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In this paper, an improved obstacle-avoidance-scheme-based kinematic control problem

in acceleration level for a redundant robot manipulator is investigated. Specifically,

the manipulator and obstacle are abstracted as mathematical geometries, based on

the vector relationship between geometric elements, and the Cartesian coordinate of the

nearest point to an obstacle on a manipulator can be found. The distance between the

manipulator and an obstacle is described as the point-to-point distance, and the collision

avoidance strategy is formulated as an inequality. To avoid the joint drift phenomenon

of the manipulator, bi-criteria performance indices integrating joint-acceleration-norm

minimization and repetitive motion planning is adopted by assigning a weighing

factor. From the perspective of optimization, therefore, an acceleration level quadratic

programming (QP) problem is eventually formulated. Considering the physical structure

of robot manipulators, inherent joint angle, speed, and acceleration limits are also

incorporated. To solve the resultant QP minimization problem, a recurrent neural network

based neural dynamic solver is proposed. Then, simulation experiments performing

on a four-link planar manipulator validate the feasibility and effectiveness of the

proposed scheme.

Keywords: recurrent neural network, path planning, redundant manipulator, acceleration level obstacle

avoidance, bi-criteria

1. INTRODUCTION

With the advances of society, ranging from industry to military, home furnishing, service, medical
treatment, etc., robot technology has already become gradually mature. Simultaneously, the high
demand on the execution abilities of a robot manipulator working in complicated environment
also poses a challenge to robotic control. Due to its degrees of freedom (DOF) exceeding ones
required by the robot to complete the given tasks, a redundant manipulator shows better flexibility,
multifunction, and wide universality than the traditional non-redundant robot.

As a fundamental problem in robotic control, the kinematic motion planning problem of the
redundant manipulator has already been widely investigated in recent years. Series of related
products have been reported, e.g., in Li et al. (2016), from the perspective of game theory, and
a distributed recurrent neural network (RNN)-based dynamic controller was proposed for the
coordination control of multi-robot system. In Li et al. (2020), based on the RNN, Li et al.
investigated the kinematic control problem of the multi-robot system under neighbor-to-neighbor
communication. To access the desired global command, an observer was developed for estimating
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the velocity information of the desired motion trajectory. A
distributed RNN scheme was proposed in Jin et al. (2018) for
the consensus and cooperative control of a multiple manipulator
under limited communication, achieving the global cooperation
of PUMA 560 manipulators. The kinematic control of a
redundant manipulator disturbed by the periodic input was
investigated in Zhang et al. (2019a) based on the RNN.
Moreover, Zhang et al. proposed an RNN control scheme
incorporating the joint acceleration constraint for the redundant
manipulator in Zhang et al. (2019b), which is solved in
acceleration level. In Xu et al. (2019a) and Xu et al. (2020),
the RNN was used to the kinematic control of redundant
manipulator with model uncertainties and coupling of motion
and contact force, respectively. In Chen et al. (2019), the RNN
was applied to the motion control of a mobile robot. In Li
et al. (2018a) and Li et al. (2018b), a modified RNN-based
controller was proposed for motion control of the manipulator
disturbed by noises. In Chen et al. (2020a), a time-varying noise
disturbance rejection constraint was established. In addition,
Chen et al. proposed a joint velocity, acceleration, and joint
jerk three-level simultaneous minimization scheme in Chen
et al. (2020b). The abovementioned involve single and multiple
robot systems. Following them, the RNN can in principle
handle the kinematic problem of a redundant manipulator. In
addition, inmost of the abovementioned literature, the consensus
is that the quadratic programming (QP) method, i.e., where
the manipulator kinematic control problem is described as a
QP minimization problem, is adopted, owing to which can
incorporate physical constraints such as joint angle and joint
velocity limits.

When performing a desired task, the success of the motion
planning task may not be guaranteed if the manipulator
encounters a sudden obstacle, and even the robot manipulator
will be damaged due to the collision. The obstacle avoidance
problem of a redundant manipulator is thus worthy of
investigation. Obstacle avoidance, called collision avoidance,
always plays an important role and is continuously investigated
among redundant manipulators. For collision avoidance, in
general, two aspects need to be considered: one is robot-to-
environment, and the other is robot-to-robot. Especially for
a multi-robots system, the obstacle avoidance scheme should
include not only the collision avoidance between robot arms but
also the collision avoidance between robots and environmental
obstacles. Many obstacle avoidancemethods have been proposed,
such as pseudo-inverse-based ones (Zlajpah and Nemec, 2002;
Lee and Buss, 2007; Guo et al., 2018), random-sampling-based
methods such as rapidly exploring random tree (RRT) (Ju et al.,
2014; Zhang et al., 2018), artificial potential field (Volpe and
Khosla, 1990; Kim andKhosla, 1992), andQP-based optimization
methods (Zhang and Wang, 2004; Guo and Zhang, 2014,
2019; Zhou et al., 2019; Xu et al., 2019b). In general, pseudo-
inverse methods have no ability of handling physical structure
constraints of a manipulator. The RRTmethods are very effective
for high-dimensional and complicated environments, which
makes the generated path approaches a collision-free region by
randomly sampling unknown space. For ones aided with an
artificial potential field, different environments need specialized

potential functions. Among such a method, the robot is assumed
to move within a virtual force field where the target and
the obstacle are denoted as an attractive pole and a repulsive
surface, respectively. Although effective, these two methods are
accompanied by higher computational costs; for the latter, the
computational complexity is exponentially increasing to the
DOFs of the robot.

Generally speaking, for QP-based methods, the obstacle
avoidance strategy is usually formulated as an attachment
constraint of the resultant QP minimization problem. For their
works in Zhang and Wang (2004), Guo and Zhang (2014, 2019),
etc., the collision avoidance constraints were set inner and outer
thresholds for safety. In Xu et al. (2019b) and Zhou et al. (2019),
a relatively simple inequality that can avoid collision with the
obstacle was proposed. In their works, both the obstacle and
manipulator are abstracted as point sets. A safe distance is given
by ensuring the distance between the manipulator and obstacle
is always greater than the safe distance, and the safety is ensured.
However, as points representing the manipulator are chosen in a
uniform way, this method carries a possible risk that the chosen
points do not collide with the obstacle; in practice, the collision
has already happened due to the distance from the chosen point
to the obstacle may be greater than the shortest distance between
the manipulator and the obstacle.

In this study, therefore, we provide an improved obstacle
avoidance scheme that can determine the nearest point on every
link of the manipulator to the obstacle. By always keeping
the minimal distance between them outside the non-safety
region, the safety is ensured. In addition, if the acceleration
vector is quite different at the front and back time, it will
produce excessive velocity, which will enable the manipulator
to shake, critically impact, or even cause damage to the
manipulator or potential safety accident. Moreover, if not taking
the joint acceleration into account, the generated joint velocity
command may be discontinuous (Guo and Zhang, 2014, 2019).
Consequently, in this study, the kinematic control problem of a
redundant manipulator is investigated in terms of acceleration
level. Specifically, the robot manipulator and obstacle are first
abstracted as mathematical geometries based on the vector
relationship between geometric elements in the search for the
Cartesian coordinates of the points whose distance from every
link of the manipulator to the obstacle is shortest. The distance
between a robot manipulator and an obstacle is described as
point-to-point distance, and an inequality constraint is thus
constructed, which is built in acceleration level, to avoid
the obstacle. To avoid the joint drift problem and improve
the stability and reliability of robots in periodic tasks such
as palletizing, welding, etc., the bi-criteria performance indices
integrating joint-acceleration-norm minimization (MAN) and
repetitive motion planning (RMP) is considered by assigning
a weighing factor. The kinematic control problem of the
manipulator is transformed into an equality constraint mapping
from Cartesian space to joint acceleration space. To sum up,
an acceleration-level quadratic programming (QP) problem is
obtained, combining the joint angle, joint velocity, and joint
acceleration limits rebuilt in the acceleration level. Then, utilizing
the real-time property of the RNN, we designed an RNN based
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neural dynamic controller to solve the QP problem. Finally,
simulative experiments are performed on a four-link planar
manipulator, validating the feasibility of the proposed control
scheme and obstacle avoidance strategy by simulative results.

The ensuing part of this paper is arranged around the
following aspects: preliminaries such as kinematic description of
redundant manipulator, the nearest point selection as well as the
formulation of the inequality obstacle avoidance strategy, and
problem statement are introduced in section 2. Section 3 shows
the QP problem reformulation and the design of RNN controller.
Simulation results are given in section 4, where both the static
and dynamic obstacle are considered. Section 5 summarizes the
whole paper with a final remark. The main contributions of this
paper are summarized as follows:

1) The acceleration-level kinematic control problem of
redundant manipulator with the obstacle collision avoidance
is investigated. Bi-critic performance indices consisting of
joint-acceleration-norm minimization and repetitive motion
planning are considered in order to avoid the joint drift and
improve the stability and reliability of robots in periodic tasks.

2) An improved obstacle avoidance strategy that can return the
nearest point of every link of a manipulator to the obstacle
is proposed. By keeping minimal distance between the robot
and the obstacle outside the non-safety region all the times,
the safety is ensured.

3) An RNN-based dynamic controller combining the motion
planner, obstacle avoidance and joint angles, joint speed, as
well as joint acceleration constraints is proposed. Under its
control, the robot achieves the desired trajectory tracking
task with a desired tracking error, and it successfully avoids
collision with static and dynamic obstacles.

2. PRELIMINARIES AND PROBLEM
STATEMENT

2.1. Kinematics Description of Redundant
Manipulator
For path planning task of a robot manipulator, the position of its
end-effector is only determined by its joint space vector θ(t), and
the relationship between them is usually described as

r(t) = f (θ(t)), (1)

where r(t) ∈ R
m are Cartesian coordinate of the end-effector

at time t, and θ(t) ∈ R
n are the coordinate of the end-

effector in joint space. f (·): Rn → R
m, is a non-linear mapping

determined by the physical structure and parameters of the used
manipulator. For a redundant manipulator, m < n; this means
that when r(t) is given and known, infinite corresponding θ(t)
may exist. Moreover, due to the non-linear property of redundant
manipulator, directly solving Equation (1) is extremely difficult.
On the contrast, solving Equation (1) in velocity level or
acceleration level gives a simpler way. For the velocity level,
Equation (1) can be transformed into

ṙ(t) = J(θ(t))θ̇(t), (2)

where J(θ(t)) ∈ R
m×n is Jacobian matrix. ṙ(t) and θ̇(t)

correspond to the derivatives of r(t) and θ(t), respectively,
denoting Cartesian and joint velocity, respectively.

Computing the derivatives of Equation (2), the acceleration
level kinematics is described as

r̈(t) = J(θ(t))θ̈(t)+ J̇(θ(t))θ̇(t), (3)

where J̇(θ(t)) is a time derivative of J(θ(t)). r̈(t) and θ̈(t) are the
derivatives of ṙ(t) and θ̇(t), respectively, denoting acceleration of
the manipulator in Cartesian and joint space, respectively. For
simplicity, in the following sections, J̇(θ(t)), J(θ(t)), r(t), ṙ(t),
r̈(t), θ(t), θ̇(t), and θ̈(t) are abbreviated to J̇, J, r, ṙ, r̈, θ , θ̇ , and
θ̈ , respectively.

2.2. Obstacle Avoidance
2.2.1. Basic Description
Based on the bound box theory, the robot manipulator and
obstacle can be simplified as the mathematical geometry.
For example, the plane manipulator can be abstracted as a
combination of cylinders, and the obstacles are abstracted as
spheres, cylinders, cuboids, or a combination of them (Yue
et al., 2015). By describing the manipulator and obstacle as
point sets, the distance between them is transformed into the
point-to-point distance. Assume that A and B are Cartesian
coordinates of one of the points on a manipulator and an
obstacle, respectively, given a safety distance d; in principle, if
||AB|| ≥ d is always satisfied during robot movement, the safety
(collision-free) between the robot and obstacle will be ensured,
where ||AB|| =

√

(A− B)T(A− B) denotes the Euclidean norm.
As the DH parameters of a manipulator are given, Cartesian

coordinates of the critical points located in manipulator joint
centers are easier to compute. By setting certain criteria, critical
points on links of a manipulator can also be obtained. However,
how to select the representative points on both the manipulator
and obstacles is challenging. Selecting abundant points will
increase the computational costs and is not necessary. A method
is to uniformly choose critical points on a manipulator (as shown
in Figure 1A), which is introduced in Xu et al. (2019b) and Zhou
et al. (2019). The basic idea is that the critical point is chosen
in the center of a link of a manipulator, based on the joint
angle information and link length, and Cartesian coordinates
of the critical point can be computed. Although we reduced
the computational complexity, we found that this way caused a
possibility that the chosen points did not collide with the obstacle;
in practice, the collision had already happened due to the distance
from the chosen points to the obstacle being greater than the
shortest distance between them.

As shown in Figure 1B, when the obstacle is located in
Position III based on the uniform point selection, B will be
adopted to determine whether the collision with the obstacle
occurred. If the safety distance is just set as d + a and d <

d + a < ds, where a is a positive constant, for B, the collision-
free will be determined. However, for point A, the manipulator
will collide with the obstacle. Therefore, motivated by it, in this
study, we aim to find the nearest points on every link of the
manipulator to the obstacle to ensure the collision-free. Utilizing
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FIGURE 1 | The basic idea of two obstacle avoidance schemes where the green denotes the obstacle, and the blue denotes the critical point selected from a link of a

manipulator. (A) Uniform point selection. (B) The proposed nearest point selection method in this paper. (C) Three possible situations corresponding to the nearest

point collision avoidance strategy.

the vector relationship between geometric elements, the method
is simple and easy to implement. Assuming that P1 and P2
are the coordinates of two critical points in the center of two
joints connecting a link of the manipulator, P0 are Cartesian
coordinates of the detected critical point from the encountered
obstacle (as shown in Figure 1C where the manipulator link and
the obstacle are simplified as a segment and a point, respectively).
Assume that Pv is a projection of P0 to segment P1P2. If λ =
−−→
P1Pv/

−−→
P1P2 ∈ [0, 1] (that is to say, P0 is located in Position II),

where −→· denotes the directional vector, then the nearest point
is Pv with the minimal distance dmin = ||P0Pv||. Otherwise,
dmin = {||P0P1||, ||P0P2||}min. For λ < 0, the nearest point is
P2 (i.e, P0 is located in Position III), for λ > 1, the nearest point
P1 will be returned.

Remark1: Note that, in this paper, Cartesian coordinates of the
critical points on the obstacle are known by default. In real life,
the real-time measurement of the surrounding obstacles is easy
to achieve by use of a camera, and the related achievements have
been reported in Carloni et al. (2013) and Zhang et al. (2015).

2.2.2. Inequality Formalization on an Acceleration

Level
Assume that A is the nearest point on a link of a manipulator to
the obstacle and B denotes the mass center of the obstacle. To
ensure safety between them, the inequality ||AB|| ≥ d is required
to hold. For this purpose, define e = ||AB||−d, and an inequality
in velocity level is constructed as follows:

d||AB||

dt
≥ −k1e, (4)

where k1 is a positive constant that is used to scale the
convergence rate of the error. Due to Ȧ = Jθ̇ and

d||AB||

dt
=

d

dt

√

(A− B)T(A− B) =
−−−→
||BA||T(Ȧ− Ḃ), (5)

where
−−−→
||BA|| = (A− B)T/||A− B|| ∈ R

1×m is the unit vector of
−−−→
A− B, Ȧ is the velocity of point A in joint space, and J ∈ R

m×n is
the Jacobian matrix of A; we can obtain

−−−→
||BA||T(Ȧ− Ḃ) ≥ −k1e,
−−−→
||BA||T(Jθ̇ − Ḃ) ≥ −k1e,
−−−→
||BA||T(Jθ̇) ≥ −k1e+

−−−→
||BA||T Ḃ,

(6)

let −
−−−→
||BA||TJ = Jo ∈ R

1×n, k1e −
−−−→
||BA||T Ḃ = C, Equation (6)

can be summarized as

Joθ̇ ≤ C. (7)

The velocity-level collision avoidance inequality, i.e., Equation
(7), is obtained, and it has been proven to have the ability to
avoid collision between the static and dynamic obstacles in Zhou
et al. (2019) and Xu et al. (2019b). Much like the velocity level,
by constructing

d

dt
(
d||AB||

dt
+ k1e) ≥ −k2(

d||AB||

dt
+ k1e), (8)

then,

d

dt
(
d||AB||

dt
+ k1e) ≥ −k2(

d||AB||

dt
+ k1e)

d

dt
(
−−−→
||BA||T(Jθ̇ − Ḃ)+ k1e) ≥ −k2(

−−−→
||BA||T(Jθ̇ − Ḃ)+ k1e)

− Joθ̈ − J̇oθ̇ −
−−−→
||BA||T B̈+ k1(−Joθ̇ −

−−−→
||BA||T Ḃ) ≥

− k2(−Joθ̇ −
−−−→
||BA||T Ḃ+ k1e)

Joθ̈ + J̇oθ̇ +
−−−→
||BA||T B̈+ k1(Joθ̇ +

−−−→
||BA||T Ḃ) ≤

− k2(Joθ̇ +
−−−→
||BA||T Ḃ− k1e),

(9)
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therefore, we can obtain the obstacle avoidance inequality in
acceleration level:

Joθ̈ ≤− k2(Joθ̇ +
−−−→
||BA||T Ḃ− k1e)

− k1(Joθ̇ +
−−−→
||BA||T Ḃ)− J̇oθ̇ −

−−−→
||BA||T B̈.

(10)

where −
−−−→
||BA||TJ = Jo. Let the right side of inequality (10) be

denoted by µ; Equation (10) is then equivalent to

Joθ̈ ≤ µ. (11)

So far, the construction of the inequality collision avoidance
strategy on the acceleration level, i.e., Equation (11), is completed.

2.3. QP Problem Statement
For a redundant manipulator, due to the redundancy, it
is possible to perform the primary and secondary tasks
simultaneously. In view of m < n, many solutions satisfying
Equation (11) exist. To choose a better solution from them,
the secondary task can be set as the optimization of some
performance indices such as joint velocity minimization, joint
acceleration minimization, joint jerk minimization, etc. In this
study, the acceleration level kinematic control of the redundant
manipulator was considered, and the joint-acceleration-norm
minimization was thus chosen. On one hand, in terms of practical
industrial applications, the robot is often expected to perform
some repetitive tasks such as palletizing and welding. To make
the kinematic control of manipulator repetitive, the RMP scheme
was proposed and investigated in Zhang et al. (2009), Xiao and
Zhang (2013), and Jin et al. (2018), and it was constructed as
the minimization of the displacements between the θ(t) and θ(0),
where θ(0) denotes the initial joint angle. On the other hand, to
avoid the joint drift problem, another performance index, i.e., the
repetitive motion planning, was also adopted in this paper:

1) Minimum acceleration norm (MAN):

U = θ̈T θ̈/2. (12)

2) Repetitive motion planning (RMP):

U = (θ̈ + d1(θ − θ(0)))T(θ̈ + d1(θ − θ(0)))/2, (13)

where d1 > 0 is designed as a positive constant determined by
the designer based on the experimental results, which is used to
scale the magnitude of the displacements θ − θ(0). Parameters θ

and θ(0) denote the current joint angle and the initial joint angle
of the manipulator, respectively.

Let η = d1(θ − θ(0)), assigning a weight ω1 = 0.5 and
ω2 = 0.5 to the MAN and the RMP schemes, respectively;
ω1+ω2 = 1, the bi-criteria acceleration level obstacle avoidance,
and kinematic control problem of a redundant manipulator are

formulated as an QP problem as follows:

min θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4, (14a)

s.t. Jθ̈ = r̈d − J̇θ̇ , (14b)

Joθ̈ ≤ µ, (14c)

θ− ≤ θ ≤ θ+, (14d)

θ̇− ≤ θ̇ ≤ θ̇+, (14e)

θ̈− ≤ θ̈ ≤ θ̈+, (14f)

where Equation (14a) denotes the objective function to be
minimized. Equations (14b) and (14c) denote the motion
planning scheme and obstacle avoidance scheme, respectively.
Equations (14d)–(14f) are the physical constraints. Parameters
θ̈ , θ̇ , θ denote joint acceleration vector, joint velocity vector and
joint angle vector of the robot manipulator, respectively. θ−, θ̇−,
θ̈− and θ+, θ̇+, θ̈+ are lower bound and upper bound of θ ,
θ̇ , θ̈ , respectively. rd are the desired trajectory that the robot is
expected to track. r̈d is the time derivation of ṙd, and ṙd is the
derivation of rd.

3. QP REFORMULATION AND RNN
CONTROLLER

3.1. QP Reformulation
For Equation (14b), to achieve a higher tracking accuracy to the
desired trajectory, a feedback is introduced, and Equation (14b)
is rewritten as

Jθ̈ = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r − rd), (15)

where β > 0 ∈ R and γ > 0 ∈ R are the feedback gains,
and r is the actual trajectory achieved by manipulator under the
designed controller. In addition, For Equations (14d)–(14f), it is
obvious that they are located at different levels, which makes it
impossible to directly solve Equation (14). Following Guo and
Zhang (2014, 2019), Equations (14d)–(14f) can be incorporated
in the acceleration level, i.e.,

ξ+ = min{κ1(θ
+ − ϑ − θ), κ2(θ̇

+ − θ̇), θ̈+},

ξ− = max{κ1(θ
− + ϑ − θ), κ2(θ̇

− − θ̇), θ̈−},
(16)

where ϑ > 0 ∈ R, κ1 > 0 ∈ R, and κ2 > 0 ∈ R. The QP problem
(14) can thus be reformulated:

min θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4, (17a)

s.t. Jθ̈ = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r − rd), (17b)

Joθ̈ ≤ µ, (17c)

ξ+ = min{κ1(θ
+ − ϑ − θ), κ2(θ̇

+ − θ̇), θ̈+}, (17d)

ξ− = max{κ1(θ
− + ϑ − θ), κ2(θ̇

− − θ̇), θ̈−}. (17e)

Remark2: The weight factors of both theMAN and RMP schemes
are set at the same value, meaning that the MAN and RMP
schemes are viewed as equally important. For different weightsω1

and ω2 = 1− ω1, the minimized objective function is different.
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FIGURE 2 | Block diagram of the acceleration-level kinematic motion control of redundant manipulator with obstacle avoidance (17c) and physical constraints

(17d)-(17e) under the designed RNN controller (21).

3.2. RNN Controller
In this part, we would design an RNN-based dynamic controller
to solve Equation (17) recursively. Specifically, for Equation (17),
a lagrange function is defined as

L = θ̈T θ̈/4+ (θ̈ + η)T(θ̈ + η)/4+λT1 (Bright − Jθ̈)+λT2 (Joθ̈ −µ),
(18)

where Bright = r̈d − J̇θ̇ − β(Jθ̇ − ṙd)− γ (r− rd), λ1 and λ2 is the
Lagrange multiplier. Based on the KKT conditions, the optimal
solution of Equation (18) can be equivalently rewritten as

θ̈ = P�(θ̈ −
∂L

∂θ̈
), (19a)

Jθ̈ = Bright , (19b)
{

λ2 = 0 if Joθ̈ ≤ µ,

λ2 > 0 othewise.
(19c)

where P� is a projection operation to a set �, and P�(x) =

argminy∈�||y− x|| Li et al. (2016). Equation (19c) can be further
written as

λ2 = max((λ2 + Joθ̈ − µ), 0). (20)

The designed RNN controller is:

ǫ
...
θ = −θ̈ + P�(−

1

2
η + JTλ1 − JTo λ2), (21a)

ǫλ̇1 = Jθ̈ − Bright , (21b)

ǫλ̇2 = max((Joθ̈ − µ + λ2), 0)− λ2, (21c)

where ǫ > 0 is a constant that is used to scale the
convergence rate of the neural network. Figure 2 shows a
block diagram of the acceleration-level kinematic motion control
of a redundant manipulator with obstacle avoidance (17c)
and physical constraints (17d)-(17e) under the designed RNN
controller (21).

TABLE 1 | The D-H parameter of the robot manipulator employed in this paper

and simulation parameters setup.

Link a(m) α(rad) d(m) Parameter Value Parameters Value

1 0.296 0 0 k1 7 k2 7

2 0.296 0 0 ǫ 0.002 ϑ 0.1

3 0.296 0 0 κ1 20 κ2 20

4 0.212 0 0 β 20 γ 20

θ− -2(rad) θ+ 2(rad)

θ̇− -2(rad/s) θ̇+ 2(rad/s)

θ̈− -2(rad/s) θ̈+ 2(rad/s2)

d 0.1(m) d1 10

The left side is the DH parameter. The right side is simulation parameters involved in the

simulative experiments.

4. SIMULATION

In this paper, the simulation experiment was performed
on a plane four-DOF robot manipulator to validate the
feasibility of the control scheme Equation (21). Table 1

gives the corresponding DH parameters of the employed
manipulator and the parameter values involved in the simulative
experiment, respectively.

4.1. Circle Trajectory Tracking
4.1.1. Static Obstacle
In this experiment, the robot is expected to track a circle
trajectory with definition of rd = [0.6470+0.1 cos(0.5t), 0.3125+
0.1 sin(0.5t)]T whose radius is 0.1. Assume that position of
the obstacle is centered at [−0.1, 0.3]Tm. The initial joint
angle is chosen as q(0) = [π/2,−π/3,−π/4, 0]Trad with the
joint velocity and joint acceleration initializing as zero. The
simulation time is set as 25s with step size being 0.001. Collision
avoidance and trajectory tracking results are shown in Figure 3,
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where the single static obstacle is considered. Figures 3A,B

show the trajectory tracked by the manipulator under RNN
controller without and with the obstacle avoidance strategy
Equation (17c), respectively, where the corresponding tracking
results are used at t = 1, 6, 9 and t = 13s. Following
them, when not considering the collision avoidance, though
the manipulator successfully tracks the desired circle trajectory,
distances between the obstacle and both the first and second
links of the manipulator are small, and this allows the collision
between them to happen. For practical industrial applications,
this control method will inevitably lead to the tracking failure of

the expected behavior. After introducing the obstacle avoidance
strategy, as the distance between the nearest point on the
manipulator and the encountered environmental obstacle, and
as the obstacle is less than the setting safety distance 0.1,
the inequality Equation (17c) comes in the control command,
enabling the manipulator to escape the obstacle (see Figure 3B);
under the path-tracking controller Equation (17b), the robot
moves along the desired trajectory as expected with a promising
tracking error being the 10−3 order (see Figure 3C). As the
initial point of the end-effector of the manipulator coincides
with the expected tracking trajectory, the tracking error is always

FIGURE 3 | Static obstacle collision avoidance results. (A) Trajectory tracked by the manipulator without Equation (17c) at t = 1, 6, 9 and t = 13s. (B–F) Simulation

results achieved by the manipulator with Equation (17c). (B) Tracked trajectory. (C) Tracking error at x-axis, y-axis. (D) Joint angle profiles. (E) Joint velocity profiles.

(F) Joint acceleration profiles.

FIGURE 4 | Comparative results between bi-criteria scheme considering the MAN and RMP and the MAN scheme. (A): Tracking trajectory result corresponding to

bi-criteria scheme; (B) Tracking result corresponding to MAN scheme. (C): Comparison of ||q− q(0)||2 with and without RMP scheme.
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satisfying from the start to the end of simulation. Figures 3D–F

show the joint angles, joint velocities, and joint accelerations
profiles, respectively. Among them, the lines are relatively
smooth and not sharp, and they do not exceed the setting the
bound constrains.

4.1.2. Verification of RMP
Now, we start to validate the effectiveness of the RMP scheme.
In this paper, the performance index was chosen as a bi-
criteria optimization, i.e., a weighted combination of the MAN
scheme Equation (12) and the RMP scheme Equation (13). The
desired trajectory tracking result corresponding to the bi-criteria
scheme is shown in Figure 4A, and the one corresponding
to the MAN scheme is illustrated in Figure 4B. Comparing
Figures 4A,B, the joint-drift problem at the acceleration level
can be seen to be solved by considering the RMP scheme.
In addition, a comparison between ||q − q(0)||2 with and
without the RMP scheme is illustrated in Figure 4C, showing
that, for the scheme considering RMP, ||q − q(0)||2 would
be guaranteed to converge to zero when t = T, 2T and
change periodically. If not considering the RMP scheme, ||q −

q(0)||2 increases when t = T, 2T and is haphazard. Moreover,
based on the simulative results shown in Figures 3D,E, we
observe that when t = T, 2T, joint angles and joint velocities
of the manipulator are guaranteed to return to their initial
configurations. The RMP scheme can therefore be said to
be effective.

4.1.3. Dynamic Obstacle
Pedestrians or other objects with dynamic property may break
into the motion range of the robot. In this part, we consider
the collision avoidance between the robot and a dynamic
obstacle, and snapshots of the manipulator avoiding a dynamic
obstacle at different time t are given in Figure 5, where the
real shadow denotes the collision avoidance result achieved by
the manipulator under the RNN dynamic controller with the
inequality collision avoidance strategy Equation (17c), and the
virtual shadow corresponds to ones without Equation (17c).
The motion trajectory of the considered dynamic obstacle is
set as [−0.1 + 0.01t, 0.3]T with simulation time being 15s.
Macroscopically, when t = 3s, 6s, 9s and 12s, if not considering
the collision avoidance, the manipulator collides with the

FIGURE 5 | Snapshots of manipulator avoiding a dynamic obstacle at different time t, where the real shadow denotes collision avoidance result with Equation (17c),

and the virtual shadow corresponds to ones without Equation (17c). (A) t = 3 s. (B) t = 6 s. (C) t = 9 s. (D) t = 12 s.
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TABLE 2 | A dynamic obstacle is considered: the nearest point on the

manipulator to the obstacle obtained by the controller with and without the

obstacle avoidance scheme Equation (17c) at different time t and the distance

between the nearest point and the obstacle.

Time (s) Nearest point

with Equation

(17c)

Distance (m) Nearest point

without

Equation (17c)

Distance (m)

t = 1 [0.0089, 0.2959]T 0.0990 [−0.0107, 0.2958]T 0.0794

t = 3 [0.0285, 0.2903]T 0.0990 [−0.0616, 0.2910]T 0.0123

t = 6 [0.0570, 0.2803]T 0.0990 [−0.0677, 0.3215]T 0.0351

t = 9 [0.0845, 0.2704]T 0.0991 [−0.0210, 0.3151]T 0.0187

t = 12 [0.1112, 0.2612]T 0.0991 [0.0178, 0.3039]T 0.0045

t = 15 [0.1450, 0.2722]T 0.0989 [0.0136, 0.3417]T 0.0554

dynamic obstacle. After introducing the collision avoidance
strategy, under the control of the controller, the robot escapes
the obstacle by changing its joint angles and being maintained
outside the non-safety distance. To further show the effectiveness
of the collision avoidance scheme Equation (17c), Table 2 gives
the corresponding Cartesian coordinates of the nearest point on
the manipulator to the obstacle obtained by the controller with
and without Equation (17c) at different time t and the distance
between the nearest point and the obstacle. Obviously, without
Equation (17c), the distance is significantly less than the safety
distance 0.1, meaning that the collision will happen with high
probability. By contrast, after introducing Equation (17c), the
collision avoidance scheme comes in the control command,and
enables the manipulator to escape the obstacle and maintain
a safe distance. Based on Table 2, under the control of the
dynamic controller, the distances between the nearest point on
the manipulator and the obstacle maintain 0.099, which is very
close to 0.1. In addition, we give the minimum distance profile
between the manipulator and the dynamic obstacle achieved by
the controller without and with Equation (17c) for illustration, as
shown in Figure 6. It is more obvious and intuitive than Table 2,
if not taking the collision avoidance strategy Equation (17c) into
account, and the robot would collide with the obstacle at t = 3.5s
owing to the distance being 7× 10−4m. It is therefore concluded
that the proposed collision avoidance strategy is effective.

Remark 3: Compared to the setting safety threshold 0.1m,
the distances between the nearest point to the obstacle on the
manipulator and the obstacle at different time were maintained
at 0.099 in the dynamic obstacle avoidance experiment. We
observed that the minimal distance achieved by the controller
was a somewhat smaller than 0.1, and this is attributed to
the sampling interval adopted in the simulation experiment.
Compared to the generated results without Equation (17c), the
proposed collision avoidance strategy can help the robot to avoid
collision with the obstacle on the whole, and the slight difference
can thus be ignored.

4.2. Three-Ring Trajectory Tracking
To further validate the feasibility of the dynamic controller
[Equation (17)] integrating path tracking and obstacle avoidance

FIGURE 6 | Minimum distance profile between the robot and the considered

dynamic obstacle achieved by the controller without and with Equation (17c).

strategies, in this experiment, the robot tracks a three-
ring trajectory. The tracked trajectory is defined as rd =

[0.05 cos(π t/10)−0.025 cos(4π t/10)+0.4888, 0.05 sin(π t/10)−
0.025 sin(4π t/10) + 0.0040]T . Position of the obstacle is located
on [−0.025, 0.25]Tm. The initial joint angle is valued as
q(0) = [π/2.5,−π/3,−π/4,−π/2]Trad, and the initial joint
velocity is set as [−0.0210,−0.0101, 0.0032, 0.0092]Trad/s. Other
experimental parameters are the same as the previous circle
trajectory tracking. The simulation time is set as 20s with step
size being 0.001. Static obstacle collision avoidance and trajectory
tracking results are illustrated in Figure 7. Figures 7A–C show
snapshots of manipulator avoiding a static obstacle at different
time t = 4s, t = 8s, and t = 20s, respectively, where the
real shadow denotes collision avoidance result with Equation
(17c), the virtual shadow corresponds to ones without Equation
(17c). We can observe that when not considering the collision
avoidance scheme Equation (17c), the distance between the first
link of the manipulator and the obstacle is tiny (e.g., when
for t = 8, the minimal distance is 0.0785 with the nearest
point being [0.0516, 0.2330]T). After introducing Equation (17c),
compared to the previous, the distance between them is enlarged
and maintained outside the non-safety region (see Figure 7D).
Figure 7D gives the distance between the nearest point on the
first link of the manipulator to the obstacle and the obstacle.
When t = 4s and t = 8s, the distance between them is
maintained as 0.1, i.e., the setting safety distance. For t = 8,
the neatest point returned by the computer is [0.0702, 0.2195]T .
Except when successfully avoiding the obstacle, the robot also
accomplishes the desired three-ring path tracking as expected.
Based on Figures 7E,F, it is obvious that the actual trajectory
achieved by the manipulator is coincident with the desired
trajectory, and the tracking errors at x-axis and y-axis reach 10−3

level. Figures 7G,I show the joint-angle profiles, joint-velocity
profiles, and joint-acceleration profiles of the manipulator,
respectively. Following them, therefore, we can say that the
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FIGURE 7 | Obstacle collision avoidance results. (A–C) Snapshots of the manipulator avoiding a static obstacle at t = 4s, t = 8s, and t = 20s, respectively. (D)

Minimum distance profile. (E) Trajectory tracked by the manipulator and the desired trajectory. (F) Tracking error at x-axis, y-axis. (G) Joint-angle profiles.

(H) Joint-velocity profiles. (I) Joint-acceleration profiles.

proposed obstacle avoidance scheme Equation (17c) and the
designed RNN dynamic controller Equation (17) are effective
for solving the kinematic motion problem of a redundant
manipulator at the acceleration level.

Comparative results between the bi-criteria scheme and the
MAN scheme are shown in Figure 8. As the movement period
is 20s, in this experiment, the simulation time is set as 40s. In
addition, d1 = 15. Figures 8A,B show the tracking trajectory
result corresponding to bi-criteria scheme and MAN scheme,
respectively. A comparison between ||q−q(0)||2 with andwithout
the RMP scheme is illustrated in Figure 8C. For the scheme
considering RMP, ||q − q(0)||2 would be guaranteed to converge
to zero when t = T, 2T and changes periodically. If is not
considering the RMP scheme, when t = T, 2T, the current
joint-angle state q does not return the initial joint-angle state q(0).

Remark 4: As one of the important performance indices,
here, we start to show the effectiveness of the MAN scheme.
Figure 9 gives comparative results of the joint-acceleration norm
||θ̈ || achieved by the pseudo-inverse method and the RNN-based
method proposed in this paper for two trajectories. Figure 9A
corresponds to the circle trajectory tracking experiment.
Figure 9B corresponds to the three-ring trajectory tracking
experiment. Note that, in this experiment, the cost function
only considers the MAN scheme to show the effectiveness of
the MAN scheme, not involving the RMP and the collision
avoidance. In general, the pseudo-inverse method is deemed as
a persuasive solution, therefore, it is employed to compare with
our RNN-based method. Following Figure 9A, it is observed
that ||θ̈ || quickly coincides with one achieved by the pseudo-
inverse method although it is slightly different at initial time.

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 54

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Bi-criteria Acceleration Level Obstacle Avoidance

FIGURE 8 | Comparative results between bi-criteria scheme considering the MAN and RMP, and the MAN scheme. (A) Tracking trajectory result corresponding to

bi-criteria scheme; (B) Tracking result corresponding to MAN scheme. (C) Comparison of ||q− q(0)||2 with and without RMP scheme.

FIGURE 9 | Joint acceleration norm ||θ̈ || comparison achieved by the pseudo-inverse method and the RNN-based method proposed in this paper, respectively.

(A) Circle trajectory tracking. (B) Three-ring trajectory tracking.

TABLE 3 | Comparison between the proposed scheme in this paper and the

existing QP-based acceleration level obstacle avoidance schemes.

Methods Performance

indices

Physical

constraints

Static

obstacle

Dynamic

obstacle

This paper Bi-criteria Yes Yes Yes

Guo and Zhang

(2019)

MAN Yes Yes No

Guo and Zhang

(2014)

MAN Yes Yes No

Xiao and Zhang

(2013)

RMP Yes / /

Guo and Li

(2016)

MAN No Yes No

/ denotes the obstacle avoidance is not considered in Xiao and Zhang (2013).

The conclusion is also same for the three-ring trajectory (as
shown in Figure 9B), consequently, the effectiveness of the MAN
scheme is validated. In addition, the pseudo-inverse method does
not handle the physical constraints such as joint angles, joint
accelerations, consequently, the RNN-basedmethod in this paper
is adopted.

4.3. Comparison
As described in the previous sections, obstacle avoidance of the
redundant manipulator has been investigated for decades, and
the research has been fruitful. However, the existing products
mainly focus on the velocity level. At present, only a small
amount of attention is paid to the obstacle avoidance of
the redundant manipulator at the acceleration level (not to
mention the bi-criteria acceleration-level obstacle avoidance).
There are few related works that have been reported. In this
study based on the QP optimization, we investigated the bi-
criteria acceleration-level obstacle avoidance of the redundant
manipulator. To highlight the proposed controller scheme in
this paper, comparisons between our scheme and the existing
QP-based acceleration level obstacle avoidance schemes were
conducted, and the comparative results are illustrated in Table 3.
In Xiao and Zhang (2013), the obstacle avoidance scheme was
not considered. For their works proposed by Guo and Zhang
(2014, 2019) and Guo and Li (2016), in their collision-avoidance
schemes, the inner and outer safety thresholds were considered.
In Guo et al. (2018), a noise-tolerant obstacle avoidance strategy
was introduced by proposing an integration-enhanced error
function. As this paper is not investigated from the perspective
of QP, it is not listed in Table 3. Following Table 3, this
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study first investigated the bi-criteria performance optimization-
based acceleration-level obstacle avoidance of the redundant
manipulator from the QP perspective. Moreover, the dynamic
obstacle as also considered.

Combining all simulative results, in summary, the proposed
collision avoidance scheme has the ability to find the nearest
point on the manipulator to obstacle, and it can enable the
manipulator to avoid collision with the environmentally static
and dynamic obstacles. Under the designed RNN controller,
the manipulator also accurately achieves the desired trajectory
tracking task.

5. CONCLUSIONS

We shed some light on the acceleration-level kinematic motion
control problem of the redundant manipulator with obstacle
avoidance in this paper. An improved inequality obstacle
avoidance method is introduced, and it can find the nearest point
on every link of a manipulator to an obstacle. By keeping the
minimal distance between them outside the non-safety region
at all times, the safety is ensured. Minimizing the combination
integrating the joint-acceleration norm and repetitive motion
planning as the objective function, a QP optimization problem
is established where the desired motion behavior and obstacle
avoidance are formulated as equality and inequality constraints
rebuilt at the acceleration level. The inherent physical constraints
of the manipulator are also incorporated. An RNN-based
neural dynamic controller is designed to solve the resultant
QP problem. Simulative results performing on four-link planer
manipulator validate the feasibility of the designed control
scheme, when the minimal distance between robot and
obstacle violates the setting safety criticality, the collision
avoidance strategy come in the control command, the robots
successfully avoid collision with the environmental obstacles.
If no collision is detected, the robot performs the desired
trajectory tracking task with a promising tracking error. In
this paper, we only considered the obstacle avoidance problem
of a single redundant manipulator. For the multiple robot

system, the obstacle avoidance scheme should not only consider
collision between the manipulator and the environment, but
also collision between the manipulators each other. This
is a challenge problem. In the future work, the obstacle
avoidance problem of multiple robot manipulators system will
be considered.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

WZ developed the idea for this study, derived mathematical
equations, and wrote to the paper. Some drawings in this
paper and the program code were completed by XL. XC and
XS completed the corresponding MATLAB simulation. GT
contributed to refining the paper and proposed amendments.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Guangdong Province Key
Areas R&D Program (Grant Nos. 2020B090925001 and
2019B090919002), Foshan Key Technology Research Project
(Grant No. 1920001001148), Natural Science Foundation
of Guangdong Province (Grant No. 2020A1515010631),
Guangzhou Science Research Plan—Major Project (Grant No.
201804020095), and GDAS’ Project of Science and Technology
Development (Grant No. 2018GDASCX-0115).

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable
comments and suggestions.

REFERENCES

Carloni, R., Lippiello, V., D’Auria, M., and Fumagalli, M. (2013). Robot

vision: obstacle-avoidance techniques for unmanned aerial vehicles.

IEEE Robot. Automat. Mag. 20, 22–31. doi: 10.1109/MRA.2013.2

283632

Chen, D., Li, S., Li, W., and Wu, Q. (2020b). A multi-level simultaneous

minimization scheme applied to Jerk-Bounded redundant robot Manipulators.

IEEE Trans. Automat. Sci. Eng. 17, 463–474. doi: 10.1109/TASE.2019.2931810

Chen, D., Li, S., and Liao, L. (2019). A recurrent neural network applied to optimal

motion control of mobile robots with physical constraints. Appl. Soft Comput.

85, 1568–4946. doi: 10.1016/j.asoc.2019.105880

Chen, D., Li, S., Wu, Q., and Luo, X. (2020a). New disturbance rejection constraint

for redundant robot manipulators: an optimization perspective. IEEE Trans.

Indus. Inform. 16, 2221–2232. doi: 10.1109/TII.2019.2930685

Guo, D., and Li, K. (2016). “Acceleration-level obstacle-avoidance scheme for

motion planning of redundant robot manipulators,” in 2016 IEEE International

Conference on Robotics and Biomimetics (ROBIO) (Qingdao), 1313–1318.

doi: 10.1109/ROBIO.2016.7866508

Guo, D., Xu, F., Yan, L., Nie, Z., and Shao, H. (2018). A new noise-tolerant obstacle

avoidance scheme for motion planning of redundant robot manipulators.

Front. Neurorobot. 12:51. doi: 10.3389/fnbot.2018.00051

Guo, D., and Zhang, Y. (2014). Acceleration-level inequality-based man scheme

for obstacle avoidance of redundant robot manipulators. IEEE Trans. Indus.

Electron. 61, 6903–6914. doi: 10.1109/TIE.2014.2331036

Guo, D., and Zhang, Y. (2019). Acceleration-level obstacle avoidance

of redundant manipulators. IEEE Access 7, 183040–183048.

doi: 10.1109/ACCESS.2019.2960399

Jin, L., Li, S., Hu, B., and Yi, C. (2018). Dynamic neural networks aided distributed

cooperative control of manipulators capable of different performance indices.

Neurocomputing 291, 50–58. doi: 10.1016/j.neucom.2018.02.059

Ju, T., Liu, S., Yang, J., and Sun, D. (2014). Rapidly exploring random tree

algorithm-based path planning for robot-aided optical manipulation

of biological cells. IEEE Trans. Automat. Sci. Eng. 11, 649–657.

doi: 10.1109/TASE.2013.2289311

Kim, J., and Khosla, P. K. (1992). Real-time obstacle avoidance using

harmonic potential functions. IEEE Trans. Robot. Automat. 8, 338–349.

doi: 10.1109/70.143352

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2020 | Volume 14 | Article 54

https://doi.org/10.1109/MRA.2013.2283632
https://doi.org/10.1109/TASE.2019.2931810
https://doi.org/10.1016/j.asoc.2019.105880
https://doi.org/10.1109/TII.2019.2930685
https://doi.org/10.1109/ROBIO.2016.7866508
https://doi.org/10.3389/fnbot.2018.00051
https://doi.org/10.1109/TIE.2014.2331036
https://doi.org/10.1109/ACCESS.2019.2960399
https://doi.org/10.1016/j.neucom.2018.02.059
https://doi.org/10.1109/TASE.2013.2289311
https://doi.org/10.1109/70.143352
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Bi-criteria Acceleration Level Obstacle Avoidance

Lee, K. K., and Buss, M. (2007). “Obstacle avoidance for redundant robots using

Jacobian transposemethod,” in IEEE/RSJ International Conference on Intelligent

Robots & Systems (San Diego, CA: IEEE), 3509–3514.

Li, S., He, J., Li, Y., and Rafique, M. U. (2016). Distributed recurrent

neural networks for cooperative control of manipulators: a game-

theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28, 415–426.

doi: 10.1109/TNNLS.2016.2516565

Li, S., Wang, H., and Rafique, M. (2018b). A novel recurrent neural network for

manipulator control with improved noise tolerance. IEEE Trans. Neural Netw.

Learn. Syst. 29, 1908–1918. doi: 10.1109/TNNLS.2017.2672989

Li, S., Zhou, M., and Luo, X. (2018a). Modified primal-dual neural networks

for motion control of redundant manipulators with dynamic rejection of

harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29, 4791–4801.

doi: 10.1109/TNNLS.2017.2770172

Li, X., Zhihao, X., Shuai, L., Hongmin, W., and Xuefeng, Z. (2020). Cooperative

kinematic control for multiple redundant manipulators under partially known

information using recurrent neural network. IEEE Access 8, 40029–40038.

doi: 10.1109/ACCESS.2020.2974248

Volpe, R., and Khosla, P. (1990). Manipulator control with superquadric artificial

potential functions: theory and experiments. IEEE Trans. Syst. Man Cybernet.

20, 1423–1436. doi: 10.1109/21.61211

Xiao, L., and Zhang, Y. (2013). Acceleration-level repetitive motion planning

and its experimental verification on a six-link planar robot manipulator. IEEE

Trans. Control Syst. Technol. 21, 906–914. doi: 10.1109/TCST.2012.2190142

Xu, Z., Li, S., Zhou, X., Yan, W., Cheng, T., and Huang, D. (2019a).

Dynamic neural networks based kinematic control for redundant

manipulators with model uncertainties. Neurocomputing 329, 255–266.

doi: 10.1016/j.neucom.2018.11.001

Xu, Z., Li, S., Zhou, X., Zhou, S., and Cheng, T. (2020). Dynamic neural

networks for motion-force control of redundant manipulators: an optimization

perspective. IEEE Trans. Indus. Electron. doi: 10.1109/TIE.2020.2970635

Xu, Z., Zhou, X., and Li, S. (2019b). Deep recurrent neural networks based

obstacle avoidance control for redundant manipulators. Front. Neurorobot.

13:47. doi: 10.3389/fnbot.2019.00047

Yue, S., Jia, Q., Gang, C., Wang, Y., and Sun, H. (2015). “Study of rapid

collision detection algorithm formanipulator,” in IEEE Conference on Industrial

Electronics and Applications (ICIEA) (Auckland), 934–938.

Zhang, H., Wang, Y., Zheng, J., and Yu, J. (2018). Path planning of industrial robot

based on improved RRT algorithm in complex environments. IEEE Access 6,

53296–53306. doi: 10.1109/ACCESS.2018.2871222

Zhang, Y., Li, S., Kadry, S., and Liao, B.(2019a). Recurrent neural network

for kinematic control of redundant manipulators with periodic input

disturbance and physical constraints. IEEE Trans. Cybernet. 49, 4194–4205.

doi: 10.1109/TCYB.2018.2859751

Zhang, Y., Li, S., and Zhou, X. (2019b). Recurrent-neural-network-based

velocity-level redundancy resolution for manipulators subject to a

joint acceleration limit. IEEE Trans. Indus. Electron. 66, 3573–3582.

doi: 10.1109/TIE.2018.2851960

Zhang, Y., Tan, Z., Ke, C., Zhi, Y., and Lv, X. (2009). Repetitivemotion of redundant

robots planned by three kinds of recurrent neural networks and illustrated with

a four-link planar manipulator’s straight-line example. Robot. Auton. Syst. 57,

645–651. doi: 10.1016/j.robot.2009.01.002

Zhang, Y., and Wang, J. (2004). Obstacle avoidance for kinematically redundant

manipulators using a dual neural network. IEEE Trans. Syst. Man Cybernet. B

34, 752–759. doi: 10.1109/TSMCB.2003.811519

Zhang, Z., Xu, H., Chao, Z., Li, X., and Wang, C. (2015). A novel vehicle reversing

speed control based on obstacle detection and sparse representation. IEEE

Trans. Intell. Transport. Syst. 16, 1321–1334. doi: 10.1109/TITS.2014.2360337

Zhou, X., Xu, Z., and Li, S. (2019). Collision-free compliance control for

redundant manipulators: an optimization case. Front. Neurorobot. 13:50.

doi: 10.3389/fnbot.2019.00050

Zlajpah, L., and Nemec, B. (2002). “Kinematic control algorithms for

on-line obstacle avoidance for redundant manipulators,” in IEEE/RSJ

International Conference on Intelligent Robots & Systems (Lausanne: IEEE),

1898–1903.

Conflict of Interest: WZ, XC, and XS are employed by the company Foshan

Longshen Robotics LTD.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Zhao, Li, Chen, Su and Tang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2020 | Volume 14 | Article 54

https://doi.org/10.1109/TNNLS.2016.2516565
https://doi.org/10.1109/TNNLS.2017.2672989
https://doi.org/10.1109/TNNLS.2017.2770172
https://doi.org/10.1109/ACCESS.2020.2974248
https://doi.org/10.1109/21.61211
https://doi.org/10.1109/TCST.2012.2190142
https://doi.org/10.1016/j.neucom.2018.11.001
https://doi.org/10.1109/TIE.2020.2970635
https://doi.org/10.3389/fnbot.2019.00047
https://doi.org/10.1109/ACCESS.2018.2871222
https://doi.org/10.1109/TCYB.2018.2859751
https://doi.org/10.1109/TIE.2018.2851960
https://doi.org/10.1016/j.robot.2009.01.002
https://doi.org/10.1109/TSMCB.2003.811519
https://doi.org/10.1109/TITS.2014.2360337
https://doi.org/10.3389/fnbot.2019.00050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Bi-criteria Acceleration Level Obstacle Avoidance of Redundant Manipulator
	1. Introduction
	2. Preliminaries and Problem Statement
	2.1. Kinematics Description of Redundant Manipulator
	2.2. Obstacle Avoidance
	2.2.1. Basic Description
	2.2.2. Inequality Formalization on an Acceleration Level

	2.3. QP Problem Statement

	3. QP Reformulation and RNN Controller
	3.1. QP Reformulation
	3.2. RNN Controller

	4. Simulation
	4.1. Circle Trajectory Tracking
	4.1.1. Static Obstacle
	4.1.2. Verification of RMP
	4.1.3. Dynamic Obstacle

	4.2. Three-Ring Trajectory Tracking
	4.3. Comparison

	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


