grounding
architecture to ground unrestricted and complicated natural
language queries. Unlike the existing methods for interactive
natural language grounding, our approach achieved natural
language grounding and queries disambiguation without the
support from auxiliary information. Specifically, we first
presented a semantic-aware network for referring expression
comprehension which is trained on three commonly used
datasets in referring expressions. Considering the rich semantics
in images and natural referring expressions, we addressed
both visual semantic and textual contexts in the presented
referring expression comprehension network. Moreover, we
conducted multiple experiments on the three datasets to
evaluate the performance of the proposed referring expression
comprehension network.

Furthermore, we integrated the referring expression
comprehension network with scene graph parsing to

ground complicated natural language queries. Specifically,
we first parsed the complicated queries into scene graph
legends, and then we fed the parsed scene graph legends into
the trained referring expression comprehension network
to achieve target objects grounding. We validated the
performance of the presented interactive natural language
grounding architecture by implementing extensive experiments
on self-collected indoor working scenarios and natural
language queries.

Compared to the existing work for interactive natural

language grounding, the proposed architecture is akin to an
end-to-end approach to ground complicated natural language

queries, instead of drawing support from auxiliary information.

And the proposed architecture does not entail time cost as
the dialogue-based disambiguation approaches. Afterward,

we will improve the performance of the introduced referring
expression comprehension network by exploiting the rich

linguistic compositions in natural referring expressions and
exploring more semantics from visual images. Moreover, the
scene graph parsing module performs poorly when parsing
complex natural language queries, such as sentences with
more “and,” we will focus on improve the performance of
the scene graph parsing. Additionally, we will exploit more
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effective methods to ground more complicated natural language
queries and conduct target manipulation experiments on a
robotic platform.
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