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This paper describes an improved brain-inspired simultaneous localization and mapping

(RatSLAM) that extracts visual features from saliency maps using a frequency-tuned (FT)

model. In the traditional RatSLAM algorithm, the visual template feature is organized as

a one-dimensional vector whose values only depend on pixel intensity; therefore, this

feature is susceptible to changes in illumination intensity. In contrast to this approach,

which directly generates visual templates from raw RGB images, we propose an FT

model that converts RGB images into saliency maps to obtain visual templates. The

visual templates extracted from the saliency maps contain more of the feature information

contained within the original images. Our experimental results demonstrate that the

accuracy of loop closure detection was improved, as measured by the number of loop

closures detected by our method compared with the traditional RatSLAM system. We

additionally verified that the proposed FT model-based visual templates improve the

robustness of familiar visual scene identification by RatSLAM.

Keywords: simultaneous localization and mapping, RatSLAM, frequency-tuned model, visual templates, salient

map

INTRODUCTION

In the past 30 years, traditional simultaneous localization and mapping (SLAM) algorithms based
on probabilistic mathematical models, such as extended Kalman filter-based SLAM (EKF-SLAM)
and Fast-SLAM (Thrun et al., 2005; Lv et al., 2014), have achieved remarkable results. However, the
huge number of calculations, high complexity, and large mapping errors of these methods remain
to be solved in the field of robot navigation.

Compared with filter-based SLAM (Huang et al., 2013; Srivatsan et al., 2018) and optimization-
based SLAM (Hess et al., 2016), the “SLAM” performed in animals demonstrates perfect
biological rationality and high adaptability to complex environments; for example, rodents
such as mice have powerful navigational capabilities and can solve the entire SLAM problem,
even in mazes with crossing paths. Studies have revealed that the biological maps constructed
by animals depend on robust processing strategies using place cells, head direction cells,
and grid cells, rather than on a precise description of the world (James, 2001). Several
researchers have explored the mechanisms underlying rodent navigation using physiological
experiments (Hu et al., 2016; Sanchez-Andres et al., 2020), and have subsequently created
models of the rodent brain (Fleischer and Edelman, 2009; Krichmar, 2018; Tang et al.,
2018) or of memory function (Tan et al., 2013; Tang et al., 2017; Madl et al., 2018; Tang
and Michmizos, 2018). Among them, the RatSLAM algorithm based on rodents is widely
accepted due to its strong biological rationality and low requirements for computing power
(Milford et al., 2004; Milford and Wyeth, 2008; Yuan et al., 2015). Tang et al. (2018) created
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an episodic memory model inspired by the cornu ammonis
3 (CA3) area of the brain consisting of a recurrent network
composed of spiking neurons, which were based on the spike
response model. Zou and Cong (2019) proposed using state
neurons with high-dimensional information of perception and
spatial location, and created a mathematical model expressing
the episodic events that the rodent has experienced. However,
for complex environments, especially those with varying
illumination intensity, RatSLAM, a purely visual brain-inspired
SLAM algorithm, has problems such as the low reliability of its
visual odometer and its low image matching accuracy.

Several methods have been proposed to address the problems
of low matching efficiency and mismatching of visual templates.
Milford and Wyeth (2011) proposed a process of visual
expectation, which dynamically modifies the recognition
thresholds based on recently matched templates, to improve
recall performance. Bian et al. (2018) and Shim et al. (2014)
proposed adding depth information to the visual template
to enhance the robustness of the visual template, which
significantly improved the mapping results. Oriented FAST
and rotated BRIEF (ORB) is an efficient descriptor with a
rotationally invariant character that is suitable for recognizing
sequences of familiar visual scenes. Zhou et al. (2017) proposed
using the ORB algorithm to extract RGB image features and
completing the matching of feature descriptors to improve
processing speed and matching accuracy. Srividhya et al. (2019)
used speeded-up robust features (SURF), another useful visual
processing algorithm, to describe local features. Since the
scale-invariant feature transform (SIFT) is highly invariant to
scaling and rotation of images, the extracted features are hardly
affected by camera tilt (Hu and Liu, 2019). However, setting the
threshold of template matching for different scenes is not an
easy task, and mismatches may occur from using an improper
threshold. To solve this problem, Li et al. (2017) proposed a
dynamic threshold-RatSLAM (DT-RatSLAM) method with
dynamic threshold adjustment to address mismatching in
continuous scenes. Glover et al. (2010) studied the problems
that appearance-based mapping and positioning methods face
at different times of the day, and fused the RatSLAM and fast
appearance based-map (FAB-MAP) methods to create a more
robust system in visually varying environments.

If the camera shakes from time to time while collecting data,
the reliability of the visual odometer of the system will be greatly
reduced. In view of the low reliability of the visual odometer,
Adolfsson (2017) tested a robot operating system (ROS) version
of Open RatSLAM, which used Viso2 as the visual odometer to
generate a robust estimation of motion. Zhang and Hu (2015)
introduced information from an optical dual-axis sensor and
a micro inertial measurement unit (MIMU) into the visual
odometer module of RatSLAM, which improved its accuracy.
Shim et al. (2014) used the odometer data provided by the mobile
base station to obtain a location estimation, instead of calculating
angles, and displacement from image information.

Although the performance of the visual odometer and of
image matching can be improved using the methods proposed
above, the speed and precision of visual information processing
are still unsatisfactory compared with “algorithm” that exists in

rodents. The frequency-tuned (FT) model used in this paper
simulates the visual information processing of the human optic
nerve. We used this model to enhance specific features of the
images collected with an Osmo Pocket (an action camera), in
order to improve the accuracy of image matching. We expected
more robust visual templates to be generated by the FT model,
which extracts saliency maps from raw RGB images.

The rest of the paper is organized as follows. Section
Traditional RatSLAMdetails the traditional RatSLAM algorithm.
Section Frequency-Tuned Model-Based RatSLAM describes the
function of saliency models, then highlights the FT model
and visual templates matching based on FT model. Section
Experiments and Analysis demonstrates experimental results and
analysis to validate the effectiveness of our proposed method.
Finally, section Conclusion and Future Work concludes the
contribution of this paper, and the shortcomings to be overcome
in future work.

TRADITIONAL RatSLAM

The traditional RatSLAM model is primarily composed of local
view cells, a pose cell network, a visual odometer, and an
experience map. Features in local view cells are generated by
summing and normalizing the intensity of all columns of a
grayscale image into one-dimensional vectors. The pose cell
network aims to represent the position of the robot and its
orientation in three-dimensional space. The visual odometer is
obtained by comparing the scanning intensity distribution of
specific areas in each pair of successive pictures. Finally, local
view cells, the pose cell network, and the visual odometer are
fused to obtain a two-dimensional cognitive map, as shown in
Figure 1 (Wyeth and Milford, 2009).

Local View Cells
Each local view cell is associated with a cell unit in the continuous
attractive network (CAN) model (Milford et al., 2004). In the
process of visual template matching, if the current visual template
is sufficiently similar to the stored view template, it will inject
energy into the relevant units in the CANmodel, which is critical
for pose cell network correction. Otherwise, if the visual template
differs from the stored template, it is transformed into a new
template and added to the template library.

CAN Model
Taking its inspiration from the place cells, head direction cells,
and grid cells of the human brain, the CAN model has been
adopted as a pose cell model (Jauffret et al., 2012; Knierim, 2015).
The function of the CANmodel is to ensure the dynamic stability
of the pose cells (Shipston-Sharman et al., 2016). Its dynamic
process goes through three stages: excitatory update, inhibition,
and normalization. During the first stage, each pose cell exerts the
excitatory effect on the other pose cells in the pose cell network.
In the inhibition stage, each pose cell suppresses the activity of
its surrounding cells, which contributes to the convergence of the
pose cell network. Finally, the normalization stage maintains the
total activity of the pose cells after the visual input and the input
of the visual odometer have been obtained.
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FIGURE 1 | Schematic diagram of the RatSLAM system, courtesy of Jeffery (2007).

Visual Odometer
In the visual odometer, the moving speed and rotational angle
information are obtained by comparing the scanning intensity
distribution of specific areas in the two images obtained before
and after moving. The scanning intensity distribution is a one-
dimensional vector, which is obtained by summing the intensities
of each column of the grayscale image and normalizing them. The
difference between this vector and the one-dimensional vector
of the visual template is that they are based on different areas
of the images. The activity of pose cells is affected by the visual
odometer via path integration (McNaughton et al., 2006).

Experience Map
The experience map generated in RatSLAM is a topology map
representing the paths that the robot has experienced (Milford
et al., 2004). Each point in the experience map consists of a
pose cell, a local view cell, and the corresponding position in the
map. The RatSLAM system compares the current position with
those previously stored in the experience map; if the distance
is greater than a certain threshold, a new experience will be
created. Otherwise, the RatSLAM system detects a loop closure
and modifies all experience points to reduce the impact of
accumulated errors.

An Unsolved Problem: The Insufficient
Robustness of Visual Templates
Due to the cumulative error of the visual odometer, RatSLAM
needs to correct the experience map by detecting loop closures
based on visual template matching; therefore, the accuracy of
loop closure detection depends on the visual templates. In

traditional RatSLAM, the visual template is obtained by summing
and normalizing the intensity of every column of a grayscale
image into a vector. The visual template generated by RatSLAM
is completely dependent on the pixel intensity and is therefore
susceptible to changes in illumination intensity. This means that
the error between adjacent templates may become overly large
when performing visual template matching, even when their
corresponding images are similar. In this paper, to improve
the robustness of the visual template, we propose optimizing
the visual templates by adding the FT model into the visual
processing pipeline, as shown in Figure 2. Before converting the
collected image into a visual template, specific features in the
image are enhanced by the FT model. As a result, the overall
outline of the object in the processed image becomes clearer.
Furthermore, the visual templates derived from the FT model are
able to include more information related to the image features.

FREQUENCY-TUNED MODEL-BASED
RatSLAM

The main function of the saliency model is to enhance specific
features of the image. By considering the saliency description and
the corresponding visual template matching, we describe in detail
here why the FT model as the appropriate choice. Compared to
the visual template generated by RatSLAM, which only contains
pixel intensity information, the visual template generated by the
FT model also contains color information, which makes the
objects in the imagemore prominent. The expected improvement
in the robustness of the visual template obtained from the FT
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FIGURE 2 | System architecture of FT model-based RatSLAM.

model should increase the accuracy of visual template matching
and reduce the number of false matches.

Definition and Function of Saliency
The ability of the human visual system to quickly search for
and locate targets of interest in natural scenes is an important
mechanism for visual information processing in daily life.
This visual attention mechanism is termed visual saliency and
offers a number of significant benefits to visual information
processing tasks (Hou et al., 2012). There are two major
ways in which visual saliency offers advantages: first, it allows
limited computing resources to be allocated to more important
information in images and videos; second, the introduction of
visual saliency during feature extraction is more consistent with
the requirements of human visual cognition.

Existing attention mechanism models can be divided into
bottom-up models and top-down models. The method of
extracting salient regions used in this paper is a bottom-up visual
attention model, known as the saliency model (Marques et al.,
2006; Fu et al., 2014). The saliency model is data-driven, such
that the influence of human judgement is not considered during
image selection. The model mimics the process by which objects
with distinctive characteristics are selected when people attend
to visual information; this occurs because areas of the image
with significant features easily attract attention. Visual saliency
is based on specific information in the image, including its static
features (such as color, brightness, outline, and texture) and its
dynamic features (direction of motion, and speed).

The FT Model
To generate the saliency map, points with larger saliency values
are selected as saliency points based on the FT model (Achanta

et al., 2009), which processes images in the frequency domain.
Generally, the frequency domain of images can be divided
into two frequency ranges: high frequency and low frequency.
The overall information of the image, such as the outlines of
the object, generally belong to the low-frequency range, while
the specific details of the image, such as the texture of the object,
belong to the high-frequency range. The algorithm used by the
FT model can be summarized in the following steps, as shown
in Figure 3: (1) Remove the details and noise of the image using
a Gaussian smoothing filter; (2) Convert the filtered image from
RGB color space to Lab color space to yield the converted image
with three channels (L, a, and b); (3) Calculate the average values
of each channel; (4) For each channel, obtain the Euclidean
distance between each pixel value and the average value of the
corresponding channel; (5) Finally, for each pixel, sum the values
within each of the three channels to build the saliency map.

When Gaussian smoothing is used to filter the image, the
selection of the threshold of the low and high frequency ranges
is particularly important. In the FT algorithm, wlc defines the
low-frequency threshold and whc defines the high-frequency
threshold. Because a large amount of low-frequency information
is present in the salient area of the image, wlc is set to a lower
value than whc in order to highlight salient objects. In addition,
the high-frequency component needs to be retained in order to
make the boundary obvious. However, noise and texture often
show very high frequencies, so it is necessary to cut off the
highest frequencies to avoid interference from noise and texture.
In summary, the use of a band-pass filter [wlc, whc] is necessary
to fulfill these requirements.

The difference of Gaussians (DoG) operator was used to
implement the filter function [38]. The formula of the DoG
operator is as follows:

DoG(x, y) = 1
2π

[

1
σ
2
1
e
−

(x2+y2)

2σ21 − 1
σ
2
2
e
−

(x2+y2)

2σ22

]

= G(x, y, σ1)− G(x, y, σ2)

(1)

where σ1 and σ2 are spatial constants that determine the spatial
frequency of the image. As shown in Figure 3, the filtered image
is then converted into Lab color space and the average of the
image in each of the L, a, and b channels is calculated to obtain
Lµ, aµ, and bµ. Finally, the generated saliency map S is defined
as follows:

S(x, y) =
∥

∥Iµ-Iwhc(x, y)
∥

∥

2
(2)

where Iµ is the average value of the Lab space of the original
image and Iwhc(x, y) is the pixel value at (x, y) of the image. ||.||2
is the L2 norm used to calculate the Euclidean distance between
Iµ and Iwhc(x, y) in Lab color space.

The FT model has two main advantages: it identifies salient
areas with exact boundaries, and outputs saliency maps at full
resolution. In Figure 4, for one example image, we compare
the corresponding grayscale image with the image generated
by the saliency model. This shows that the image processed

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2020 | Volume 14 | Article 568091

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu et al. Robustness Improvement of Visual Templates

FIGURE 3 | Flow chart of the FT model.

FIGURE 4 | (A) Raw picture. (B) The grayscale image. (C) The picture after saliency model processing.

by the FT model better reflects the boundary of the objects
in the image than the image processing used in the traditional
RatSLAM algorithm.

Visual Template Matching
As described above, after processing each image with the FT
model, a saliency map is obtained. The saliency map reflects
the overall information of the image, such as the outline of the
object and the basic areas composing the image. The intensity
of each column of the grayscale image is summed and then

normalized to obtain the visual template. Finally, the sum of
absolute differences (SAD) model (Zhang and Hu, 2015) is used
to determine whether the current scene is similar to the stored
template. The SAD model is based on the sum of absolute
differences and is defined as:

f (s, Ij, Ik) =
1

w− |s|
× (

w−|s|
∑

n=1

|I
j

n+max( s,0) − I
j

n+min( s,0)|) (3)
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FIGURE 5 | Trajectory diagrams of the experimental environments: (A) a playground; (B) the second floor of a library; (C) the mini square in front of the Training

Building, Soochow University, China.

FIGURE 6 | Activity of local view cells during the walk through the playground (Scene 1). (A) Template matching graph of RatSLAM. (B) Template matching graph of

FT model-based RatSLAM.

where s is the width of the intensity distribution to be compared,
w is the width of the visual template, and I is a one-dimensional
vector obtained from the grayscale image.

The visual templates generated by RatSLAM are not suitable
for environments with many similar scenes such as corridors and
offices (Zhou et al., 2017). However, visual templates based on
the FT model contain color and pixel intensity information, and
additionally retain the overall information regarding the objects
in the image more comprehensively. Thus, the robustness of
the visual templates could potentially be improved based on the
FT model.

EXPERIMENTS AND ANALYSIS

Experiment Setup
We used four data sets of indoor and outdoor scenes for
experimental validation. The first three environmental data sets
were collected at a playground, the second floor of a library,
and the mini square in front of the Training Building of the
Yangcheng Lake Campus, Soochow University, China. An Osmo
Pocket camera (DaJiang Innovations, Shenzhen, China) with a
field of view (FOV) of 80◦, a sampling frequency of 25Hz, and
a resolution of 1,920 × 1,080 was used to collect video data. For

the fourth data set, we used the open data set of an office in the
Fusionopolis Building, Singapore.

Scene 1: A Playground
To collect the data, we walked around the 400-m long
playground. Importantly, after returning to the starting point, it
was necessary to continue walking a short distance (∼10m) along
the original route to ensure loop closures in the collected data set.
A schematic diagram of the route is shown in Figure 5A.

Scene 2: the Second Floor of A Library
This path traversed the second floor of a library in a figure-of-
eight-shaped path, as shown in Figure 5B. As with the collection
of the playground data set, we continued to walk along the
original route a short distance (∼10m) from the starting point
to ensure loop closures.

Scene 3: the Minisquare in Front of the Training

Building
We walked a figure-of-eight-shaped path in the mini square that
differed from that of the second scene and additionally, this path
was collected outdoors. A schematic diagram of the trajectory is
shown in Figure 5C.
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TABLE 1 | Comparison of loop closure detection results.

Dataset Method Expected number

of loop closures

Number of

true positives (TP)

Number of

false positives(FP)

Number of

false negatives(FN)

Precision Recall

Scene 1 Traditional RatSLAM 11.0 2.0 12.0 9.0 14.3% 18.2%

FT model-based RatSLAM 15.0 3.0 1.0 12.0 75.0% 20.0%

Scene 2 Traditional RatSLAM 22.0 12.0 5.0 10.0 70.6% 54.5%

FT model-based RatSLAM 36.0 22.0 0.0 14.0 100.0% 61.1%

Scene 3 Traditional RatSLAM 64.0 12.0 3.0 52.0 80.0% 18.8%

FT model-based RatSLAM 70.0 24.0 0.0 46.0 100.0% 34.3%

Scene 4 Traditional RatSLAM 261.0 139.0 17.0 122.0 89.1% 53.3%

FT model-based RatSLAM 384.0 221.0 2.0 163.0 99.1% 57.6%

Scene 4: an Office in the Fusionopolis Building,

Singapore
We used an open data set to verify our proposed method. This
data set was collected in a typical office scene in Singapore
and was provided by Bo. Tian (Shim et al., 2014) in Sichuan
University, China.

Evaluation Criteria
The evaluation criteria used in this paper are precision and recall.
The precision is the ratio of the number of true positives (TP)
with the sum of TP and the number of false positives (FP).
Precision is defined mathematically as:

Precision =
TP

TP + FP
(4)

The recall is the ratio of the TP with the sum of TP
and the number of false negatives (FN). Recall is defined
mathematically as:

Recall =
TP

TP + FN
(5)

Experimental Results
Three data sets were collected with a handheld camera, while the
fourth one was an open data set that is publicly available. Our
proposed method was run on the four data sets, respectively,
to compare it with RatSLAM. We analyzed the experimental
results from the perspectives of local view cell activity and of the
experience maps generated by the traditional RatSLAM and FT
model-based RatSLAM methods. All experimental calculations
were performed on a Windows workstation with a Xeon-W2155
3.3 GHz CPU, an Nvidia Geforce RTX2080Ti graphics card,
and 128 GB memory. The performance of FT model-based
RatSLAM was evaluated by counting the change in the number
of visual templates over time and by assessing changes in the
experience maps.

Local View Cell Activity
Since visual templates stored in local view cells are used
to detect loop closures, which affect the generation of the

experience map, we first analyzed local view cell activity. FT
model-based RatSLAM compares the current visual scene with
the visual templates stored in local view cells. If the degree
of similarity exceeds the threshold, the corresponding visual
template is considered to be a successful match; otherwise,
a new visual template is created. The changes over time in
the visual templates obtained from our method are shown in
Figures 6–8, which correspond to the playground, the second
floor of the library, and the mini square in front of the Training
Building, respectively. These figures indicate the number of visual
templates corresponding to each frame of the video. As shown in
Figures 6–8, traditional RatSLAM generated more false matches
than FT model-based RatSLAM.

Before returning to the starting point, the number of visual
templates should theoretically increase monotonically, with no
loop closure because the scenes are always new. As can be seen
from Figure 6A generated by traditional RatSLAM, loop closure
was detected several times before the return to the starting point;
these are false positives that affect the accuracy of the experience
map. From Figure 6B based on FTmodel-based RatSLAM, it can
be seen that loop closure is successfully detected upon returning
to the starting point, but not that no loop closures are detected
before this.

A summarized comparison of the loop closure detection
results is given in Table 1. It can be seen from the Scene 1 results
that FT model-based RatSLAM not only correctly detects loop
closures a greater number of times than traditional RatSLAM, but
that it also reduces the number of FP. This is especially important
for the accuracy of the experiencemap, because the error between
the generated experience map and the actual path increases as the
number of erroneous loop closures increases.

In order to further evaluate loop closure detection
performance, we chose to walk in a figure-of-eight shape to
create a route with loop closures (Scene 2). The route followed is
shown in Figure 5, showing that ideally there are two trajectories
on which loop closures should be detected, namely path 1 (path
7) and path 5 (path 9) in Figure 5B, and path 1 (path 9) and path
2 (path 6) in Figure 5C.

As shown in Figure 7A, traditional RatSLAM detected loop
closures in three paths, one of which was unexpected. However,
FT model-based RatSLAM detected loop closures in two paths
as expected, as shown in Figure 7B. Compared with traditional
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FIGURE 7 | Activity of local view cells during the walk on the second floor of the library (Scene 2). (A) Template matching graph of RatSLAM. (B) Template matching

graph of FT model-based RatSLAM.

FIGURE 8 | Activity of local view cells during the walk around the mini square in front of the Training Building, Soochow University, China (Scene 3). (A) Template

matching graph of RatSLAM. (B) Template matching graph of FT model-based RatSLAM.

FIGURE 9 | Comparison of the results of the first three experiments. (A) Number of loop closures detected. (B) Number of false-positive loop closures.
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FIGURE 10 | Activity of local view cells during the walk through an office of the Fusionopolis Building, Singapore (Scene 4). (A) Template matching graph of RatSLAM.

(B) Template matching graph of FT model-based RatSLAM.

FIGURE 11 | The experience maps generated from the playground data set (Scene 1). (A) Experiment environment. (B) Visual odomerty. (C) Experience map based

on RatSLAM. (D) Experience map of FT model-based RatSLAM.

RatSLAM, the proposed RatSLAM method reduced the number
of false-positive loop closures. Similarly, the number of FP of
traditional RatSLAM was significantly higher than of FT model-
based RatSLAM in Scene 2. As can be seen from Figure 8,

traditional RatSLAM only detected loop closure in two of the

paths of Scene 3, which matches the actual path. However, the
trend in the number of visual templates at around frame 2,000
is relatively flat in Figure 8A, which means that RatSLAM may
have detected fewer loop closures than expected. By comparing
the loop closures detected in Scene 3, we can see that FT
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FIGURE 12 | The experience maps generated from the data set of the second floor of the library (Scene 2). (A) Experiment environment. (B) Visual odomerty. (C)

Experience map based on RatSLAM. (D) Experience map of FT model-based RatSLAM.

model-based RatSLAM was able to detect more loop closures
than the traditional RatSLAM system, which is consistent with
our analysis. It can be seen in Figure 9 that traditional RatSLAM
produces a greater number of mismatches, while FTmodel-based
RatSLAM reduces the number of FP and improves the matching
accuracy.

The open data set from the office in the Fusionopolis Building,
Singapore [23] was used to verify our results. The traditional
RatSLAM results in Figure 10A show discontinuous points on
the graph, indicating a high number of FP. In contrast for the FT
model-based RatSLAM results in Figure 10B, there are almost no
scattered points, meaning that there were fewer false matches of
the visual templates. The results of loop closure detection for the
first 1,000 frames are summarized in Table 1. This comparison
demonstrates that the FT model does play a role in reducing
mismatches.

Experience Map Comparison
The experience maps generated by traditional RatSLAM and
FT model-based RatSLAM corresponding to Scenes 1, 2, 3,
and 4 are shown in Figures 11–14, respectively. Comparing the

experience maps from the twomethods, it can be seen that the FT
model-based RatSLAM algorithm based on the saliency model
is significantly more adaptable and more robust in complex
environments.

Due to incorrect detection of loop closures before returning
to the starting point and missing detection of loop closures after
returning to the starting point in the playground (Scene 1),
the precision and recall of loop closure detection by traditional
RatSLAM were only 14.3 and 18.2%, respectively. As such, this
method produced an experience map for the playground with
large deviation, as shown in Figure 11C. Similarly, it detected
several erroneous loop closures, creating a distinct difference
between the experience map of the second floor of the library
and the actual path, as shown in Figure 12C (Scene 2). As
shown in Figure 13C (Scene 3), the experience map generated by
traditional RatSLAM detected fewer loop closures than expected,
while the experience map in Figure 14B (Scene 4) does now
show the expected coinciding of the two paths. In contrast, the
experience maps produced by FT model-based RatSLAM are
more accurate due to improvements in the precision and recall
of loop closure detection, as shown in Figures 11D, 12D, 13D,
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FIGURE 13 | The experience maps generated from the mini square data set (Scene 3). (A) Experiment environment. (B) Visual odomerty. (C) Experience map based

on RatSLAM. (D) Experience map of FT model-based RatSLAM.

FIGURE 14 | The experience maps generated from the office data set (Scene 4). (A) Raw odomerty. (B) Experience map based on RatSLAM. (C) Experience map of

FT model-based RatSLAM.

14C. These experience maps are more consistent with the actual
path traversed during data collection, which is due to the marked
effect of the proposed algorithm on loop closure detection. In
particular, it is worth noting that the precision of loop closure
detection in Scenes 2 and 3 increased to 100%.

As shown inTable 1, compared with traditional RatSLAM, the
accuracy of loop closure detection in FT model-based RatSLAM
is significantly improved and the recall is also slightly improved.
While there is still a certain number of missed detections of
loop closures from overlapping paths, this has less of a negative
impact on the experience map compared with wrong matches.
It is worth mentioning that FT model-based RatSLAM reduces

the number of mismatches while ensuring that recall does not
decrease; this improvement is crucial to the accuracy of the
generated experience map.

CONCLUSION AND FUTURE WORK

In this paper, the saliency model was applied to the RatSLAM
system to extract visual templates, in order to improve the
robustness of visual templates and the performance of the loop
closure detection algorithm. In order to test the effectiveness of
the saliency model, its performance was verified by comparing
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the effects on the experience maps generated in a number of
different environments. The experimental results showed that
visual templates based on the FT model significantly enhanced
the robustness of the brain-inspired SLAM system. These greatly
reduced the number of FP, improved the precision and recall
of loop closure detection, and resulted in a more accurate
experience map.

The experiments showed that the robustness of the visual
templates generated by the FT model were indeed improved,
as shown by the reduced number of mismatches. However, the
experimental analysis indicated several issues that would be
worthy of further investigation and improvement. First, there
were a number of missed matches because of camera tilt. The
extracted features are not rotatable in the same way as ORB
features, so matches between similar views may be missed; this
has a negative effect on the accuracy of the experience map. To
reduce the impact of camera tilts, the camera can be installed
on a more stable platform. In addition, the collected images can
be made more in line with those sampled by rodents by placing
the camera at a lower height on the robot platform, which would
make the method more convincing biologically. Second, during
the experiment, it was found that environments containing trees
are more prone to mismatch, which may relate to the features
extracted by the FT model. This indicates that other saliency
models may be more suitable for use in environments with trees.
The question of which saliency model is most suitable for a
given environment is one that is worthy of further discussion.
Finally, we only used a bottom-up attention model to extract
saliency maps from images in this paper; however, rodents use
both bottom-up and top-down attention models in combination

when they navigate. Therefore, in future, it will be necessary to
explore how navigation can be performed using both of these
attention models together.
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