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In this study, we investigated a control algorithm for a semi-active prosthetic knee based

on reinforcement learning (RL). Model-free reinforcement Q-learning control with a reward

shaping function was proposed as the voltage controller of a magnetorheological damper

based on the prosthetic knee. The reward function was designed as a function of the

performance index that accounts for the trajectory of the subject-specific knee angle. We

compared our proposed reward function to a conventional single reward function under

the same random initialization of a Q-matrix. We trained this control algorithm to adapt to

several walking speed datasets under one control policy and subsequently compared its

performance with that of other control algorithms. The results showed that our proposed

reward function performed better than the conventional single reward function in terms

of the normalized root mean squared error and also showed a faster convergence trend.

Furthermore, our control strategy converged within our desired performance index and

could adapt to several walking speeds. Our proposed control structure has also an overall

better performance compared to user-adaptive control, while some of its walking speeds

performed better than the neural network predictive control from existing studies.

Keywords: reinforcement learning, reward shaping, Q-learning, semi-active prosthetic knee, magnetorhelogical

damper

1. INTRODUCTION

The knee joint enables one to perform basic movements, such as walking. The loss of this
function such as in the case of transfemoral amputation could severely restrict movements. The
lower limb prosthetic system, which comprises either the prosthetic knee, leg, or foot, could
replace the function of the biological knee. Generally, the prosthetic knee is divided into two
categories, that is, a mechanical-based control and microprocessor controlled. Reportedly, using
the microprocessor-controlled prosthetic knee can improve the lower extremity joint kinetics
symmetry, gait, and balance, as well as reduce the frequency of stumbling and falling, compared
to using the mechanical or passive knee (Hafner et al., 2007; Kaufman et al., 2007, 2012; Sawers and
Hafner, 2013).
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Generally, the actuator in a microprocessor-controlled
prosthetic knee can be divided into two categories: semi-active
and active mechanisms. An active mechanism can generate a
net positive force. Several institutions have been developing the
active knee for research and development purposes (Hoover et al.,
2012; Lawson et al., 2014; Flynn et al., 2015). However, owing
to the high requirements of the actuation unit as well as the
control system in terms of design and cost (Windrich et al., 2016),
there has been only a few of the commercialized product in this
category, such as the Power Knee (Össur, Iceland)1.

On the contrary, a semi-active mechanism or also called a
variable-damping mechanism could only manipulate damping
force. Magnetorheological (MR) damper is one of the examples
that utilize this function by manipulating the strength of the
magnetic field, which is applied to magnetic particles in a carrier
fluid. The advantages of using this system are the rapid response
and low power consumption, among others (Şahin et al., 2010).
Therefore, from the cost-effective and functionality point of view,
a semi-active prosthetic knee is still more favorable for the end
user compared to the active mechanism. Consequently, in this
study we focused on the control of prosthetic knee devices with a
semi-active mechanism in a swing phase of the gait cycle.

Many studies on the prosthetic knee control algorithm have
been conducted. The user-adaptive control as investigated in
Herr and Wilkenfeld (2003) is an example of an adaptive
control that applied the MR damper-based prosthetic knee. The
underlying principle of this controller is to change the necessary
damping required in each state if the biological knee trajectory
deviated based on the information of the local sensing device.
A finite state machine-based controller is often found in the
powered knee (Wen et al., 2017). This controller is programmed
to provide a control output of the current state machine obtained
from specific rules based on varying sensing information. There
has been an attempt to unify the prosthetic controller through
discrete Fourier transform virtual constraints (Quintero et al.,
2017). Furthermore, EMG-based control has been investigated in
several studies, such as in Hoover et al. (2012). While this control
has promising results, its application is limited to those who still
have intact muscle function on the amputation site.

Several studies have tried to apply machine learning algorithm
to control prosthetic (Ekkachai and Nilkhamhang, 2016; Wen
et al., 2017, 2019). Neural network predictive control (NNPC)
was employed as a control structure for the swing phase in the
prosthetic knee (Ekkachai and Nilkhamhang, 2016). The swing
phase model was constructed following a feed-forward neural
network structure in which the input and the output were the
knee angle, control voltage, and prediction of future knee angle.
However, it requires an off-line training process to find weight
and bias of neural network. Thus, when neural network has
been trained, it will not have a mechanism to adapt the model.
This raises a need of online learning model that could adapt
if users change walking pattern due to weight change or using
different costume.

1Available online at: https://www.ossur.com/en-us/prosthetics/knees/power-knee
(accessed July 17, 2020).

An adaptive dynamic programming was employed in each
state of walking for automatic tuning of the knee joint impedance
parameter (Wen et al., 2017) and further improved into an online
reinforcement learning (RL)-based control to tune a total of 12
impedance parameters of robotic knee prosthesis (Wen et al.,
2019). Although it has shown potential outcome for human-
prosthesis control tuning in a real time setting, the proposed
algorithm is needed to tune a total 12 impedance parameters for
4 phases of walking. This is understandable since it was applied
to powered prosthetic knee (Wen et al., 2019).

In this study, we investigated a model-free Q-learning control
algorithm with a reward shaping function as the swing phase
control in the MR damper-based prosthetic knee. A model-
free algorithm could simplify the need for prior information,
thus it could be implemented to different subjects effectively.
We found that our proposed reward shaping function leads to
better performance in terms of normalized root mean squared
error and also showed a faster convergence trend compared to a
conventional single reward function. Our proposed approachwas
also compared to user-adaptive control and NNPC from existing
studies, which resulted in overall better performance across tested
walking speeds.

The rest of this paper is organized as follows. Section 2
describes the specific MR damper system, double pendulum
model as the environment, and the dataset that we used, as
well as the details on Q-learning control. Section 3 presents the
simulation and results. Finally, Section 4 discusses the algorithm
comparison, the limitations, and the future works of this study.

2. MATERIALS AND METHODS

In this section, we introduce the system, the environment model,
and the RL algorithm we designed in this study. MR damper is
defined as the system, that is, the main actuator to be controlled.
Meanwhile, the environment is defined as the application where
the system was used; in this case, a simple double pendulum
model was used as the simulated environment to perform swing
phase on a gait cycle. Section 2.1 covers a brief descriptions on
the system and environment as well as dataset used in this study.
Further, Q-learning algorithm designed for this study is discussed
in detail in section 2.2.

2.1. System, Environment Model, Dataset
2.1.1. System Description
In this study, prosthetic knee is actuated by MR damper
having non-linear characteristics such as hysteresis and dynamic
response that are difficult to control. To capture these behaviors
of MR damper, the elementary hysteresis model (EHM) based
feed-forward neural network (FNN) model is used in our
simulation. It was proposed in Ekkachai et al. (2012) and
modified in Ekkachai and Nilkhamhang (2016). The model
consists of two FNNs. Here, one FNN coupled with EHM acted
as a hysteresis model, and the output of this network was fed to
the other FNN that acted as the gain function. Voltage is filtered
by the first-order lag filter. Piston velocity and acceleration are
used as inputs to estimate MR damper force. The MR damper
model is shown in Figure 1A. The model was trained by using
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FIGURE 1 | (A) Control structure of magnetorheological (MR) damper (Ekkachai et al., 2013). (B) Double pendulum model to simulate swing phase with MR damper

attachment with distance dMR from the knee joint.

data from the experimental system of an actual MR damper, Lord
RD-8040-1, described in Ekkachai et al. (2013).

MK = dMR · |F̂| cos θK (1)

The MR damper is attached at a distance, dMR, away from the
knee joint. Based on this distance, the torque generated at knee
joint by the MR damper is calculated by Equation (1), where F̂
is the force generated by MR damper (Figure 1A) and θK is the
knee angle. θK is calculated by θK = θT − θL, where subscripts
T and L denote thigh and leg segment, respectively, as shown
in Figure 1B.

2.1.2. Environment Model
The double pendulum model is proposed as the environment
model for the swing phase (Putnam, 1991). The model consists
of two links, that is, thigh and a lumped shank, as well as a
foot segment, as depicted in Figure 1B. There are two actuated
joints with a total of four degrees of freedom, where the hip
joint has one rotational degree of freedom on the z-axis and two
translation degrees of freedom on the x and y-axes; meanwhile,
the knee joint has one rotational degree of freedom on the z-axis.

MK = ILαL +mLdL(LTαT cos(θL − θT)+ ωTLT sin(θL − θT)

+ ahx cos θL + (ahy + g) sin θL) (2)

MH = MK + (mLL
2
T + IT)αT +mLdLLT(αL cos(θL − θT)

− ω2
L sin(θL − θT))+ (mLLT +mTdT)(ahx cos θT

+ (ahy + g) sin θT) (3)

This model was simulated in MATLAB (Mathworks Inc., Natick,
MA, USA) SimMechanics environment. The torque generated

by each joint, derived from Lagrange equation, are governed
by Equations (2) and (3), where MK and MH are the torques
at knee and hip, respectively. m, I, d, and L are segment mass,
moment of inertia at segment’s center of mass, length measured
from the proximal end of the segment to the center of mass, and
segment length, respectively. The subscripts L and T denote the
leg segment and thigh segment, respectively, while ahx and ahy are
the linear acceleration at hip joint along the x and y axes. Further,
θ ,ω,α, and g are the angle, angular velocity, angular acceleration,
and gravitational constant at 9.8m/s2, respectively.

2.1.3. Dataset
The gait data used in this study are also normal gait data collected
from Ekkachai and Nilkhamhang (2016) for convenience in
comparison study of the controller. In this manner, the proposed
controller performance can be compared to the previous method
with same dataset. It allows us to analyze the difference from the
previous work result keeping the same experimental condition.
A male subject with 83 kg of weight and 1.75 m height at the
time of the experiment were asked to walk on a treadmill at
various speed, where in this study walking speed was set at 2.4,
3.6, and 5.4 km/h (Ekkachai and Nilkhamhang, 2016). A high-
speed camera was used to capture joints coordinate and later
converted to relative joint angles. To capture the respective joints
coordinate, reflective markers were placed at hip, knee, and ankle
joints. In this study, as only the control in the swing phase is
discussed, the gait data used will be constrained into the swing
phase only. Since we proposed a RL-based algorithm, all the
recorded knee angle data with a total of 200 sets per walking speed
will be used. The average knee angle data at the swing phase used
in this study are depicted in Figure 2A.
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FIGURE 2 | (A) Average knee angle data used in this study. (B) βt as an

exponential function with n = 4. (C) Proposed reward shaping function as a

function of Et.

2.2. Q-Learning Control
Here, the proposed Q-learning control is discussed. Q-learning
belongs to the tabular RL group in the machine learning
algorithm. Generally, RL learns the control policies within
a specified environment where the performance and training
information are provided in terms of whether the applied control
policy is a success or failure (Sutton and Barto, 2018). Success or
failure in this case is determined by a certain performance index
depending on the system and environment involved.

2.2.1. Q-Learning Structure
The general structure of RL is consisted of an agent and a
system/environment. An agent executes an action, at , to the
system and environment. Based on the given action, the system
will react to another state, st , while also gives a reward, Rt ,
based on the performance index calculated from the current state.
In this study, the agent is the Q-function with a mathematical
description, as shown in Equation (4).

Q(st ,at) ←− Q(st ,at) + α
[

R(st ,at) + γ maxQ(st+1,at) − Q(st ,at)
]

(4)

In Equation (4), Q and R are the action-value and reward
functions, respectively. Further, s, a,α, and γ are the state, action,
learning rate, and discounted rate, respectively, while subscript
t denotes the time. Learning rate and discounted rate are
dimensionless variables between 0 and 1. Higher learning rate,
which if sets closer to 1, indicates that the Q-function is updated
quickly per iteration, while the Q-function is never be updated if
it is set to 0. The discounted factor is a variable that determines
how the Q-function acts toward the reward. If it is set closer to
0 means, it will only consider the instantaneous reward, while
if it is set closer to 1, it strives more into the long-term higher
rewards (Sutton and Barto, 2018).

Q(θK(t) , ˙θK(t) ,at)
←− Q(θK(t) , ˙θK(t) ,at)

+ α
[

Rt + γ maxQ(θK(t+1) , ˙θK(t+1) ,at)

−Q(θK(t) , ˙θK(t) ,at)

]

(5)

In this study, Q-learning is proposed to be used as a controller
of a dynamics system of the MR damper in the prosthetic
knee in a double pendulum-simulated environment. The state
is the parameter extracted from the environment that contains
necessary information to be used to evaluate the control policies.
In most cases, Q-function with multistate is used to better
learn the environment (Fernandez-Gauna et al., 2013; Sadhu
and Konar, 2017; Chai and Hayashibe, 2020). Particularly, this
paper (Chai and Hayashibe, 2020) has explored deep RL for
motion generation in a simulated environment. In this study,
θK and derivative of knee angle, θ̇K , are used as states, while the
command voltage, v, is used as the action. Thus, the update rule
of theQ-function can be written as in Equation (5). AsQ-learning
is following an off-policy method, actions were selected based
on the maximum value of the Q-function on the current states,
maxQ(s1(t),s2(t)). Meanwhile at the initialization stage of learning,
action selection follows a greedy policy to explore the Q-function
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FIGURE 3 | Block diagram of the proposed Q-learning control in a simulated environment with external experiment data.

for possible solutions.

Q(θK(t), ˙θK(t) ,at)
←− Q(θK(t), ˙θK(t) ,at)

+ α

[

n
∑

t=1

βtRt

+γ maxQ(θK(t+1), ˙θK(t+1) ,at)
− Q(θK(t), ˙θK(t),at)

]

(6)

2.2.2. Reward Shaping Function
The structure of the reward mechanism in the Q-learning
algorithm used in this study is modified into a rationed multiple
rewards as a function of time. This structure enables the learning
process to provide more reward to latter horizon events due to
the response time required by the MR damper to generate the
necessary damping mechanism. The mathematical descriptions
of this multiple reward mechanism are expressed in Equation (6),
where βt = ct2 and

∑n
t=1 βt = 1.

In Equation (6), βt is the specifically designed ratio of
reward priority, n is the number of prediction horizon, and c
is a constant that depends on n. In this study, n is set to 4;
thus, c = 0.033 to be conveniently compared to the NNPC
algorithm studied in Ekkachai and Nilkhamhang (2016) that set
the prediction horizon to 4. Further, the reward priority given
at the specified prediction horizon is an exponential function, as
depicted in Figure 2B.

As the controller aims to mimic the biological knee trajectory
in the swing phase, the reward will be given according
to whether the prosthetic knee can follow the biological
knee trajectory. In this study, the reward is designed as a
function of a performance index (PI). A simple absolute error,

et , is selected as the performance index and evaluated per
interval time. The reward function is also designed to have
a continuous value over a specified boundary and follow a
decaying exponential function. The mathematical descriptions
of the proposed designed reward functions are expressed
in Equations (7)–(11).

Rt = f (PI) (7)

PI = et =

∣

∣

∣

∣

θK − θK(val)

θK(val)

∣

∣

∣

∣

(8)

Rmaxδ
Et ; 0 < Et < Lu (9)

Rt =

{

Rminδ
|Lt−Et | ; Lu < Et < Ll (10)

Rmin ; Et > Ll (11)

In Equations (7)–(11), θK(val) is the validation of knee angle at
time t, Rmax, and Rmin are the maximum reward and minimum
reward set to 1 and −1, respectively. Et is the percentage of et ,
which can be written as Et = 100et . Further, δ, Lu, and Ll are
the reward constants set arbitrarily to 0.01, performance limit to
obtain the positive reward, and performance limit to obtain the
lowest reward, respectively. In this study, PI is aimed to be within
0.01, indicating that the error should be under 1%. Thus, Lu is
set to be 1, and Ll could be set to any number larger than Lu to
provide a variable negative reward. In this case, Ll is set to be
twice the value of Lu.

The graphical description of this reward design is depicted in
Figure 2C. Note that δ, Lu, Ll, Rmax, and Rmin can be defined
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accordingly for other applications depending on the system being
evaluated. The reward shaping function is preferred to follow
a decayed exponential function rather than a linear function to
better train the Q-function to reach the state with the largest
reward value, which can lead to faster convergence.

3. SIMULATION AND RESULTS

In this section, a simulation of swing phase control using
the proposed controller is discussed along with a comparison
study. The simulation was computed using Intelr CoreTM

i7 6th Generation 3.5 GHz processor with 8 GB RAM. The
overall diagram of our study is depicted in Figure 3. The figure
shows an experiment setting that provide kinematics data of
the subject and a simulated environment where our proposed
framework is tested. On the simulated environment, we have a
Q-function block with input of multistate of knee angle from
double pendulum model and updated by the reward function.
The input of the reward function are the actual knee angle θK(t)
and the desired knee angle θK(desired)(t) from experimental data.
The output of Q-function is an action (at) in the form of control
voltage (v) that is passed on to MR-damper dynamics block. The
voltage is converted into F̂ following Figure 1A and passed on to
the double pendulum model for swing phase simulation.

There are several parameters in Q-learning control that must
be defined and optimized. First, as this control approach is
a tabular RL using the Q-learning method, each value of the
Q-function is stored in a Q-matrix. The size of the Q-matrix
depends on the number of states and actions. In this simulation,
the structure of the Q-matrix is a three-dimensional matrix
consisting of l rows of state θK(t), m columns of state ˙θK(t), and n
layers of action v. Q-matrix must cover all the states and actions
available on the system. Based on the data used, the state θK(t)
is within the range of 0 and 70◦ with a predefined step size of
0.5◦, resulting with 141 rows. State ˙θK(t) is set from −7 to 7◦ per
unit of time with predefined 0.05 step size, thus resulting with 281
columns. The range of command voltage is set from 0 to 5 V with
0.1 resolution, resulting with 51 layers of action.

Second, learning rate α need to be defined. In this simulation,
several values of learning rate are simulated to determine its effect
on the number of iteration required to achieve best performance.
The performance index used to evaluate this simulation is the
normalized root mean squared error (NRMSE) as expressed in
Equation (12), where ns is the number of samples in dataset.

NRMSE =

√

1
ns

∑ns
t=1[θK(desired)(t)− θK(t)]2

max(θK(desired))−min(θK(desired))
(12)

On the first simulation, we compared our reward shaping
function as formulated in Equations (7)–(11) to a single reward
mechanism expressed in Equation (4). We used 2.4, 3.6, and
5.4 km/h walking speed dataset, simulated separately with same
value of randomized Q-matrix initialization. We then measured
the moving average of NRMSE parameter with a constrained
maximum iterations of 3000 and a fixed learning rate of 0.1. The
results of this simulation are depicted in Figure 4A. It can be

FIGURE 4 | Summary of simulation results over a constrained iteration of

3000. (A) Comparison of single reward mechanism and our proposed reward

shaping function. (B) Effect of various learning rates to the overall performance

(normalized root mean squared error, NRMSE). (C) Comparison of cumulative

reward over iteration by each of the simulated learning rates.

concluded from this simulation that the reward shaping function
performed better over time in terms of NRMSE, compared to a
single reward function.

In the second simulation, several values of learning rate
α = [0.001, 0.01, 0.05, 0.1, 0.5, 0.9] are picked a priori to
be simulated with a maximum 3000 iteration in a single speed
simulation (mid speed of 3.6 km/h). For each learning rate,
simulation was performed three times and average NRMSE for
each learning rate were recorded. The effect of these learning rate
to NRMSE is shown in Figures 4B,C. We concluded that the two
lowest learning rate (α = 0.001 and α = 0.01) simulated with a
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FIGURE 5 | Overall training process of multispeed of walking under one control policy simulation.

constrained iteration of 3,000 performed the worst among other
learning rates. Those two learning rates did also not show any
significant performance changes over the constrained iteration.
As also observed, a higher learning rate does not guarantee better
performance, as inspected from α = 0.9, compared to α =

[0.05, 0.1, 0.5]. For the next simulation, we picked learning
rate α = 0.5 based on this simulation and considering faster
exploration of Q-matrix that could potentially lead to finding
better local minimum as solution.

There are many approaches to train the Q-function in this
study. Training one Q-function for a specific case of a single
walking speed is easy, while training multispeed at once under
one Q-function is challenging. In this simulation, training
multispeed under one control policy is proposed. Slowest, mid,
and fast walking speeds of 2.4, 3.6, and 5.4 km/h, respectively,
are used for training. In this simulation, the time interval is set
to 20 ms; thus, the action or command voltage to the prosthetic
knee is updated every 20 ms. The dataset of 2.4, 5.4, and 3.6 km/h
is selected randomly for every iteration of the simulation. There
are two conditions for the simulation to stop: first is if all the
NRMSE of all trained speed falls under the defined PI criterion,
and second is if all the trained speed converges into one final
value of NRMSE for at least after 10 further iterations.

The best training process of this simulation over a total of
10 training processes is depicted in Figure 5. As shown in this
figure, the fastest convergence was achieved by the fastest walking
speed, which converges at around 3,300 iterations, followed by

the walking speed of 3.6 km/h, which converges at around 6,700
iterations, and the latest is the slowest walking speed, which
converges at around 6,900 iterations. This occurrence happened
because a faster walking speed generally indicates a short time
in the gait cycle, resulting in a less swing-phase time. The lesser
time in the swing phase with a fixed control interval of 20 ms
indicates that the Q-function calculates fewer actions than the
slower walking speed dataset.

4. DISCUSSION

In this study, we investigated our proposed control algorithm for
the swing phase controller in the MR-damper-based prosthetic
knee. The proposed controller was designed with the structure
of a tabular reinforcement Q-learning algorithm, a subset in
machine learning algorithms. The Q-learning control comprised
a Q-function that stores its value in a Q-matrix and a reward
function following the reward shaping function proposed in this
study. The advantages of using this control structure are that
it can be trained online, and also it is a model-free control
algorithm that does not require prior knowledge of the system to
be controlled. A variable reward as a function of PI associating a
decayed function, which is proposed as a reward function herein,
has led to a better reward mechanism. We have shown that
our proposed reward function demonstrated a trend of faster
convergence compared to a single reward mechanism as depicted
in Figure 4A.
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FIGURE 6 | Comparison between user-adaptive control (green dashed line),

neural network predictive control (NNPC) (red line), and Q-learning control

(black line) for different walking speeds: (A) 2.4 km/h, (B) 3.6 km/h, and (C)

5.4 km/h.

TABLE 1 | Comparison between user adaptive, neural network predictive control

(NNPC), and Q-learning control.

Walking speed (km/h)
NRMSE(%)

User-adaptive NNPC Q-learning

2.4 2.70 0.81 0.78*

3.6 3.65 0.61* 0.88

5.4 3.46 2.42 0.52*

Average 3.27 1.28 0.73*

*Best performance.

The proposed controller is then compared to the user-adaptive
controller (Herr andWilkenfeld, 2003) and the NNPC algorithm
(Ekkachai and Nilkhamhang, 2016). The comparison of 2.4,
3.6, and 5.4 km/h walking speed are depicted in Figure 6 and
Table 1. The table depicts that for the walking speed of 2.4 km/h,
Q-learning method performed the best with 0.78 of NRMSE,
compared to NNPC (0.81) and user-adaptive control (2.70).
Further, for the walking speed of 3.6 km/h, the best performance
was achieved by NNPC with 0.61 of NRMSE, compared with Q-
learning (0.88) and user-adaptive control (3.65). Lastly, for the
walking speed of 5.4 km/h, Q-learning performed the best with
the lowestNRMSE of 0.52, comparedwithNNPC (2.42) and user-
adaptive control (3.46). Overall, Q-learning method perform
within 1% of NRMSE, which followed the designed common
reward function for different walking speed.

This control structure also shows adaptability to various
walking speeds. Moreover, we have successfully trained a unified
control policy for every simulated walking speed. PI verified
with the experimental result indicates that this control structure
performs better than the user-adaptive control. Moreover, in
some of the walking speeds, this control structure performs
better than the NNPC algorithm. The total performance over
different walking speeds showed promising results by using the
proposed approach.

In terms of cost function, knee trajectory is only one of the
parameters to be optimized among other correlated systems, such
as ankle and foot prostheses, to achieve better gait symmetry and
reduce metabolic costs. Although there has not been a detailed
study about the acceptable criterion in terms of the NRMSE
performance index of the knee trajectory in a prosthetic knee,
this study aims to mimic the biological knee trajectory, which is
shown by PI.

On the applicability point of view, our proposed Q-
learning control had no prior knowledge of the structure and
characteristics of MR-damper. Signals observed by Q-learning
control were the states of knee angle and its derivatives, as well
as the reward signal Rt that was given based on the performance
of the controller to shape the control policy. Based on this facts,
our proposed Q-learning control can potentially be used for
other structure of MR-damper or even other impedance-based
machine for semi-active prosthetic.

Although we cannot provide detailed comparison of our
proposed method with another RL-based method in Wen et al.
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(2019), a brief comparison is discussed as follows. The ADP-
based RL algorithm resulted in 2.5◦ of RMSE on the robotic knee
kinematics. The average performance of our proposed method
was 0.73 of NRMSE or was 1.59◦ if converted to average RMSE.
Conversely, in this study, we employed the RL algorithm to
control the output of the control voltage for the MR damper,
resulting in only one simple output variable. Meanwhile, this
existing study (Wen et al., 2019) used the RL algorithm to tune
a total of 12 impedance parameters of the robotic knee; thus, the
output variables are 12. We also treated the swing phase as one
state, while in Wen et al. (2019), the swing phase was divided
into swing flexion and swing extension where the ADP tuner
would tune the impedance parameters accordingly with respect
to each state.

In this study, we focused on developing a unique control that
can adapt and accommodate a range of subject-specific walking
speed. Unique means that it can only be valid for the subject.
The reason was, like any other prosthetic, it is tuned personally
to the wearer. In this study, the control policy that we train is
valid only for the subject whose data we used. However, the idea
of our proposed control framework and algorithm can be applied
to other subjects.

While it has shown a promising result, we also identified some
of the limitations of our study. Using the computational hardware
mentioned at the previous section and source code implemented
in MATLAB, the overall calculation and online update Q-
function process consumed approximately 40.4 ms, while
each evaluation of NNPC with pretrained swing phase model
consumed approximately 13.2 ms (Ekkachai and Nilkhamhang,
2016). Changing the source code implementation in C language
and using dedicated processing hardware could shorten the
calculation time to be within the proposed control interval of
20 ms.

There are several areas that can be explored for future works.
First, another training strategy can be explored further to shorten
the calculation time. Second, this study proposed a tabular-
discretized Q-function stored in a Q-matrix. A continuous

Q-function could also be explored to better cover all the states
and actions. Third is to test our proposed control strategy to
other subjects and possibly to test a transfer learning approach
from control policy that was learnt in this study for dataset from
other subjects.
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