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Human infants are able to acquire natural language seemingly easily at an early age.

Their language learning seems to occur simultaneously with learning other cognitive

functions as well as with playful interactions with the environment and caregivers.

From a neuroscientific perspective, natural language is embodied, grounded in most,

if not all, sensory and sensorimotor modalities, and acquired by means of crossmodal

integration. However, characterizing the underlying mechanisms in the brain is difficult

and explaining the grounding of language in crossmodal perception and action remains

challenging. In this paper, we present a neurocognitive model for language grounding

which reflects bio-inspired mechanisms such as an implicit adaptation of timescales

as well as end-to-end multimodal abstraction. It addresses developmental robotic

interaction and extends its learning capabilities using larger-scale knowledge-based

data. In our scenario, we utilize the humanoid robot NICO in obtaining the EMIL data

collection, in which the cognitive robot interacts with objects in a children’s playground

environment while receiving linguistic labels from a caregiver. The model analysis

shows that crossmodally integrated representations are sufficient for acquiring language

merely from sensory input through interaction with objects in an environment. The

representations self-organize hierarchically and embed temporal and spatial information

through composition and decomposition. This model can also provide the basis for

further crossmodal integration of perceptually grounded cognitive representations.

Keywords: language grounding, developmental robotics, multiple timescales, recurrent neural networks,

embodied cognition, multimodal learning, crossmodal integration, multimodal interaction dataset

1. INTRODUCTION

While research in natural language processing has advanced in specific disciplines such as parsing
and classifying large amounts of text, human-computer communication is still a major challenge,
due to multiple aspects: speech recognition is limited to good signal-to-noise conditions or
well-adapted models, dialogue systems depend on a well-defined context, and language elements
are difficult to reconcile with the environmental situation. Consequently, interactive robots that
match human communication performance are not yet available. One reason for this is the fact that
the crossmodal binding between language, actions, and visual events is not yet fully understood and
was thus not realized in technical systems that have to interact with humans (Hagoort, 2017).

Imaging techniques such as Functional Magnetic Resonance Imaging (fMRI) have provided a
better understanding of which areas in the cortex are involved in natural language processing and
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that these areas include somatosensory regions. Language studies
have shown that there is a tight involvement of crossmodal
sensation and action in speech processing and production as
well as in language comprehension (Friederici and Singer, 2015).
Thus, there is increasing evidence that human language is
embodied. This means that it is grounded in most sensory and
sensorimotor modalities and that the human brain architecture
favors the acquisition of language by means of crossmodal
integration (Pulvermüller, 2018).

As a consequence, research on cognitive modeling and
developmental robotics is working toward developing models
for natural language processing that reflect our understanding
of distributed processing and embodied grounding of language
in the brain. This way, the overall goal of studying the
problem of language grounding in crossmodal perception and
action can get approached. A particularly important aim is to
develop a model for language grounding which reflects bio-
inspired mechanisms and minimized difficult assumptions for
the computational mechanisms.

In this paper, we present an embodied neurocognitive model
for crossmodal language grounding that is trained in an end-to-
end fashion. Additionally, we explore the concepts of varying
multiple timescales in processing as well as distributed cell
assemblies in representation learning. Based on the proposed
model, we aim to investigate the characteristics of the learned
crossmodally integrated representations.

1.1. Related Work
In order to bridge the gap between formal linguistics and bio-
inspired systems, several valuable computational models have
been developed that bring together language and an agent’s
multimodal perception and action. In their seminal Cross-
channel Early Lexical Learning (CELL) model, Roy and Pentland
(2002) demonstrate word learning from real sound and vision
input. Each of these inputs is processed into a fixed-length
vector, then lexical items arise by associations between vectors
that represent the corresponding speech and an object’s shape.
Roy (2005) also highlights the importance of combining physical
actions and speech in order to interpret words and basic
speech acts in terms of schemas, which are grounded through a
causal-predictive cycle of action and perception. Several works
use self-organizing maps (SOMs), e.g., to form joint neural
representations of simulated robot actions and abstract language
input to encode the corresponding sensory-motor schemata
(Wermter et al., 2005). This model addresses mirror neurons
found in the motor cortical region F5, which link actor and
observer by activating when performing a corresponding action
or even just seeing or hearing it performed by someone else
(Rizzolatti and Arbib, 1998). Vavrečka and Farkaš (2014) use a
RecSOM (Voegtlin, 2002) which has a recurrent architecture with
recursive updates to handle sequential input. Using a RecSOM
and multiple SOMs, arranged in parallel for linguistic and visual
input, and hierarchically for the integration of modalities, the
model grounds spatial phrases within the corresponding image
information.

Recent works often make reference to biological findings that
support grounded language processing. Friederici and Singer

(2015) provide evidence that linguistic and other cognitive
functions are based on similar neuronal mechanisms, for
example, single neurons react similarly to seeing a picture of
a person’s face or reading the person’s name. More generally,
Pulvermüller et al. (2014) propose a cognitive theory of
distributed neuronal assemblies or thought circuits, integrating
brain mechanisms of perception, action, language, attention,
memory, decision, and conceptual thought. Rather than by
SOMs, these neuroscience findings are better accounted for
by distributed neural firing models. For example, in a multi-
area model of cortical processing (Garagnani and Pulvermüller,
2016), some neurons become category-general while others are
in category-specific semantic areas.

Among recurrent neural models, the multiple timescale
recurrent neural network (MTRNN) (Yamashita and Tani, 2008)
allows the emergence of a functional hierarchy with reusable
sequence primitives. Heinrich and Wermter (2018) ground the
generation of language in visual and motor proprioceptive
signals, showing that an MTRNN can self-organize latent
representations that feature hierarchical concept abstraction
and concept decomposition. Zhong et al. (2019) address the
generalization ability of MTRNNs by making use of semantic
compositionality of simple verb-object sentences. They train an
iCub robot to produce action sequences following a simple verb-
object sentence comprising a selection of 9 verbs and 9 objects,
where the network generalizes to all combinations despite being
trained only on a subset. Yamada et al. (2017) investigate the
handling of logic words in sentences from which an Long Short-
Term Memory (LSTM) network generates corresponding robot
actions. They show that, for example, the word “and” works like a
universal quantifier, while the word “or” creates an unstable space
in the LSTM dynamics.

While these models are used unidirectionally, bidirectional
models have been proposed that can map both perceived
language commands to actions and perceived actions to
language descriptions. For this task, Yamada et al. (2018) train
two paired recurrent autoencoders, one encoding the textual
description sequence, the other encoding the action sequence.
The autoencoders are paired by a joint loss function term that
drives the two autoencoders’ center-layer representations, which
both have the same dimensionality, to be similar. As a result, a
textual description leads to a representation that is suitable to
generate an action sequence, and vice versa. For interactivity,
the action sequence autoencoder receives additional image input
in both encoder and decoder, while producing only the joint
angle sequences as output. In each autoencoder, the direction
of information flow between layers is fixed from input toward
the output. In contrast, Antunes et al. (2018) implement a
model of truly bidirectional information flow between three
recurrent MTRNN layers of fast, medium, and slow timescale
units. A subset of the fast units acts as input (or output)
to a robot action sequence, and a subset of the slow layer’s
units acts as output (or input) to the language description.
However, it needs to be investigated whether neural groups
emerge that are solely devoted to information transmission into
one of the directions, or, rather, whether shared bidirectional
functionality emerges.
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Another line of recent works shows that enriching linguistic
data with other modalities can lead to better-performing
systems. For example, continuous word representations like
word2vec (Mikolov et al., 2013) or GloVe (Pennington et al.,
2014) have become popular, since they span some semantically
meaningful low-dimensional space leading to robustness and to
the possibility to track relations between words. Additionally,
the original words can be recovered from the representations
even when they are corrupted or altered by noise. These
embeddings can become even more powerful when involving
multiple modalities. Hill and Korhonen (2014) train a word2vec-
like model on the ESPGame dataset, which annotates images with
a list of lexical concepts, and on the CSLB Property Norms dataset
which contains concepts for which human annotators produced
several semantic properties. Lazaridou et al. (2015) train a similar
model on text from Wikipedia and add visual information
from the ImageNet database to a subset of the words, which is
processed into an abstract vector by a pre-trained Convolutional
Neural Network (CNN). Wang et al. (2018b) use GloVe vectors
pre-trained on the Common Crawl dataset together with CNN-
based visual vectors pre-trained on ImageNet. Auditory features
extracted from a CNN network pre-trained on Google’s AudioSet
data are included in Wang et al. (2018a). The results of these
models show that multimodal embeddings outperform unimodal
embeddings. Furthermore, suitable images can be generated not
only for concrete words but also for some abstract words by
selecting the nearest neighbor image for a generated image vector
(Wang et al., 2018a). For reinforcement learning interactive
game agents, it was shown that augmenting environmental
information with language descriptions (Narasimhan et al., 2018)
or instructions (Chaplot et al., 2018) leads to better generalization
and transfer capabilities.

There is also a recent focus on tasks like image captioning,
Visual Question Answering (VQA), and phrase grounding in
images. In these tasks, sequentially processed language refers to
elements of images and the availability of corresponding large
datasets for supervised learning has driven model development.
VQA research, for example, led to neural architectures that
facilitate reasoning steps, e.g. by affine transformations within
the visual processing stream based on conditioning information
from the question (Perez et al., 2018), by novel recurrent
Memory, Attention, and Composition (MAC) cells (Hudson and
Manning, 2018), or by more explicitly using graphs for reasoning
(Hudson andManning, 2019). Yet, these models do not cover the
production of language, since VQA tasks are cast as classification
problems where the network produces only the label to the
correct answer among a given set of answers. Instead, they are
tailored toward reasoning, but often fail in generalization, if their
architecture is not primed for the task (Santoro et al., 2017).
A potential reason for the lack of generalization can be in the
poor integration of language and image representations by these
models, since they are not embodied in interactive agents, which
Burgard et al. (2017) suggest.

Overall this shows the need for an embodied neurocognitive
model that can help to explain language processing in the brain
and at the same time proves to be effective in generalization.
To this end, we need to more closely look into components

of both temporal decomposition and composition and at the
same time realize an inherent multimodal abstraction on both
sensory as well as conceptual level. It seems crucial that temporal
decomposition and composition directly emerges in a model
based on the context or the data, while multimodal abstraction
needs to take place on sensory up to an overall contextual level.

1.2. Contribution
In this paper, we develop a neurocognitive model that
grounds language production into embodied crossmodal
perception. In particular, our model aims to map the auditory,
sensorimotor, and visual perceptions onto the production of
verbal utterances during the interaction of a learner with objects
in its environment.

As a core characteristic, the model allows for the implicit
adaptation of timescales based on the temporal characteristics
of both perception and language production. Furthermore,
the model tests multimodal abstraction in an end-to-end
fashion with limited constraints on the preprocessing of the
sensory input. The model is analyzed in depth based on a
developmental robotics data recording that mimics natural
interactions of an infant with said objects. This Embodied Multi-
modal Interaction in Language learning (EMIL) data collection
challenges the model by introducing a wider range of variability
of the temporally dynamic sensory features, in order to exhibit
effects on language learning and latent representation formation
concerning findings for the human brain.

Therefore, the contribution of this paper is three-fold1:

• We present a neurocognitive model for language grounding
which reflects bio-inspired mechanisms such as an implicit
adaptation of timescales as well as end-to-end multimodal
abstraction. It addresses developmental robotic interaction
and extends its learning capabilities using larger-scale
knowledge-based data.

• We demonstrate the effectiveness of our model on the novel
EMIL data collection, in which the cognitive robot interacts
with objects in a children’s playground environment while
receiving linguistic labels from a caregiver.

• We conduct an in-depth analysis of the model on the
real-world multimodal data and draw several important
conclusions. For example, crossmodally integrated
representations are sufficient for acquiring language
merely from sensory input through interaction with objects
in an environment.

2. EMBODIED NEUROCOGNITIVE MODEL

In order to add insight to related computational models,
we aim to develop a model that satisfies a number of
constraints. First, we seek to minimize difficult assumptions
for computational mechanisms. In particular, we avoid building
on top of mechanisms that are appealing for machine learning
but not yet proven or not plausible for the processing in the

1The source code of the model and experiment details can be found on https://

github.com/heinrichst/adaptive-mtrnn-grounding.git.
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brain such as neural gating, dropout regularization, or residual
connections. In fact, we aim at building on top of the most
simple computational architecture that still allows studying our
proposed mechanisms. Second, we work with a minimal level of
assumptions regarding language grounding. Here, we avoid using
an oversimplified language such as modeling on word-level only.
Additionally, we do not use natural speech but rather a simpler
phonetic representation as the desired output. We will build
our computational model with a distinct focus on the following
biological mechanisms.

2.1. Biological Inspiration
It has been suggested that the human cognition is particularly
strong because the human brain is good at both information
composition and decomposition (Murray et al., 2014).
Furthermore, it seems that many processes in the brain are
reused in or coupled to a range of cognitive functions. In the
brain, the decomposition and composition are governed by
neural oscillations, multiple timescales in hierarchical processing
streams, and a complex interplay of neural populations and
local integration by mode coupling (Buzsáki and Draguhn,
2004; Badre et al., 2010; Engel et al., 2013). Additional evidence
suggests that in higher stages of the spatial or temporal hierarchy
neurons are organized in cell assemblies (Damasio, 1989; Palm,
1990; Levelt, 2001). These sparsely connected webs of neurons
are distributed over different cortical areas and both hemispheres
and form consistently during development for concepts on
higher or lower levels.

In language grounding, both multiple timescales and cell
assemblies seem to be reused. Multiple timescales in processing
have been reported across the brain from lower auditory
processing up to higher processing of perception (Ulanovsky
et al., 2004; Smith and Kohn, 2008; Himberger et al., 2018) and
cell assemblies are suggested to activate for both word processing
as well as the overall thought processes (van der Velde, 2015;
Tomasello et al., 2019). As a consequence, in our computational
model, we further study the mechanisms of multiple timescales
in information processing as well as crossmodal fusion by and
sequence activation from cell assemblies.

2.2. Computational Model
We base our computational model on the Continuous Time
Recurrent Neural Networks (CTRNN) architecture because of
its universality in modeling sequential signals. Although we can
derive the CTRNN from the leaky integrate-and-fire model and
thus from a simplification of the Hodgkin-Huxley model from
1952, the network architecture was suggested independently by
Hopfield and Tank (1986) as a nonlinear graded-response neural
network and by Doya and Yoshizawa (1989) as an adaptive
neural oscillator. Specifically, the CTRNN can be understood as
a generalization of the Hopfield Network (Hopfield, 1982) with
continuous firing rates and arbitrary leakage in terms of time
constants. Compared to the Simple Recurrent Network (SRN, or
ElmanNetwork), the timescale τ is an additional hyperparameter
of asymptotically not leaking, thus, a neuron canmaintain part of
its information for a longer period of time.

The activation y of CTRNN units is defined as follows:

yt = f (zt) , (1)

zt =

(

1−
1t

τ

)

zt−1t +
1t

τ

(

Wx+ Vyt−1t + b
)

, (2)

for inputs x, previous internal states zt−1t , input weights W,
recurrent weights V, bias b, and an activation function f . The
timescale can be a pre-determined common parameter τ for all
neurons or a vector τ of individual constants. In tasks with
discrete numbers of time steps, the CTRNN can be employed as
a discrete model, e.g., by setting 1t = 1.

With respect to modeling multiple timescales in information
processing, the timescale parameter τ provides an interesting
mechanism to capture sequential aspects on different timescales
or periodicities and is particularly crucial for the hierarchical
abstraction capability of the Multiple Timescale Recurrent
Neural Network (MTRNN, compare Yamashita and Tani, 2008).
Our model, therefore, integrates this predefined hierarchical
abstraction. In particular, a fixed number of layers is defined a
priori, e.g., having three adjacent layers called Input-Output (IO,
τ = 2), Context-fast (Cf, τ = 5), and Context-slow (Cs, τ = 70),
in order to force the architecture to hierarchically compose or
decompose information.

In order to achieve decomposition and composition in the
MTRNN, the overall context of a sequence is learned by or
stored into some of the units in the slowest layers, called
Context-controlling (Csc) units. Consequently, such an MTRNN
can be defined in two forms, providing a decoder and an
encoder component.

• MTRNN with Context Bias: the Csc units operate as a
parametric bias during production and thus the Csc values
are learned backwards during gradient descent training
(compare Awano et al., 2010). Since the network weights are
trained in parallel to the Csc units, the MTRNN with context
bias learns to decompose a temporally dynamic sequence from
a static initial bias.

• MTRNN with Context Abstraction: the Csc units operate as
abstracting a static output during sensory processing similar
to one-point classification (compare Heinrich and Wermter,
2018). Due to the increasingly larger timescales in the layers,
the network learns to compose a static overall context from a
temporally dynamic sequence.

When an MTRNN with context bias is coupled with an MTRNN
with context abstraction in an end-to-end architecture, the Csc
values of both networks are updated iteratively and form latent
representations similar to a sparse auto-encoder on sequences.

In the MTRNNs, however, the τ needs to be carefully
chosen as a hyperparameter, based on a priori known
temporal characteristics of the data. This is usually done in
coarse approximation on layer or module level. In contrast,
time constants in the brain are subject to change during
development and are hypothesized to be directly related to
temporal structures (He, 2014). In previous work we developed
a mechanism to obtain an adaptive timescale τ

A for each
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FIGURE 1 | Computational model: Adaptive MTRNNs with context abstraction for each input modality are coupled with an adaptive MTRNN with context bias via cell

assemblies. Example timescales visualize the logarithmic leakage of information in the neurons.

unit (Heinrich et al., 2018a). The timescales are governed by
learnable weights U that work like a bias on the timescale instead
of on the activation:

τt = τ
A
t = 1+ eU+τ0 , (3)

where the exponential function ensures timescales in (1,∞),
and the vector τ0 can be initialized with sensible values for the
timescales while the weights U get initialized to values close to
zero. As a rule of thumb, we can initialize τ0 either at random
between 1 and a reasonably large number, i.e., to the length of
the expected longest sequence (or a logarithm thereof) (Heinrich
et al., 2015), or with timescales that are known to work well for
MTRNNs in similar tasks.

In our computational model we, therefore, utilize adaptive
MTRNNs with context abstraction for sensory inputs from
multiple modalities and an adaptive MTRNN with context
bias for verbalizing the observed sensation in natural language.
Through this, the architecture provides a composition of a
sensation into an overall meaning for that sensation as well as
a decomposition of a meaning into a verbal description. The Csc
units of all MTRNNs are coupled in cell assemblies from which,
supposedly, a sparse latent representation for the meaning can
emerge through iterative learning. Specifically, we integrate up to
three MTRNNs for the abstraction of temporal dynamic auditory
(au), sensorimotor (sm), and visual (vi) perception as well as
an MTRNN which uses this context for language production
in terms of verbal utterances describing the perception. The

overall architecture is illustrated in Figure 1, further details on
the scenario are provided in section 3.

2.3. Developmental Robot Scenario for
Language Grounding
To investigate language grounding, we couple multi-modal
sensations and a verbal description in order to train our
model in an end-to-end fashion. Although supervised, this
is related to models that investigate language grounding by
mapping perception and action through Hebbian learning
and studying the emergence and consolidation of connection
patterns (e.g., Garagnani and Pulvermüller, 2016). Our aim
is to further scale to a temporally dynamic scenario from
real-word observations with the aim of studying both the
emergence of timescales as well as connection patterns in terms
of cell assemblies.

For this, our set-up is borrowed from a developmental
robot scenario, where a humanoid robot, such as the Neuro-
Inspired COmpanion (NICO, Kerzel et al., 2017), represents
an infant learner who explores the environment by interacting
with objects on a table and perceives verbal descriptions from a
caregiver for particular object manipulations (see Figure 2). We
conducted a data collection of the EMIL data set2 (Heinrich et al.,
2018b), that includes parallel multi-modal recordings from the

2More details on the collection are provided in the Appendix. We plan to obtain

several versions of the EMIL data set with increasing scenario complexity and

amount of data. The version 1 is publically available via https://www.inf.uni-

hamburg.de/en/inst/ab/wtm/research/corpora.html.
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A B C

FIGURE 2 | Developmental robot scenario of the EMIL data collection (Heinrich et al., 2018b): NICO is interacting with objects and perceives the interaction on

auditory, sensorimotor, and visual modalities. A teacher provides a description for the interaction. (A) Scenario, (B) Example descriptions, (C) Teacher perspective.

robot’s body-rational view as well as visual observations from
a teacher perspective. The robot performs an action from a
set of four predefined motions on a set of 30 distinct objects
which exhibit different shape, color, texture, weight, friction, and
sound characteristics when moved. The interaction is captured
by microphones in the robot’s ears for 48 kHz auditory sensation,
by proprioception in the arm (motor position and current from
eight motors, with 30 read-outs per second) for sensorimotor
perception, and by a 90 degree field-of-view and 30 fps camera for
visual perception. In addition, a textual description was recorded
that describes the interaction with the object.

To study themodel on this scenario, we prepared two data sets
from the EMIL version 1 collection:

• EMILv1 Data: 240 sensation-description pairs with up to 740
time steps for the perception streams and a simple holo-phrase
with up to four words for the description. The descriptions
were created from a vocabulary of 68 words and 4 symbols
for punctuation, where a word is represented with one to
nine phonemes.

• EMILv1 + Teacher Data: in order to mimic the situation
of a caregiver providing additional descriptions to foster
the infant’s learning, we extended the data with additional
teacher input. In particular, we appended data points where
we replaced the nouns and verbs with synonyms and added
slight Gaussian noise to the perception (σ = 0.01) in order to
obtain 2,880 unique pairs. This ismotivated by infants learning
language better through scaffolding and guidance from their
parents (Tomasello, 2003). The process can also be viewed as
data augmentation from linguistic knowledge, which results in
increased diversity and scale of crossmodal data for language
learning, and is shown to lead to better generalization ability
of neural models (Zhang et al., 2015). In order to ensure
the quality of the teacher data, synonyms are obtained from
WordNet (Miller, 1995), a high-quality lexical knowledge base
according to the sense of the replaced word.

The EMILv1 data exhibits a couple of interesting characteristics.
On the one hand, with the particularly long and noisy
sequences (especially in the sensorimotor modality) the training
is challenging for RNNs. On the other hand, in most sequences,
the visual modality is most informative for the presented action

+ object pair. Compared to previous developmental robotic data
sets, e.g. in Heinrich and Wermter (2018) the data does not
imply a necessity for superadditivity (i.e., that more information
is gained from multiple modalities only) but rather selectivity
(meaning that one modality might be strongly favored in
certain situations).

2.4. Representation and Training
For the verbal descriptions we prepared two different
language representations:

• Phonetic: we transformed the utterances into phonetic
sequences based on the ARPAbet and dictionary provided
by CMU3 and represented these sequences as simple one-
hot vectors. This is different from previous related research
(Hinoshita et al., 2011; Heinrich and Wermter, 2018) where a
single phoneme was stretched backwards and forward in time
and thus learned much easier by using teacher forcing.

• Word embedding: in order to study the model on both
fine-grained phonetic-level and coarse-grained word-level we
utilize the GloVe-6B embeddings provided by the Stanford
NLP group (Pennington et al., 2014).

We expect that the phonetic representation is more challenging
and provides the necessity for the emergence of temporal
composition in the MTRNN for verbal descriptions. The word
embeddings, on the other hand, are more informative for
studying the multi-modal fusion since the word embeddings
already reflect semantic relatedness.

For the multi-modal sensation, we perform some simple
preprocessing in order to provide input streams of comparable
dimensions and low-level feature abstraction. For the auditory
input, we transform the signals using Mel-Frequency Cepstral
Coefficients (MFCC) analysis into 13 dimensions with a frame
size of 33 ms and input window 60 ms. This is acceptable in
terms of biological inspiration as the cochlea is doing a Fourier
transformation of auditory signals that are roughly similar. The
sensorimotor input was taken as is, but normalized, to result
in 16 dimensions. The visual input in terms of a video stream

3ARPAbet is an American English phonetic transcription set, transcribed in ASCII

symbols, http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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was processed by a VGG16 neural network (Simonyan and
Zisserman, 2015) (we took the output of the first dense layer after
the convolution and pooling layers) and further condensed to 19
dimensions by Principal Component Analysis (PCA) in order to
provide visual features. The VGG architecture was chosen since
it is a powerful CNN architecture that was developed based on
biological inspiration but does not yet incorporate implausible
mechanisms such as arbitrary residual connections (Krüger
et al., 2013; Hu et al., 2019). In our model, we used VGG
layers that were pre-trained on ImageNet and thus provide
reasonable features for objects. The reduction with PCA is not
supposed to mimic any specific cortical processing but is an
easy step in systematically reducing complexity in the model,
which alternatively could be realized by neural unsupervised
learning as well.

Since all network parameters are fully differentiable (Heinrich
et al., 2018a), the architecture can be trained end-to-end
using gradient descent. Although for the brain theories are
in favor of Hebbian learning during development instead of
backpropagation, we argue that for our research aim of studying
the emergence of multiple timescales and the emergence of
crossmodally fused representations for language grounding a
supervised error signal is feasible (Dayan and Abbott, 2005;
Lillicrap and Santoro, 2019).

3. EVALUATION AND ANALYSIS

In order to analyse our model for how compositional language
is grounded in multimodal sensations and how multimodal
abstraction emerges through learning, we trained different
variants of our model on different variants on the EMIL data sets.

For all experiments, we optimized the hyperparameters, i.e.,
the architecture size, optimization algorithm, learning rate, and
batch size. We started with the model architecture from baseline
CTRNNs, which are configured with equal timescales τ = 1
for all neurons. Once good hyperparameters were found, we
used the same hyperparameters for all MTRNNs while separately
optimizing their timescales. These timescales, in turn, are used as
initial timescale values of the adaptive MTRNNs (AMTRNNs).
All models were trained for at most 5, 000 epochs and a validation
set was used for early stopping. We performed a 10-random sub-
sampling validation, i.e., we repeated each run ten times with a
different and independent split of training, test, and validation
data (75, 12.5, 12.5%) as well as different and independent
weights-initialization, based on a different random seed. The
best results were found with RMSprop (Tieleman and Hinton,
2012), a learning rate of 0.01, and a batch size of 30. The exact
architectural parameters are noted in Figure 1. In the following,
for the argmax on the output, we report the mean accuracy over
the cross-validation for each setup.

3.1. Generalization on Developmental
Interaction Data
As a first step, we are interested in how well the architecture
can actually learn verbal descriptions for the different sequential
inputs. In order to inspect the generalization, we compare the

accuracy on the test sets for both data sets, both verbal utterance
representations, and three different model variants. In particular,
we compare the baseline CTRNNs with the optimized MTRNNs
and AMTRNNs.

The accuracy results (including standard errors) are presented
in Table 1. We observe that the generalization is difficult for
all models and that utterances which were described entirely
correct are rare. For the phonetic representation, the model
produces descriptions with a range of small errors such as pauses
that are too long or producing incorrect phonemes at the end
of words (rare) or of the utterance (more common). In many
of those cases, the model shows tendencies to produce wrong
descriptions from the first incorrect phoneme onward. For the
word embedding representation, the descriptions are overall
better, but in some cases, words are mixed up that are not
necessarily semantically related.

Nevertheless, we observe strong differences between the
models with different timescale characteristics on both the
EMILv1 data and the data extended with additional teacher input
(significant different performance between baseline CTRNNs
and both other models, with p < 0.05). The baseline CTRNN
model is not able to derive any description completely correct for
the phonetic representation. In fact, we found that the CTRNN
fails after the first few phonemes and afterwards just produces
the phoneme that is most common in the data (usually the pause
symbol SIL). For the word embedding, the performance is better,
indicating that the CTRNN can handle the short utterances
describing the sequence (only up to five words, compared to
up to 25 phonemes in the phonetic representation). This also
means that the CTRNN is able to capture the meaning of the
input sequences (with up to 740 time steps) in terms of the
presented action + object. The model based on an MTRNN with
optimized timescales shows a large improvement on the phonetic
representation. The model using adaptive MTRNNs performs
even better (but not significant, with p > 0.05). Here, the
errors in production are distributed over the utterance and a
mostly incorrect description is characterized by the production
of semantically wrong words, although the words were spelt
correctly. Both the MTRNN- and AMTRNN-based models
show improvements on the word embedding representation but
notably differ in their mistakes. The incorrect words for the
CTRNN seem arbitrary, especially if the words are at the end
of the utterance. For the MTRNN and AMTRNN, we notice
that incorrectly produced words were in many cases semantically
related, e.g., mixing up “light” with “hard” or “red” and “pink.”

Overall it seems that the correct description is strongly
dependent on whether the latent distributed representation
(the cell assemblies) in the Csc units is able to abstract the
sensory input and, thus, if the composition in the sensory
CTRNN/MTRNN/AMTRNN correctly captures the temporally
distributed information. In the following, we will, therefore,
analyse the temporal aspect as well as the latent representations.

3.2. The Role of Adaptive Timescales
In order to inspect how the individual timescales contribute
to sensory abstraction and utterance production, we compare
the developed timescales as well as the activations within

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 52

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Heinrich et al. Crossmodal Language Grounding

TABLE 1 | Test accuracy (%) for different CTRNN architectures on phonetic vs. word representation.

Model characteristic EMILv1 data EMILv1 + Teacher data

Phonetic Word embedding Phonetic Word embedding

Baseline CTRNNs 25.472± 0.765 56.115± 2.412 18.476± 0.118 37.991± 0.226

Optimized MTRNNs 42.087± 0.868 63.309± 1.260 34.655± 0.418 51.896± 1.604

AMTRNNs 43.327± 1.025 64.029± 1.975 35.506± 0.461 54.691± 0.502
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FIGURE 3 | Impact of adaptive timescales in processing crossmodal input and phonetic output sequences on a representative example: “scoot heavy green

car.” Hidden activations of all AMTRNN layers (stacked for each modality and sorted by timescale value) are shown together with the respective input or production.

For the visual input, six frames are shown for selected time steps. (A) Auditory adaptive MTRNN and input. (B) Sensorimotor adaptive MTRNN and input. (C) Visual

adaptive MTRNN. (D) Phonetic production adaptive MTRNN. (E) Timescale development during training. (F) Visual input (exemplary frames).

the AMTRNNs during processing the data. In Figure 3, we
show a representative example for an interaction labeled
“scoot heavy green car.” This sample is not producing the

description (entirely) correct but shows characteristics that
we found regularly in many cases. In Figures 3A–C, we
compare the neural activation in all neurons with the raw
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input data, for auditory input shown as a spectrogram
in the frequency domain, for sensorimotor as the plain
measurements, and for visual as selected frames during the
interaction (Figure 3F).

For both sensorimotor and visual activation we observe an
increasing activity in the neurons with the highest timescales (in
the graphs around a timescale of 660), showing that information
is accumulated for the neurons that are part of the cell assemblies.
For the auditory activation, this occurs on a much weaker level.
We can also see that in the sensorimotor activation, neurons
activate after some remarkable events, such as the spikes in the
motor current around the first and second third of the sequence.
This shows that, across the spectrum of timescales, neurons
begin to reverberate when the current input seems different
from sensory input in other interactions. Interestingly, in both
sensorimotor and visual activations, neurons on timescales
between 4 and 25 maintain their activation until the end of the
sequence once positively or negatively activated. For the auditory
activations, we can not easily spot a similar behavior but rather
observe strong fluctuations for the neurons with small timescales
until 80% of the sequence. Semantically plausible reverberations
are rare, thus it seems the auditory information is much noisier
and less decisive compared to the other modalities.

In the production of verbal utterances (Figure 3D) we spot
patterns that are typical for MTRNNs: some neurons on lower
timescale fluctuate according to specific phonetic output and
neurons around timescales 4 − 6 activate and maintain their
activation for some time spans. In notable cases, these activations
coincide with the production of words representing semantically
meaningful phoneme chains. The neurons with lower timescales
of around 42, however, keep their activations over time with
some leakage. These timescales correspond to the IO, Cf, and Cs
layers and indicate a hierarchical decomposition. Notable is that
the correspondence of activity in the Cf layer, with a produced
word, is less pronounced than expected, while the activations
of specific phonemes fade quickly. Correct phonemes are still
produced, but at some point only SILs are activated. This clearly
shows that this model has not ideally learned the production
of the utterance, although the network structure induces the
mentioned decomposition.

Regarding the learning of individual timescales, we see in
Figure 3E that all AMTRNNs tend toward more fine-grained
timescales in all layers. For the sensory input AMTRNNs, these
changes are most notable for the neurons in the Cs layers, as
they tend to result in smaller timescales (around 650) instead
of the layer-wise optimized value of 700 of the MTRNN model.
For the production AMTRNN, individual timescales also result
in smaller values in some cases and a strong differentiation of
the neurons in all layers. This indicates that, in addition to the
predefined hierarchical structure, the AMTRNNs further adapted
to the specific scales of relevant events in the sequences.

Overall it is notable that the timescale mechanism, w.r.t. the
leakage of information, has its limit for covering events that
occur on different timescales but are not particularly regular. In
many cases, the multi-sensory perception is abstracted in terms
of neurons accumulating information relatively independent of
the timescales. The input data from the EMIL data set does not

consist of chains of events that need to be composed, but they
do show key events, such as grasping the objects or perceiving a
difference in inertia through different current values in cases of
rapidly moving an object. These key events seem to be captured,
but neurons activate as a memory rather than a shortly active
detector of features on a mid-level timescale. The production of
verbal utterances, in many cases, illustrates shortcomings toward
the end of the utterances, with the tendency of producing the
overall most frequent phoneme (SIL).

3.3. Latent Representations in Cell
Assemblies
Finally, we are interested in how cell assemblies form, based on
the sensory input and description output. Specifically, we aim to
inspect whether latent representations in the Csc spaces reflect
the meaning of the utterances. We hypothesize that in cases
of “good” models, the semantic components (action and object
characteristics) that are exactly identical (e.g., the same action)
or similar (e.g., a rectangular toy shape and a rectangular tissue
shape) are represented similarly as well.

To analyse this, we compare setups where we trained
AMTRNNs with all three modalities (auditory, sensorimotor,
and visual), combinations of two modalities, or only on a
single modality as input. The overview of the performance
(accuracy results and standard errors) for these setups is
presented in Table 2. For the trained networks we obtained
the neural activations of the Csc units for the respective
input AMTRNN and verbal description output AMTRNN and
reduced the dimensionality of the representation to two Principal
Components (PC) using PCA. For typical results and selected
combinations of modalities, the reduced representations are
plotted in Figure 4. Since the Csc from the sensory inputs
map to the Csc for the verbal description we would expect
that the plots for the verbal utterances show similarities most
clearly. Note, however, that although two PCs usually explain
> 60% of the variability, they are only one perspective on the
representation among others. Nevertheless, we selected cases that
are representative for our observations across the results and
avoided using t-Distributed Stochastic Neighbor Embedding (t-
SNE) instead of PCA in order to not introduce additional biases.

Surprisingly, the results indicate that the setup that only uses
visual input data performs best, compared to setups that process
multimodal input data (notable but not significant, with p >

0.05). Overall, the setups that have access to the visual modality
perform better (significant for all combinations, with p < 0.05),
whereas the auditory modality leads to worse results (significant
for combinations with an auditory input vs a visual input, with
p < 0.05). When inspecting representations of the cell assemblies
we can identify an explanation in the emerging representations.
The semantic components are best distributed in the visual
modality, indicating clusters for most of the characteristics, e.g.,
the object shape and action. To see this, compare all panels
for the visual modality in Figure 4. Even though we do not
visualize this here, we found similar clusterings for the color
semantic component. In the sensorimotor modality the clusters
are particularly obvious for action but strongly overlap for
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TABLE 2 | Test accuracy (%) for training on restricted sensory input.

Sensory input au + sm + vi au + sm au + vi sm + vi

EMILv1 data 43.327± 1.025 35.709± 1.004 41.831± 0.958 44.252± 0.979

EMILv1 + Teacher 35.506± 0.461 33.672± 0.540 34.974± 0.376 34.557± 0.326

Sensory input au sm vi

EMILv1 data 35.945± 0.895 38.957± 0.695 44.409± 1.097

EMILv1 + Teacher 31.623± 0.439 29.734± 0.412 33.815± 0.455

the shape component (not shown: it also overlaps for color
components as well as weight and softness). In the auditory
modality, all semantic components overlap for the case of full
multimodal input (Figure 4A) and unimodal input (Figure 4D).
However, in case of the auditory representation being presented
together with sensorimotor or visual information only, we found
a slight tendency of clustering toward the clusters that emerged
within the other input modality (compare Figure 4B for auditory
and sensorimotor and Figure 4C for auditory and visual). In
most cases, the representation in the Csc of the verbal utterance
production showed a mixture of the representations in the
input Csc.

Overall it seems that (a) the characteristics of the raw
data have a large influence, and (b) the end-to-end learning
slightly favors a merging of the input modalities that is not
directly beneficial. For (a), inspecting the raw data confirms our
observation and expectation. In our raw data, we observe that
the input streams are usually both quite noisy but also distinctive
for some aspects. For example, the proprioception information
from the motors (motor current) shows large deviations but
for the human inspector it is easy to discriminate the different
actions, while distinguishing between heavy and light objects
(stronger vs. lower current) or hard and soft objects (stronger
squishing and thus different finger motions) is extremely hard.
In the auditory recordings, it is not possible to discriminate
most object characteristics except for different friction sounds of
heavy and light objects. However, distinguishing the actions by
the motor sound is sometimes possible. For (b), we hypothesize
that the amount of data in the EMILv1 data set is insufficient
w.r.t. the complexity of the architecture, whereas the larger
number of examples in the EMILv1 + Teacher set leads to
a slightly different convergence. When comparing both data
sets in Table 2 we find a tendency of modality selection for
the smaller data set and a tendency of superadditivity for the
larger one.

4. DISCUSSION

In this paper, we investigated an embodied neurocognitive model
to better understand the effects of adaptive multiple timescales
as well as multi-sensory fusion mechanisms in grounding a
temporal dynamic verbal description into temporal dynamic
perceptions. For the model, we adopt that the human brain
is reusing composition and decomposition as well as multiple

sensory modalities in grounding natural language (compare
section 2.1). Furthermore, in the model, we realize the merging
of senses in a higher stage and inherently assume that the
multiple timescales are in fact necessary (compare section 2.2).
In our results, we found that adaptive timescales help in
abstracting the information from temporally long and complex
perceptions. Preparing the layers in these AMTRNNs with
context abstractions toward an implicit hierarchy of multiple
timescales forces a composition of an overall meaning from the
crossmodal perception.

However, the concept of leakage in the AMTRNN
specifically and in the MTRNN generally seems to reach
its limit here. In previous studies, sequences were usually
limited to < 50 time steps and, as a consequence, easily
learned. In our experiments, perception inputs have ≈ 700
time steps for which MTRNNs hardly converge, even if a
large hierarchy of carefully optimized timescales is tested.
Consequently, meaningful abstractions emerge to some
extent but compared to other mechanisms in machine
learning, like gating or time-windowed CNNs, the resulting
representations and performance are limited (Chang et al.,
2017). Thus, although the decomposition through neural
processes, which operate on different timescales, seems to
contribute to the human abilities of language grounding, it
does not explain how we cope with the complexity of our daily
sensory input.

We also found that using end-to-end learning cell assemblies,
i.e., pairs of temporally static abstracted modal information and
production biases, show a tendency to organize w.r.t. similarities
of the semantic components (i.e., an action, object shape, object
softness, and so on). This is in line with previous studies
and general observations on gradient descent machine learning.
However, for our more natural and noisy interaction data,
it shows that a choice between superadditivity and modality-
specificity does not necessarily simply emerge but might involve
additional cognitive processes.

In the past, language acquisition and grounding models were

usually tested on synthetic toy examples or very constrained
and carefully designed scenarios (Cangelosi and Schlesinger,

2015). Crucially, aspects of language were omitted or robotic

interactions were designed particularly systematic. In contrast,
our current study uses the EMIL data collection which challenges
the model by introducing a wide range of variability in terms
of sensory noise, object characteristics, and skewed distributions
thereof. It seems, however, that by reducing these constraints and
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FIGURE 4 | Learned representations in the cell assemblies for training on different modalities (reduced by PCA to first the two principal components PC1 and PC2).

(A) Perception via auditory, sensorimotor, and visual modalities. (B) Perception via auditory and sensorimotor modalities. (C) Perception via auditory and visual

modalities. (D) Perception via auditory modality. (E) Perception via visual modality.
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capturing truly multimodal and natural interaction scenarios we
can reveal novel, potentially incompatible, effects.

5. CONCLUSIONS

Overall, our embodied neurocognitive model shows that
in an end-to-end learning architecture with hierarchical
concept abstraction and concept decomposition, language
grounding can emerge and generalize. Adaptive multiple
timescales and multi-sensory fusion on concept level are,
among others, effective components. Of similar importance
are the scenario characteristics of our more complex and
natural EMIL data collection, which introduces a larger range
of variability and noise. Through using more complex data
we observe novel effects such as limits in temporal abstraction
and contradicting observations concerning superadditivity vs.
modality-specificity.

For future research, when aiming to explain complex cognitive
functions, we need to take into account the full complexity
of the environmental context as well as of the computational
conditions. For language acquisition and grounding it seems
particularly crucial to capture the full details of the language
learning events, such as learners’ prior body of experiences, the
sensory richness of the context, and the input and thus influence
of caregivers that teach the language. In addition, future research
could further investigate the timescale mechanismwith respect to
hierarchically organized multiple timescales on mathematically
more defined tasks, like predicting temporally noisy Lissajous
curves with probabilistic transitions (compare Murata et al.,
2014) and consider time dilation or time gating, instead of

leakage (Chang et al., 2017). Increased understanding and better
control of temporal hierarchical composition in neural models,
as well as the development of more naturalistic training data and

schedules, are promising paths toward models of more human-
like language acquisition and learning.
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APPENDIX: EMIL COLLECTION

The Embodied Multi-modal Interaction in Language learning
(EMIL) data collection is an ongoing series of data sets for
studying human cognitive functions on developmental robots
and was first introduced by us during the ICDL-Epirob’2018
workshop on active vision, attention, and learning (Heinrich
et al., 2018b). The main motivation is the theory that
humans develop cognitive functions from a body-rational
perspective. Particularly, infants develop representations through
sensorimotor environmental interactions and goal-directed
actions (Heinrich and Wermter, 2018). This embodiment plays
a major role in modeling cognitive functions from active
perception to natural language learning. Using the developmental
robotics paradigm, we can investigate specific hypotheses for
a range of research questions in-depth, since developmental
robotics allows to simulate human development scenarios
in a fairly simplified and reproducible way (Cangelosi and
Schlesinger, 2015). Thus, data sets that provide low-level multi-
modal perception during the environmental interactions are
interesting and needed.

With the EMIL data collections, we approach continuous
andmulti-modal recordings from developmental robot scenarios
that specifically focus on robot-object-interaction tasks. Since we
aim to utilize resources in tight collaboration with the research
community, we propose the first data set on object manipulation
in the context of natural language acquisition for closing a
gap in current related data sets and fostering discussions on
future directions and needs within the community. For the
future, we plan to obtain several versions of the EMIL data set
with increasing scenario complexity and amount of data. EMIL
version 1 is publicly available via:

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/
research/corpora.html

Related Data Sets
In the last years, several labs put considerable efforts into
providing data sets on human development scenarios,
particularly using the developmental robotics approach.
The provided data sets are focusing on different research goals
while taking technical limitations into account (see Table A1).

As a first example, data sets cover the sensation during
human-environment interaction by measuring (mostly adult)
humans directly during performing specific tasks, such as
the KIT Motion-Language set for descriptions of whole-body
poses (Plappert et al., 2016), the Multimodal-HHRI set for
personality characterization (Celiktutan et al., 2017), and the
EASE set for precise motion capturing (Meier et al., 2018).
Secondly, data sets mimic the human perspective by holding
objects in front of a perception device, such as a camera, to
capture the diverse and complex but general characteristics of
an environment setting, e.g., Core50 (Lomonaco and Maltoni,
2017), EMMI (Wang et al., 2017), and HOD-40 (Sun et al., 2018).
And thirdly, humanoid robots are employed for establishing a
data set, where multiple modalities are recorded in covering
human-like action, i.e., including sensorimotor information,
such as the MOD165 set (Nakamura and Nagai, 2017) and the

Multimodal-HRI set (Azagra et al., 2017), or where multiple
modalities are gathered from both robot and human in turn-table
actions, like in the HARMONIC data set (Newman et al., 2018).

However, it is usually difficult to capture true continuous
multi-modal perception for interaction cases that are supposed
to mimic infant experiences or to capture interaction scenarios
from human infant learner perspectives. As a consequence, with
the EMIL data set collection, we aim to link such continuous
multi-modal recordings with body-rationale of a reproducible
developmental robot.

Dataset Characteristics
In this first set, the developmental robot NICO is mimicking an
infant that interacts with objects and receives a linguistic label
after an interaction. The interaction follows usual interaction
schemes of 12–24 month-old infants on toy-like objects.

Developmental Robot Setup
In developmental robotics, the goal is to study human
cognitive functions in conditions of human infants interacting in
natural environments (Cangelosi and Schlesinger, 2015). These
conditions include embodied interaction with natural motor and
sensing capabilities of an infant and multi-modal sensations
within active perception (Tani, 2016). For our data recording, we
developed a child-like humanoid robot and utilize it in scenarios
that resemble natural infant environments, such as in playing
with objects at a table while acquiring natural language from
a caregiver.

Interactive Robot NICO
Our developmental robot is the Neuro-Inspired COmpanion
NICO (Kerzel et al., 2017, 2020), created by the Knowledge
Technology group of the University of Hamburg. NICO
is a research platform that is developed toward research
on crossmodal perception, visuomotor learning, and multi-
modal human-robot interaction through the embodiment of
neurocognitive models. NICO stands about one meter tall with
a weight of less than 20 kg. Its proportions follow those of a
3.5-year-old child. Its head is adapted from the open design of
the iCub and resembles an abstracted child-like face. Overall,
NICO has 30 degrees of freedom that are distributed as follows:
each of the legs and arms have six acuted joints. In the
arms, three motors in the shoulder area mimic a human ball
joint, one motor actuates the elbow, and two motors rotate
and flex the hand. Two additional motors in each of NICO’s
three-fingered, tendon-driven SeedRrobotics hands bend the two
linked index fingers and the thumb. The hands allow grasping
child-appropriate objects as the tendon-mechanism enables the
three-jointed fingers to curl around various shapes without the
need for additional control. Finally, two motors enable jaw and
pitch motions of the head. For multi-modal sensing, NICO is
equipped with two parallel HD RGB cameras and two embedded
microphones in its pinnae for stereo auditory perception.
Furthermore, the position and current, which is proportional to
the applied torque of all motors, can be recorded, which mimics
human proprioception. In summary, NICO mimics many of the
interaction abilities of a 3.5-year-old child. NICO can handle and
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TABLE A1 | Related multimodal and/or developmental data sets.

Data set Modalities Acquisition # samples / classes∗ Purpose

CORe50 RGB-D vision Hand-held 50/10 Continuous object recognition

(Lomonaco and Maltoni, 2017)

EASE Vision, audio, motion, Human 100/- Studying everyday activities

(Meier et al., 2018) EEG, EMG, eye tracker for improving robot performance

EMMI Vision Hand-held 360/12 Small sample learning;

(Wang et al., 2017) hand object scene interaction

EMRE Vision, audio Simulation 1500/- Multimodal referring expressions

(Krishnaswamy and Pustejovsky, 2019)

HARMONIC Stereo vision, motion, Turn-table 480/- Intention prediction; human mental

(Newman et al., 2018) both robot and human state modeling; shared autonomy

HOD-40 RGB-D vision Hand-held 160/40 Hand-held object recognition;

(Sun et al., 2018) one-shot learning

KIT ML Human motion Human 3911/- Semantic activity representation

(Plappert et al., 2016) natural language

MHHRI Vision, audio, EDA, Human 746/- Studying personality

(Celiktutan et al., 2017) skin temp., 3D-accel. and engagement

MHRI RGB-D vision, audio Robot 300/22 Incremental object learning from HRI

(Azagra et al., 2017)

MOD165 RGB-D vision, audio, Robot 165/- Studying human-like concepts

(Nakamura and Nagai, 2017) tactile (ensemble-of-concept model)

∗classes identify distinct object or action categories, if specified.

explore physical objects with the imprecision and self-occlusion
in a way our infants show.

Recording
In our experiment, NICO is seated in a child-sized chair at
a table, interacting with the right hand and the head facing
downwards during the experiment, while a human places a
small object on the table at a fixed position (see Figure 2A).
For EMILv1, a predefined action is carried out on the object:
pushing, pulling, lifting it or scooting it across the table. The
30 objects contain toys from an infant environment: balls, toy
cars, sponges and tissues, fruits, small animals, and toy bricks,
of which some differ in softness during squeezing, weight, size,
and color. During the robot’s actions, a continuous multi-modal
recording encompasses continuous streams of visual information
from the left and right robot camera as well as from the external
experimenter, stereo audio information frommicrophones in the
robot’s head, and proprioceptive information from the robot’s
body, specifically position and current from eight motors (for
an example compare the input streams in Figure 3). Finally, the
experimenter provides a linguistic label.

Preprocessing
To provide the data in suitable formats for various research
questions, we added preprocessed versions of the raw data as
follows. For the auditory signals, we added streams of Mel-
Frequency Cepstral Coefficients (MFCC) transformation with 13
dimensions, a frame size of 33 ms, and input window 60 ms.
Using filters with Mel-scale is considered biologically-inspired
as this mimics the humans’ perception of frequencies and the

sensitivity of the cochlea, which can be seen as kind of a Fourier
transformation of auditory signals. The frame size is motivated
in the technical characteristics of the motor sensors and the
cameras and is supposed to allow for obtaining an aligned
frame rate. The MFCCs overlap with 50% because the Fourier
transformation creates border effects, which the window size of
60 ms is acceptable since we mostly record environmental noise.
Because of the volatile nature of the position and current sensors
in the motor we produced smoothed sensorimotor streams based
on 3, 5, 7, and 9 measurement points. We also normalized all
sensorimotor streams w.r.t. the minimal and maximal position
and current values per joint. For the visual streams, we offer
compressed videos with a cropped field of view (e.g., only the
table or only the interesting part of the table) for convenience.

Labeling for Object Tracking
For supporting research questions related to object tracking we
added a complete ground-truth labeling for all visual streams
from the perspective of NICO’s right eye. The object labeling
describes the position of the interacted object in all frames
with accurate bounding boxes despite strong transformations
and occlusions.

Labeling for Language Learning
All interactions are labeled textually with words describing the
action and the object type, as well as particularly deviating object
characteristics (color, weight, softness, size). Depending on the
research question with relation to natural language processing,
different textual utterances or descriptions can be generated.
For instance, EMILv1 is provided with labels in the form of
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holo-phrases with up to four words as well as additional labels
containing synonyms for the actions and object characteristics
(compare section 2.3).

Impact and Research Opportunities
Our continuous, multi-modal, and particularly body-rational
data allows for studying a large range of algorithms on
fundamental classification or prediction tasks. This includes
object recognition and tracking, action recognition, and question
answering. Moreover, the data set is aimed at research on a range
of state-of-the-art research topics.

Active Perception
The different actions and objects allow to build up a training
scheme within a model by selecting to experience a certain
interaction because the model estimates that this provides the
highest information gain or reduces uncertainty. In humans, we
find the tendencies that a perception choice or a specific action
is voluntary (Oudeyer, 2018). Thus, the data set is suited for
developing models that aim to explain how the sensory input
gathered from an object with different, multi-modal sensors
changes based on the robot’s actions.

Imitation Learning
Robotic visuomotor learning via interaction with the
environment often requires a large amount of training data
and, therefore, physical interactions (Lillicrap et al., 2016), which
are not feasible for most robotic platforms. However, one way
of accelerating the learning process is to utilize demonstrations
to speed up the initial learning phase. While the demonstrations
are usually provided by humans (Gupta et al., 2016), the precise
motor data in the EMIL data set can be utilized for this purpose
as well with the added benefit that this data is free of artifacts or
noise from an external recording setup.

Cross-Modal Representation Learning
Since the different recorded modalities include information
about the same object and interaction quite differently,

the data set is suited to study algorithms on multi-modal
and cross-channel representation learning. For some objects
and actions the data contains salient features in a certain
modality, while for others, all modalities are necessary for
disambiguation. This allows studying mechanisms on sensor
fusion, superadditivity, and hierarchical composition in addition
to embodied representation formation on the cortex-level (Bauer
et al., 2015).

Developmental Language Acquisition
A research question related to representation learning is
natural language acquisition since representations for language
production and language perception in the human brain seem
to form embodied and cross-modally integrated (Cangelosi and
Schlesinger, 2015; Heinrich and Wermter, 2018). The data set
is therefore particularly suited for research on the grounding
of language in sensorimotor perception because the recording
diligently followed the developmental robot approach (Lyon
et al., 2016). Mechanisms for representation formation and
bidirectional hierarchical composition and decomposition can
get tested in the biologically plausible setting.

As a second step, this allows extending this data set
by much larger parts of abstract and ungrounded linguistic
input, in a fashion that parents would provide verbally or
with the aid of a storybook to their infant (Heinrich et al.,
2016). Here, language acquisition models can get studied for
how they integrate additional knowledge into their grounded
representations, but also how a teaching application can provide
suitable teaching content.

Lifelong Learning
The data set is suited to provide evaluation data for (neural)
lifelong learning approaches (Parisi et al., 2018). An initial subset
of the training data can be selected that is limited to a few types of
objects, actions or just a low number of samples. Over the course
of time, lifelong learning experiences can be simulated by adding
more and more parts of the data-set to the learning.
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