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Microexpression is usually characterized by short duration and small action range,
and the existing general expression recognition algorithms do not work well for
microexpression. As a feature extraction method, non-negative matrix factorization can
decompose the original data into different components, which has been successfully
applied to facial recognition. In this paper, local non-negative matrix factorization is
explored to decompose microexpression into some facial muscle actions, and extract
features for recognition based on apex frame. However, the existing microexpression
datasets fall short of samples to train a classifier with good generalization. The
macro-to-micro algorithm based on singular value decomposition can augment the
number of microexpressions, but it cannot meet non-negative properties of feature
vectors. To address these problems, we propose an improved macro-to-micro algorithm
to augment microexpression samples by manipulating the macroexpression data based
on local non-negative matrix factorization. Finally, several experiments are conducted to
verify the effectiveness of the proposed scheme, which results show that it has a higher
recognition accuracy for microexpression compared with the related algorithms based
on CK+/CASME2/SAMM datasets.

Keywords: macro-expression, micro-expression, macro-to-micro transformation, feature extraction, non-
negative matrix factorization, CK+/CASME2/SAMM datasets

1. INTRODUCTION

Expression is one of the important ways for human to communicate emotion. In 1970s, American
psychologist Paul Ekman defined six basic expressions of human, namely, happiness, anger,
surprise, fear, disgust, and sadness. Facial expression recognition is to extract the specific states
from given images or video, then identify the psychological emotions of the recognized object
and understand its facial expressions. Expression recognition has many applications in psychology,
intelligent monitoring, robotics, etc. Moreover, sometimes people may disguise their emotion and
expression for various purposes. However, people cannot completely suppress their emotions under
external strong emotional stimulus. There are some subtle and fast facial actions, which were
first discovered and named “micro-momentary” expressions by Haggard and Isaacs (1966). Then,
Ekman and Friesen formally named them microexpressions (Ekman and Friesen, 1969). It is an
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uncontrolled expression, which can be classified into the six basic
emotions (Wu and Fu, 2010).

Different from the general expression, the microexpression
is only reflected in a few facial action units, and the duration
is about % to %s, which is difficult to detect. In addition,
microexpression usually appears when people try to cover
up their emotions. It is one kind of subconscious, inside-to-
outside, uncontrolled, and undetectable behaviors with naked
eyes. Because microexpression cannot be hidden, people can
exploit this kind of weak, partial, short-term behaviors to
acquire the hidden real emotions. Notably, microexpression
recognition has many valuable applications in psychology,
clinical diagnosis, business negotiation, interrogation, human-
robot interaction, and so on, but it needs special training to
master relevant recognition skills. In 2002, Ekman developed
microexpression training tool (METT) (Ekman, 2006) that can
train the recognition skills of the six basic emotions and other
kinds of expressions, such as contempt, pain, and so on. At
first, the recognition abilities of observers are tested through
METT, then related knowledge of microexpression recognition is
taught. After repeated training and consolidation, the recognition
accuracy of observers can be improved by 40%. Nevertheless, the
accuracy may be affected by various subjective factors, such as
mood or preconceived thinking of the observers.

Microexpression is weak, short term, and difficult to detect,
so the traditional expression recognition algorithms do not work
well at all for this task. Generally, microexpression recognition
can be divided into detection and classification. The former
is to determine whether there are microexpressions in an
image sequences, and detect the start/apex/end frames of a
microexpression. The latter includes feature extraction and
classification, which is similar to the general tasks of pattern
classification. Significantly, the feature extraction is to acquire
the abstract information from the data, which usually is some
vectors obtained by image processing. The related algorithms
can be used for extracting features, which can reflect the
microexpression action information and distinguish various
kinds of emotions. The feature classification is to train a classifier
on the obtained vectors, directly related to the recognition
accuracy, to distinguish the types of microexpression.

The main contributions of this paper are summarized as
follows: (i) A local non-negative matrix factorization (LNMF)
is developed to extract the features of apex frame on
microexpression, which exploits local properties of LNMF to
reflect the features of local action on microexpression. (ii) An
improved macro-to-micro (MtM) transformation algorithm is
proposed to augment the samples of microexpressions from
macroexpression data based on LNMF. (iii) The performance
of the proposed scheme is verified on CK+, CASME2, and
SAMM datasets, which can benefit this work on human-
robot interaction.

The rest of the paper is organized as follows. Related works are
discussed in section 2. In section 3, the overall scheme, including
theoretical derivation on LNMF and MtM algorithm design, is
presented. Section 4 provides the experimental process and result
analysis. Finally, we conclude this paper in section 5.

2. RELATED WORK

Local binary pattern (LBP) is a commonly used method for
extracting texture feature of images. LBP from three orthogonal
planes (LBP-TOP) is an extension of LBP in video data. Ojala
et al. (2002) and Zhao and Pietikainen (2007) acquired the
feature vectors of the whole video by extracting the XY, XT,
YT plane features of video. Yan et al. (2014) used LBP-TOP to
extract the features of cropped face video in CASME2, and take
support vector machine (SVM) as the classifier to recognize five
categories of expressions with an accuracy of 63.41%. To reduce
information redundancy and computational complexity of LBP-
TOP, Wang et al. proposed LBP six intersection points (LBP-SIP)
feature extraction algorithm (Wang Y. et al., 2014). Ben et al.
(2018) proposed the second-order descriptor hot wheel patterns
from TOP (HWP-TOP). It adopts 16 points on the inner and
outer circles for calculation to extract more abundant feature
information instead of eight points around the center pixel used
by LBP.

Optical flow method aims to quantify facial muscle actions by
calculating the motion speed of each pixel in the video. On this
basis, the optical strain that reflects the distortion caused by small
area motion can be further calculated. If the speed of a pixel in
the image is higher than that of the surrounding pixels, its optical
strain value will be higher, which can be used to detect the fast
and micromovement of muscles in microexpression recognition.
Liong et al. (2014) used the optical strain feature weights to
highlight the features of the moving area. Liu et al. (2016)
proposed the main directional mean optical flow (MDMO),
which takes into account the local facial spatial position,
statistical motion features, and has lower feature dimension to
improve the calculation efficiency. Liu et al. (2018) also proposed
the sparse MDMO to solve the problems that average operation in
MDMO may lose manifold structures in feature space. Moreover,
Wang et al. (2014a) took microexpression video as a fourth-order
tensor, and proposed the tensor-independent color space (TICS)
algorithm. They also extracted microexpression, and exclude
irrelevant images to conduct the recognition through low-rank
decomposition of samples (Wang et al., 2014b).

To determine the facial range of feature extraction, Liong
et al. (2018b) counted the action units corresponding to all
kinds of microexpressions. They found that the actions are only
concentrated in a few facial areas, especially in eyes and mouth. If
only the features of these three regions are extracted, irrelevant
facial information can be filtered out and detection accuracy
can be improved effectively. Therefore, this paper determines
the region of interests (Rols) of feature extraction through the
distance between inner eyes and mouth corners. As the objects
of feature extraction, most of the work directly calculate features
of the whole video segment (Chen et al, 2019; Cao et al,
2021), while the apex frame contains the main information of
microexpression (Li et al., 2018; Liong et al., 2018a). The apex
frame refers to the moment when the movement amplitudes
of the facial action units reach peak value in the duration of
microexpression. Obviously, only extracting the features of apex
frame can dramatically decrease calculating and eliminate the
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FIGURE 1 | The overall block diagram of the proposed scheme.

interference caused by irrelevant information in the video, which
is also the basis of this paper.

Matrix factorization is popular in dimension-reduction fields,
which has good physical significance. The original data are
expressed as the weighted sum of several bases, which is
transformed into a feature vector including weight coefficients
to realize perception of the whole from local parts. Principal
component analysis (PCA) and singular value decomposition
(SVD) are the classic matrix factorization methods. However,
the bases and coeflicients calculated by these algorithms contain
negative elements, which make the decomposition results not
well-interpreted. For example, it is not practical to decompose
face images into basic sub-images with negative components.
To solve this problem, Lee and Seung (2000) proposed the
non-negative matrix factorization (NMF) based on non-negative
constraints of matrix elements. Li et al. (2001) pointed out
that the bases calculated by NMF are redundant and not
independent. Hence, the local constraints were added during
calculation, that is, LNMF was proposed. The local action of
microexpression can be reflected by the local features of LNME,
which is also the reason why we adopt LNMF to extract features
of microexpression.

Nowadays, CASME (Yan et al, 2013), CASME2 (Yan
et al, 2014), CAS(ME)2 (Qu et al, 2016), and SAMM
(Davison et al., 2018a,b) are the widely used datasets for
microexpression recognition and classification. However, each
dataset has only hundreds of samples, and the number of
different microexpressions is seriously unbalanced, which is not
sufficient to train a classifier with better generalization ability,
especially for deep neural network (DNN). Naturally, researchers
hope to train microexpression classifiers by means of numerous
macroexpression datasets (Wang et al., 2018; Peng et al., 2019;
Zhi et al,, 2019). Jia et al. (2018) proposed an MtM algorithm,
which uses macroexpression data to generate microexpression
samples by constructing corresponding relationship between
them. The samples generated by this algorithm are closer to
the truth, so it can yield better generalization. However, this

algorithm is not suitable for the non-negative features. In this
paper, we propose an improved MtM transformation algorithm,
which can meet non-negative properties.

3. LNMF AND MTM TRANSFORMATION

The overall scheme is shown in Figure 1. The first row (from
left-to-right): the key points of human face are located to
cropped eyes and mouth as Rols, then the optical flow features
of Rols are calculated to detect the apex frame. The second
row (from right-to-left): the features of apex frame is extracted
from the microexpression videos using LNMEF, whereas the NMF
is used for extracting the features of macroexpression images.
Combined with these two, the proposed MtM transformation is
used to increase the samples of microexpression considering the
corresponding relationship between macro and micro features.
Finally, the classifier based on SVM is trained with all the
augmented microexpression samples. In the following, we
will discuss the key problems of the proposed scheme about
Rols selection, apex frame detection, LNMF principle, and
MM transformation.

3.1. Rols Selection

To determine the Rols of eyes and mouth regions, we use
open source machine learning toolkit DLIB (King, 2009; Ren
et al., 2014) to locate the key points of the first frame in the
video including microexpression. It should be noted that the
position of key points can be assumed unchanged because the
face displacement is very small in video. Therefore, we only detect
the key points on the first frame. As shown in Figure 2, we use the
distance of inner eyes/mouse corners Deye/Dypoush»> respectively,
to determine the Rols. The distance between the left and right of
bounding box of the eyes is Deye/4, the downside is Deye/5 away
from the lowest point of the eye, and the topside is located on the
highest point of the eyebrow. The left and right of the bounding
box of the mouth are D54, /5 away from the mouth corners, the
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FIGURE 2 | The region of interests (Rols) of facial expression (Yan et al., 2014).

top is Dyyouen /4, and the bottom is D,yy4,4, /7 from the highest and
lowest points of the mouth, respectively.

3.2. Apex Frame Detection
The optical flow of a pixel refers to its displacement between
two frames, which includes both the horizontal and vertical
displacement. The optical strain is calculated as the difference
of optical-flow values between pixels, which reflects the
deformation degree of a non-rigid body during the motion. The
microexpression is the micro movement of facial muscles, and
the distortion caused by the movement is reflected by the higher
optical strain value of this region.

Let vy and v, be the optical flow in horizontal and vertical
directions, and the definition of optical strain is expressed
as follows:

1,9 av.
L oemm sl
Sm_[ 1,0v v, ks ] )
ey =555 +3) gy=7%)
Xy T 2% ox dy oy
8:\/gfx+s)%x+8§y+£}%y 2)

where &, contains the normal and tangential strain of the pixel,
and ¢ is the optical strain value of the pixel.

The pseudo codes for the binary search algorithm to detect the
apex frame (Liong et al., 2015) are shown in Algorithm 1. First,
we calculate the sum of the optical strains of the pixels in each Rol
of all frames and take them as the apex frame range in Iterationl.
Then, we separate the candidate frames into two average parts,
and compare the sum of the optical strains values. The larger one
will be the candidate range for the next iteration. Afterward, we
repeat the calculation until one frame is converged, that is, the
detected apex frame.

Algorithm 1: Binary Apex Frame Detection.

input: {gf [ f=1,...N}: Optical strain of every frame
output: n: Apex frame No.

1: function

2 result < 0

3 lo <0

4 hi <~ N

5: while o < hi do

6: mid < (lo + hi)/2

7 suml < sum(€py, . . . Emid)
8 sum2 < sum(€pids - - - » Epi)
9: if suml < sum?2 then
10: lo < mid
11: else
12: hi < mid
13: end if
14: end while
15: return lo

16: end function

3.3. Local Non-negative Matrix

Factorization
The definition of NMF is expressed as Equation (3):

D= WH (3)

where D € R™*" is data matrix; H € R"™™" is coeflicients matrix,
in which each column is one sample; and W € R™*" is base
matrix, in which each column is a base. Define Y = WH. NMF
takes KL divergence as loss function to measure the effect of
factorization as follows:

.
D(X||Y) = ) (xjlog y—f — xij + ¥) (4)
ij Y

Here, NMF aims to solve the following optimization problem:
min D(X||WH)
W.H
. ©)
st.W,H > O,Zwij =1Vj

1

In the optimization process, only non-negative constraints are
imposed without local constraint to W. The learned bases
are redundant, and the samples cannot be decomposed into
individual components. Nevertheless, the LNMF can solve this
problem, where three constraints are added: (i) The base should
be indivisible, so the sum of squares of elements in the base
should be as small as possible. (ii) The bases should be as
orthogonal as possible to reduce redundant information. (iii) It
is hoped that the most important information in the original
data will be retained in W, and the sum of squares of H column
elements will be as large as possible. Define U = WTW and
V = HHT, then the optimization function of LNMF is expressed
as follows:

min D(XIWH) + ) ui— B vi) (©)

i,j
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-
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FIGURE 3 | Base matrix of local non-negative matrix factorization (LNMF) for apex frame.

where « and B are constants >0. LNMF iteratively solves

Equations (7-9).
/ D
— T
H= Hx*x(W WH) (7)

(W s (355 HD)i

8
>y ®)

Wkl =

Wkl
Zk Wki

where “product” means Hadamad product and “division” means
matrix division calculation element by element.

The base matrix W obtained from LNMF is shown in
Figure 3. It can be seen that each base is sparse, only representing
the small area of the face. The microexpression is composed
of these areas, which further verifies that LNMF is suitable for
microexpression feature extraction. The columns of H are the
extracted features. We use LNMF for the three Rols of human
face, that is, left/right eyes and mouth, respectively. Finally, we
concatenate the three H as the features of samples. The advantage
is that we can choose different feature dimensions for eyes
and mouth to extract more sufficient features for face action.
Obviously, more complex movement pattern of eyes corresponds
to a higher dimension.

9)

Wkl =

3.4. Macro-to-Micro Transformation
The fewer samples in the existing microexpression datasets
are usually insufficient to train a classifier with good

generalization. Jia et al. (2018) proposed an MtM transformation
algorithm, which uses macroexpression data to generate new
microexpression samples. The basic principle is described
as follows:

1
[Xr eIf X f]

yl ... ym
where X/Y represents macro-/microexpression feature sets,
respectively; X can be decomposed into X;or and X,pe; and X'lref

M

and Y’ represent the same type of microexpression emotions. The
SVD of M is given as:

M = USVT (10)

where U can be expressed as:

] (11)

where R,/R, corresponds to macro-/microexpressions in M,
respectively. It is used to calculate the weighted sum of column
vectors of R, to get Xief (the ith sample in X,), and the sum of
column vectors of Ry, with same weights to get Y; (the ith sample
in Y;), respectively. That is, if we use Ry to get a macroexpression
feature, we can also use R, to get a microexpression feature. So
we have:

Xprobe =RH (12)

Yoew = RyH (13)
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where H is weight matrix, Y., is new microexpression feature
samples, and the microexpression emotion is same as each
column of Xy,op-

Because the new feature samples generated by this algorithm
do not have non-negative properties, they cannot be used for
feature extraction based on LNMF. The reasons include that U
is an orthogonal matrix, and in order to meet the requirements
of orthogonality, it is impossible that every element is a non-
negative number, namely H must have negative elements. In
addition, the method deriving H involves the calculation of
inverse matrix. When the determinant of matrix is close to
0, the result is not accurate. To acquire the non-negative
features,Ry, Ry, and H must be non-negative. Let R, be the NMF
features of macroexpression, and R, be the LNMF features of
microexpression. H is derived by NMF method, so we can get
an improved MtM algorithm. The pseudo codes of the proposed
algorithm are shown in Algorithm 2.

Algorithm 2: Macro-to-Micro Transformation.

input: X: features of macroexpression; Y: features of
microexpression
output: RES: new features of microexpression
1: function
2: RES < {}

3 for all emo do

4 Xemo < extract features of emo from X;

5 Y. < extract features of emo from Y;

6: split Xeimo into Xeyo,rer a0d oo probe

7 calculate H,,,, using Equation (16), iteratively
8 Yuew < YemoHemo

9 RES < RES|J Yew

end for;

11: return RES

12: end function

—_
IS

Let X.mo represents the macroexpression NMF feature set of
emo emotion, which is deposed into Xeyo,rer and Xeyo prove- Let
Yemo represents the LNMF feature sample set of microexpression,
and the columns number is same as X;y,,rf- Then we use Xeo,ref
to derive the linear representation of Xeyo probe:

Xemo,probe = Xemo,refHemo (14)

(15)

Yemo,new - Yemo Hemo

Equation (16) solves Hey,, from Equation (14) with NMF formula
of fixed W:

[ macro ]TXmacro
emo,ref emo,probe

macro macro
Xemo,reermo,prabe

Hema = Hemu * (16)

Hemo

4. EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we will evaluate the proposed scheme, including
experiment overview, SVM classifier selection, dimension

optimization on LNMEF, experiments on CK+/CASME2/SAMM
datasets, and result analysis.

4.1. Experiment Overview

In general, researchers often take the predicted emotion classes of
microexpressions as recognition objects (Jia et al., 2018), such as
disgust, happy, sadness, surprise, and so on. We also adopt this
approach. However, it is worth noting that Davison et al. (2018a)
and Guo et al. (2019) classify microexpressions using facial action
units, instead of predicted emotions to remove the potential bias
of human reporting.

Next, we will validate the proposed scheme based on CK+
macroexpression dataset (Kanade et al, 2000; Lucey et al,
2010), CASME2 (Yan et al., 2014), and SAMM (Davison et al.,
2018a,b) microexpression datasets. In the experiments, the SVM
classifier is used for classifying microexpressions. The optimized
dimension on LNMF can contribute to the recognition accuracy
of microexpression. The pretest on CK+ is to verify that
macroexpression features extracted by NMF are suitable for MtM
transformation. The tests on CK+/CASME2 and CK+/SAMM
validate that the proposed MtM transformation can improve
the recognition accuracy and generalization. The algorithm
evaluation compares the performance of the proposed MtM
algorithm with original MtM/MDMO/TICS on CASME2, and
SA-AT/ATNet/OFF-ApexNet on SAMM.

4.2. SVM Classifier

We adopt the SVM classifier from the Sklearn toolbox based
on LIBSVM (Chang and Lin, 2011) to test the macro- and
microexpression recognition accuracy. In training phase, the
leave-one-sample-out (LOSO) cross-validation is adopted. For
each fold, all samples from one subject are used as a testing
set and the rest is for training. The final recognition accuracy
is the average of five test runs. Microexpression recognition
is a multiclassification problem. We use one-vs-one trajectory
based on SVM binary classifier to train one SVM between any
two classes. If the sample includes n classes, then we have n %
(n — 1)/2 SVM. The classification result is determined by all
the SVM voting together. To classify the linearly inseparable
microexpression, we adopt poly after evaluating sigmoid, radial
basis function (RBF), and poly kernel functions. Its definition is
expressed as Equation (17).

K(xi, %) = (yx!xj + a)? (17)

where x;,x; are the feature vectors, and y,o,d are
preset hyperparameters.

Remark 1. We acquire the optimized parameters about SVM
empirically, which are y = 4,0 = 0,d = 4 for CASME2,
and y = 4,00 = 0,d = 1 for SAMM. We just compare the
final recognition accuracy with the related references, where the

detailed parameter values about SVM cannot be found.

4.3. Dimension on LNMF

If the dimension is too small, microexpression features cannot
be decomposed into various detailed components based on
LNMF. While the dimension is too large, the features will be
too scattered. We determine the optimized value through prior
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TABLE 1 | Dimensions and recognition accuracy on local non-negative matrix
factorization (LNMF).

Dimension on eyes

40 50 60 70
g 60 0.694 0.701 0.692 0.720
g 70 0.708 0.698 0.702 0.702
s 80 0.726 0.706 0.707 0.697
.§ 90 0.700 0.690 0.700 0.680
é 100 0.719 0.696 0.707 0.706
[a]

Optimal value is bold.

confusion matrix

disgust 10 - 5
happy Z 0 5
sadness 14 2 55 10 3

surprise 8 0 i 3
fear 15 7 11 7 38

T T T T T

< ) S

S &
& e FH S

FIGURE 4 | Confusion matrix of macroexpression recognition on CK+.

testing and comparing with different dimension setting of eyes
and mouth. As shown in Table 1, the optimized dimension is
40/40/80 (left/right eyes and mouth) based on CASME2 with a
recognition accuracy of 72.6%. Adopt this same approach, we get
the optimized dimension 120/120/110 based on SAMM with a
recognition accuracy of 74.68%.

4.4. CK+-Based Pretest

The precondition for MtM transformation is that
macroexpression features have better distinguishability. To
validate this, we first calculate the weight coefficients of
macroexpression, and then use them to extract the features
of macroexpressions based on NMF. The image resolution of
CK+ is 48 x 48. We use NMF of 200 dimensions to acquire the
features directly. The confusion matrix about macroexpression
recognition is shown in Figure4, with a high accuracy of
83.8%. It shows that macroexpression features extracted

confusion matrix
disgust 2 5 2 0 1
happy 5 37 0 6 0 14
sadness4{ 7 0 5 2 0 0
surprise{ 5 7 4 33 0 1
fear{ 1 2 0 1 0 0
repression 4 11 15 0 =] 0 D
& ) o & e &
6\(,‘90 ‘@QQ b(\e ‘Q“\ & z‘q‘a\
P & @Q\
FIGURE 5 | Confusion matrix of microexpression recognition on CASME2
(without new samples).

by NMF are suitable for MtM transformation to augment
microexpression samples.

4.5. CK+/CASME2-Based Test

First, the basic test only focuses on apex frame recognition,
LNMF feature extraction, and SVM classifier on CASME2.
The Rols of microexpression are determined according to the
distance between inner eyes and mouth corners. It is necessary
to normalize the size of eyes to 80 x 90 and mouth to 70 x 150.
The 40/40/80 dimension on LNMF is applied to two eyes and
mouth regions of samples in CASME2. Three types of features
are concatenated in series as the features of CASME2 samples, so
the final dimension is 160. Then, the classifier based on SVM is
used to test the recognition accuracy by LOSO cross-validation.
As shown in Figure 5, the confusion matrix of microexpression
with a recognition accuracy of 68.9% (without new samples from
our MtM transformation). It will be our baseline compared with
the next optimized test.

Second, the optimized test is carried out with the proposed
MtM transformation base on the aforementioned basic test.
Considering that CK+ contains anger, contempt, disgust, fear,
happy, sadness, and surprise expressions, CASME2 includes
disgust, happy, sadness, surprise, fear, repression, and so on.
To compare with (Jia et al., 2018) under equivalent conditions,
we adopt the same emotions, that is, disgust, happy, sadness,
surprise, fear, and repression. In CK+, there are 792 samples
labeled as disgust, happy, sadness, surprise, and fear expressions.
Moreover, half of the expression samples are separated as
Xemoref a0d Xemoprove for subsequent MtM  transformation.
There are only 156 samples in CASME2, so we double them
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to 312 through mirroring. For one-to-one correspondence
between microexpression in CASME2 and macroexpression in
CK+, we use the samples in CASME2 repeatedly to match

confusion matrix

disgust 4 2 = 0 2
happy{ 6 42 0 6 0 10
sadness{ 5 0 7 2 0 0
surprise{ 6 6 4 33 0 1
fear{ O 0 0 0 4 0
repression 1 11 14 0 1l 2 26
T T T T T T

> ] L2 S N

90})‘4 \@QQ\\ 6&‘9 < & - &°

& P & @Q@

FIGURE 6 | Confusion matrix of microexpression recognition on
CK+/CASME2 (with new samples).

confusion matrix

Positive 33.0 17.0 2.0

Negative 25.0 18.0
surprise 6.0 2150 3.0
T T T
é\@\e .53\6 Q_&z
® & &

FIGURE 7 | Confusion matrix of microexpression recognition on SAMM
(without new samples).

macroexpression samples in CK+. By this way, we can acquire
312 original samples and 396 new samples (total of 708) for
microexpression recognition. After MtM transformation, we
get more microexpress samples, including original, mirrored,
and new from MtM transformation. It can contribute to
train a better SVM classifier. As shown in Figure6, the
recognition accuracy improves about 3.8-72.7%, compared with
Figure 5. It can be seen that the recognition accuracy of happy,
sadness, and fear has increased significantly, while surprise
and repression unimproved evidently. The reasons actually
lie in some similarities, such as eyebrow raising movements
(Guo et al,, 2020) for surprise, disgust, happy, and sadness
expression, and similar cheek movements for repression, disgust,
and happy. These similarities cannot be distinguished only
through the LNMF features of apex frame, which is a limitation
to our algorithm at present, but it can be one of our
future working.

However, we only select the original 312 samples in CASME2
for testing, instead of the newly augmented samples (only for
training), to avoid distorting the recognition accuracy. Although
larger number of new samples can increase the final recognition
accuracy, it is not consistent with the fact. We double the
samples through mirroring only in training set. When using
LOSO cross-validation, it is necessary to exclude the mirrored
samples for testing to prevent the false high accuracy caused by
two similar samples.

4.6. CK+/SAMM-Based Test
There are totally 159 samples in SAMM dataset (Davison
et al,, 2018b), which includes seven types of emotions, such

confusion matrix

Positive - 36.0 14.0 2.0

Negative 19.0 19.0
surprise 6.0 11.0 130
T T ]

FIGURE 8 | Confusion matrix of micro-expression recognition on CK+/SAMM
(with new samples).
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TABLE 2 | Recognition accuracy of different algorithms on CK+/CASMEZ2.

Our MtM Original MtM MDMO TICS

0.726 0.655 0.572 0.618

Optimal value is bold.

TABLE 3 | Recognition accuracy of different algorithms on CK+/SAMM.

Our MtM SA-AT ATNet OFF-ApexNet

0.733 0.549 0.701 0.682

Optimal value is bold.

as anger (57), sadness (6), fear (8), others (26), surprise (15),
disgust (9), contempt (12), and happiness (26). To compare
performance under equal conditions, we divide the emotions into
positive (happiness), negative (anger, sadness, fear, disgust, and
contempt) and surprise as the same as Liong et al. (2019), Peng
et al. (2019), and Zhou et al. (2019).

Figure 7 shows the confusion matrix of microexpression
with a recognition accuracy of 66.54% (without new samples).
Here, only the features on the original and mirrored samples
are extracted from SAMM based on LNMF directly, then
SVM classifier with LOSO cross-validation is used to classify
the microexpressions.

Compared with Figure 7, it shows a recognition accuracy
of 73.3%, and increased by 6.76%, as shown in Figure8.
Especially in the surprise emotion, its recognition accuracy
improved quite a lot with dramatically augmented samples.
Here, similar with the experiment on CASME2, three types of
samples are used to train the SVM with better generalization
in this experiment, including original, mirrored, and new from
MtM transformation.

4.7. Algorithm Evaluation

We evaluate the proposed MtM algorithm by comparing it
with the original MtM (Jia et al., 2018), MDMO (Liu et al,
2016), and TICS (Wang et al, 2014a) based on CASME2,
respectively. As shown in Table 2, the proposed MtM algorithm
has better performance with a recognition accuracy of 72.6%.
Therefore, LNMF can extract more accurate features, and MtM
transformation can expand the training samples significantly to
prompt the SVM classifier to have better generalization.

As for SAMM, we evaluate the proposed MtM algorithm by
comparing it with SA-AT (Zhou et al., 2019), ATNet (Peng et al.,
2019), and OFF-ApexNet (Liong et al., 2019), respectively. As
shown in Table 3, the proposed MtM algorithm also has better
performance with a recognition accuracy of 73.3%.
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