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Visual-guided locomotion for snake-like robots is a challenging task, since it involves not

only the complex body undulation with many joints, but also a joint pipeline that connects

the vision and the locomotion. Meanwhile, it is usually difficult to jointly coordinate these

two separate sub-tasks as this requires time-consuming and trial-and-error tuning. In this

paper, we introduce a novel approach for solving target tracking tasks for a snake-like

robot as a whole using a model-free reinforcement learning (RL) algorithm. This RL-based

controller directly maps the visual observations to the joint positions of the snake-like

robot in an end-to-end fashion instead of dividing the process into a series of sub-tasks.

With a novel customized reward function, our RL controller is trained in a dynamically

changing track scenario. The controller is evaluated in four different tracking scenarios

and the results show excellent adaptive locomotion ability to the unpredictable behavior

of the target. Meanwhile, the results also prove that the RL-based controller outperforms

the traditional model-based controller in terms of tracking accuracy.

Keywords: snake robot, target tracking, reinforcement learning, motion planning, visual perception

1. INTRODUCTION

Inspired by real snakes, snake-like robots are designed as a class of hyper-redundant mechanisms in
order to achieve the agility and adaptability of their biological counterparts. Their long and narrow
bodies with many degrees of freedom (DOF) enable them to perform diverse tasks that could never
be carried out by other kinds of mobile robots, such as search and rescue in disaster scenes (Evan,
2017), complex teleoperation in space (Walker and Hannan, 1999), and even minimally invasive
cardiac surgery (Webster et al., 2006). However, this high level of flexibility also corresponds to
a complex control task involving the internal regulation of body joints and external interaction
with the ground, in which model-based methods usually fail to control the robots adaptively in a
dynamically changing environment.

Vision-guided locomotion, as one of the essential skills for moving in changeable scenarios,
is a must-have capability for snake-like robots, to ensure that they can be deployed in an
unattended environment by human operators. With the help of the visual information, the
snake-like robots can solve more complex and realistic tasks, such as target tracking and obstacle
avoidance. Especially in field operations, such as disaster rescue tasks and surveillance tasks,
the target tracking capability can greatly improve the performances of the snake-like robots.
Yet this kind of locomotion control still remains a challenging task for snake-like robots, since
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it involves not only the locomotion but also the target
information obtained by cameras. For controlling the
locomotion, different types of methods have been studied
including the sinusoid-based methods (Hirose, 1993), CPG-
based methods (Bing et al., 2017), and the dynamics-based
methods (Miller, 1988). However, none of these methods can
be used directly to perform vision-based tracking tasks. Such
tracking tasks require the robot to be agile and adapt to their
target trajectories with unpredictable changes in velocity or
direction of travel, which is extremely challenging for traditional
model-based methods. Our proposal is completely different as
it tackles the object tracking and camera control pipeline in an
end-to-end manner, based on reinforcement learning.

Strategies based on Reinforcement Learning (RL) are
promising solutions for performing target tracking for a snake-
like robot. This is because a RL-trained controller can take
the visual image directly as the input, while simultaneously
fully exploring the locomotion capabilities compared with
model-based methods. This is particularly suitable for snake-
like robots with redundant degrees of freedom. Although RL-
based methods have been adopted to control mobile vehicle
platforms (Morbidi and Mariottini, 2013; Yun et al., 2018; Luo
et al., 2019), the effectiveness of such methods for generating
agile steering motions for snake-like robots has, nevertheless, not
yet been studied extensively, especially when interacting with the
environment. The reasons are 2-fold. First, the steering control
for snake-like robots is complex, especially when it comes to the
sudden change in velocity or direction of travel, as this requires
the coordination of bodies with redundant degrees of freedom
from one moving pattern to another in a short time. Second,
when traditional methods are used on mobile platforms, target
tracking is usually divided into tracking and control sub-tasks,
which makes it difficult to tune the pipeline jointly, especially
considering the aforementioned motion barrier for snake-like
robots. To cope with this hard-to-predict tracking andmovement
complexity, the RL-based control strategies need to map the
visual inputs to the joint space directly, in order to perform
the corresponding motions, and must operate with adequately
defined reward functions to train a policy successfully. Hence, the
design of a target tracking controller for snake-like robots based
on RL is challenging.

To design a target tracking controller for snake-like robots,
this paper proposes a RL-based strategy. Our main contributions
to the literature are summarized as follows. First, we offer
a novel alternative to solving the target tracking task for a
snake-like robot via reinforcement learning. The learned policy
directly transforms the external and internal observations to a
sophisticated motion pattern for performing perception-action
coupling tasks. It is worth to note that this RL-based method
can be applied in different types of snake-like robots instead
of designed solely for the one used in this work. Second, we
propose a customized reward function that takes contiguous
distances into calculation. With this reward design, the learned
locomotion successfully solves adaptive target tracking tasks,
and, more surprisingly it also learns the ability to keep
the target within its visual field, even though this behavior
is not specifically rewarded. Third, we propose a tracking

accuracy metric that takes both the distance and direction into
consideration. Based on this metric, we demonstrate that the
learned locomotion outperforms the model-based locomotion in
terms of tracking accuracy.

2. RELATED WORK

As our work is related to the perception-driven locomotion of
snake-like robots and perception-driven algorithms based on
reinforcement learning, we briefly review the state-of-the-art
research on both aspects in the following.

2.1. Vision-Based Snake-Like Locomotion
Trajectory or target tracking of snake-like robots is important
and operators usually control their locomotion by indicating the
expected direction of its head module (Kamegawa et al., 2004;
Fukushima et al., 2012; Yamada et al., 2013; Tanaka and Tanaka,
2015). Under the velocity constraints, which prevent the body
from slipping sideways, trajectory tracking locomotion control
of snake-like robots has been investigated (Matsuno and Mogi,
2000; Prautsch et al., 2000; Transeth et al., 2007; Ishikawa et al.,
2009; Tanaka and Matsuno, 2014). Liljeback proposed a straight
line path-following controller of a planar snake-like robot under
the Line-of-Sight (LOS) guidance law, but the robot’s head could
not track the desired trajectory (Liljeback et al., 2011). Matsuno
derived a dynamic model to avoid the singular configuration
of the robot body. Using this control law, their snake robot
can accomplish trajectory tracking of the head module without
converging to a singular configuration (Matsuno and Sato, 2005).
However, their results were only tested on a sinusoid-like track
and this dynamics-based method may not adapt to unknown
scenarios with changing dynamics. Similar ideas can also be
found in Tanaka et al. (2015) and Huang et al. (2017). Xiao
performed autonomous locomotion in a known scene and the
positions of the snake-like robot and the obstacles were acquired
from external web cameras (Xiao et al., 2015). This method,
in fact, is a trade-off idea since they could not use the built-in
camera in the snake-like robot due to its undulating locomotion
pattern. In fact, there are few research efforts about the onboard
vision-based locomotion control of snake-like robots, since the
undulation of the body cannot provide a stable base for vision
sensors. Bing et al. (2019a) proposed an end-to-end target
tracking for snake-like robots based on spiking neural network.
However, the network controller only outputs the steering signals
and the locomotion itself is further generated with model-
based methods. The robot “IRS Souryu” equipped with a ToF
camera and 3D range sensors performs real-time localization and
mapping tasks in a rubble environment (Ohno et al., 2006). A
semi-auto snake-like robot with a B/W camera and a structured
light sensor was investigated to perform a localization task
of a pole, navigate and then climb it (Ponte et al., 2014). A
slithering gait that specially designed for snake-like robots to
perform target tracking tasks is introduced in Bing et al. (2017).
A detailed survey about perception-driven and obstacle-aided
locomotion for snake robots can be found in Sanfilippo et al.
(2017).
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2.2. RL-Based Tracking
As a principle approach to temporal decision-making problems,
RL-based approaches have been used for solving visual object
tracking tasks that aim at finding the target position in
contiguous frames and whereby steering the locomotion of an
mobile agent. Gaskett designed a mobile robot that can perform
visual servoing and wandering behaviors through a Q-learning
method (Gaskett et al., 2000; Garcia-Aracil et al., 2011). The
work clearly demonstrated that a direct mapping from image
space to actuator command using RL is a promising method.
Similar work is also given in Asada et al. (1996), Takahashi et al.
(1999), Busquets et al. (2002), and Hafner and Riedmiller (2003).
Miljkovic presented a novel intelligent visual servo controller
for a robot manipulator using RL (Miljković et al., 2013).
Based on their control scheme, the performance of the robot is

FIGURE 1 | Target tracking scene for a snake-like robot.

improved and is able to adapt to the changing environment. In
the recent ViZDoom platform for visual reinforcement learning,
they provided two basic scenarios: a basic move-and-shoot bot
and a maze-navigation bot. Yun developed a reinforcement
learning scheme to utilize labeled video sequences for training
their action-driven tracker (Yun et al., 2018). In Ding et al.
(2018), a partial RL based tracking algorithm was proposed to
achieve adaptive control of a wheeled mobile robotic system
working in highly complex and unpredictable environment. The
controller required less calculation time than other optimization
technologies and exhibited higher accuracy at the same time.
As far as we are aware, to date, there have been no studies
that employ reinforcement algorithm to control snake-like robots
for performing vision-based locomotion, except for one of
our previous research that used RL to design energy-efficient
gaits (Bing et al., 2019b).

3. MODELS AND TASKS

This section first introduces the models of the snake-like
robot. Then, the target tracking task is presented, together with
the target tracking metric for evaluating the performances of
different algorithms.

3.1. Models
The target tracking scene is modeled and simulated in
MuJoCo (Todorov et al., 2012), in which a red ball is used as the
target and a snake-like robot is the tracker (see Figure 1). The
easily detectable sphere has a radius of 0.2 m and is placed in
front of the snake at the distance of 4m. The robot is inspired by
the ACM snake-like robot (Hirose, 1993), which uses eight joints
and nine identical modules. A head camera is used as the visual
system for the snake-like robot, which is positioned in the center

FIGURE 2 | Each of these four diagrams visualizes one of the testing tracks. The tracks define the trajectory of the target. The black dots indicate the start positions

of the track. Only a limited length is displayed because the tracks are continuing. The first three figures show the line, zigzag, and sine track, respectively. The last

sub-figure gives an example of a random track.
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of the first head module. Due to the camera position and view
volume, the ground area in front of the robot is clipped during
rendering. The purpose of this camera is to obtain information
of the moving target. More details about the model of the robot
can be found in Bing et al. (2019b).

3.2. Tasks Description
In our target tracking task, the snake-like robot has to follow a
target while maintaining a certain distance from it. The target
moves with a specified velocity vt = 0.3 m/s on the trajectories
of random tracks with constrained conditions. The random-
tracks consists of short straight forward sections linked by abrupt
random direction changes with angles between −60◦ and 60◦. A
random seed is used to generate arbitrarily random tracks during
the training process.

For evaluating the performances of the controller, we also
design four predefined tracks for testing as shown in Figure 2.
The line track is used to test a simple forward locomotion and is
therefore the easiest. For testing the steering behavior, the wave
track offers a continuous curve where the robot has to alternately
change its steering direction. A modified sinus wave defines the
wave track. The zigzag and random track scenarios test the robot’s
capability to handle abrupt directional changes. The zigzag track
is defined by alternating abrupt left and right turns of 60◦. The
random track consists of short straight forward sections linked by
abrupt random direction changes with angles between −60◦ and
60◦. Heess et al. (2017) described that starting with easier tasks
for training supports a faster learning process in RL. Thus, all

the tracks have a short straight segment at the beginning, which
enhances the learning process because it is easier to move straight
forward at the beginning of a training process.

3.3. Tracking Metrics
As illustrated in Figure 3, the location of the target at time t can
be represented as XT(t) = (xT(t), yT(t)) in the global frame of
reference RG . Similarly, let the position of the snake-like robot
at time t be denoted by XF(t) = (xF(t), yF(t)). For simplicity, we
discretize the time with steps of δt = 0.01ms and use the notation
n to refer to the nth time step. Let d(n) = ||XT(n) − XF(n)||2
be the distance between the target and the robot at time-slot n,

where || · ||2 denotes the L2 norm. In addition, θT = arctan
yT (t)
xT (t)

represents the global angle of the target and θF = arctan
yF(t)
xF(t)

is

the angle of the head module in RG . Then, the absolute relative
angle between the head and the target φt can be calculated as

φt = |θT − θF| (1)

An expected tracking is to minimize the distance difference from
d(n) to desired distance dt and aims at the target in the middle
of the field of view (FoV) to greatest extent. Thus, the Averaged
Tracking Error (ATE) is defined as

ATE =

N
∑

i=0

(

|d(n)− dt|

dt
×

φt(n)

φtmax

)

×
1

N
, (2)

FIGURE 3 | An overview of the used angles between the camera and the target. It shows the first module and the target with their corresponding relative angles from

a top view perspective. Here, the head to target angle φt has a value of 30◦. The global angle of the head θF is 10◦. The target position is at (xT , yT ) and has a

Euclidean distance d to the camera position (xF , yF ).
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FIGURE 4 | The overall architecture of the RL controller with the details of the observation space and the action space.

FIGURE 5 | This figure shows the visual information of the target at the distance of 4.0 m with 30◦ on the left. The left figure is the original image with 1, 685× 1, 050

from the sensor. The middle figure is rendered with 32× 20 pixels. The right array of pixels from the 10th row is used to estimate the relative position and distance of

the target.

TABLE 1 | The observation space oti of the controller.

Symbols Descriptions

α1−8 Relative joint angular positions

α̇1−8 Relative joint angular velocity

v1 Absolute head module linear velocity

p10,1−32 Pixel 1–32 of the 10th row of the camera image

where N is the amount of the time steps. |d(n) − dt| calculates
the absolute distance error in the normal direction. 1

dt
is used to

calculate the error ratio against the desired target. φt(n)
φtmax

indicates

the target’s deviation in the FoV, where φtmax = 60◦.
It should be noted that the tracking metric ATE is not used

the reward function for our RL controller, since the reward signal
only depicts a desired behavior that keeps a distance with the
target while the trackingmetric specifically measures the tracking
accuracy. For RL tasks, it is more realistic to simply use an
intuitive reward instead of regularizing it with a specific metric.

4. BASELINE EXAMPLE

This section briefly explains the start-of-the-art and widely used
method for controlling the locomotion of snake-like robots,
which is the model-based gait equation controller.

The gait equationmethod is a kinematic locomotion controller
that describes the gaits using a sinusoid-like wave. This method
was first proposed as the serpentine curve (Hirose, 1993) by
Hirose who gained inspiration from real snakes. In this work,
an undulation gait equation developed in Tesch et al. (2009) is
used for the purpose of comparison. The gait equation controller
is modeled as

α(m, t) = (
m

M
x+ y)× A× sin(ωt + λm)+ C . (3)

α(m, t) presents the joint angle value at time t, where m
is the joint index and M is the joint amount. λ and ω

are the spatial and temporal frequency of the movement,
respectively. The spatial frequency represents the cycle numbers
of the wave and the temporal frequency represents the
traveling speed of the wave. A is the serpentine amplitude
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and x and y are the constants for shaping the body curve.
C is the amplitude bias for steering the direction of a
slithering locomotion.

The target tracking locomotion for the gait equation controller
is divided into two sub-tasks, namely, lateral localization and
speed control. Similar ideas can be also found in Bing et al.
(2017) and Bing et al. (2019a). In the FoV of the robot, the
target will be identified as a group of red pixels. For the
lateral localization control, the moment of the red pixels is
calculated and then used as the control target for a proportional
integral (PI) controller, since it indicates the relative position
of the target in the FoV of the robot. For the speed control,
the number of the red pixels are counted to represent the
distance from the robot to the target. In order to have a
more accurate estimation, the visual image is rendered with
a higher resolution 128 × 80 × 3. This is because a higher
resolution can generate more amounts of red pixels for the same
target and then result in a more accurate control performance.
Due to the page limit, the implementation details of the gait
equation controller will not be further explained. To ensure
a fair comparison, we make many attempts to find the best
control parameters to optimize the performance. But only the
best tracking results are selected as the baseline example for
further usage.

5. PROPOSED RL-BASED CONTROLLER

This section presents the details of the proposed RL-based
controller, including the construction of the network and the
training configuration and results.

5.1. Reinforcement Learning Setup
The most important components of a RL controller are the
observation space, the action space, and the reward function. The
overall architecture is shown in Figure 4.

5.1.1. Observation Space

The snake-like robot solely use a RGB vision sensor to track the
target. Due to the undulation of the locomotion, the rendered
image from the robot keeps shifting in the horizontal direction.
In order to reduce unnecessary dimensions and enhance the
computing efficiency, the following steps describe the image
processing pipeline:

1. The image is directly rendered with 32 × 20 × 3 pixels. The
middle figure in Figure 5 shows an example of the rendered
RBG image with 32× 20× 3 resolution.

2. The 10th row is extracted from the rendered image, since this
line contains the pixels at which the target is located, as shown
at the top right of Figure 5.

3. The color space is then transformed from RGB to gray with
values in the range of [0, 1] based on the intensity of the red
pixel, as shown at the bottom right of Figure 5.

The resulting 32 pixels p10,1−32 contain information about
the target’s relative position. Furthermore, its distance can
also be estimated by the gray value intensities of the target’s
corresponding pixels. This value increases when the target is
closer and decreases when the target is further away. These
changes are caused by the illumination of the bright background.
The further away the target is, the smaller it is rendered, resulting
in a lower pixel count.

The controller also has to control the locomotion of the snake-
like robot. To be able to propel forward, it performs a lateral

FIGURE 6 | The learning curve of the autonomous target tracking model. It is trained with 3 million time steps with 1,000 time steps per episode and 1,024 time steps

per update.
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FIGURE 7 | The trajectories of the snake-like robot and the testing tracks. In addition, the body curve of the snake-like robot and the target position are added and

captured every 1,000 time step.

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 591128

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bing et al. Target Tracking via RL

FIGURE 8 | The performance of the RL and gait equation controller in maintaining a certain distance from the target is shown in this figure. Each diagram represents

one episode run on a track with 3,000 time steps. The target distance is set to 4.0 m and the range limits are set at 2.0 and 6.0 m. The histogram on the right of each

diagram shows the distance distribution of the RL controller. Overall the distance varies in an adequate range around the target distance.
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undulation motion pattern with its joints. At each time step, it
receives the current joint angular positions α1−8 and the angular
joint velocities α̇1−8 to learn the locomotion and represent the
proprioceptive awareness of the robot. In addition to these
parameters, the controller also receives the global head module
velocity along the moving direction v1. It has been observed that
this helps it to estimate its global velocity. This is required to
control the velocity of the robot. In summary, an overall 49-DOF
observation space is used in this work, as shown in Table 1.

5.1.2. Action Space

The action space ati of the RL controller corresponds to the eight
joint positions of the robot, which linearly map finite continuous
values in the range of [−1.5, 1.5] to [−90◦, 90◦].

5.1.3. Reward Function

In the target tracking task, the snake-like robot follows a
moving target while maintaining a specified distance dt from
it. Meanwhile, the robot should also try to maintain the target
in the center of its FoV. Therefore, the distance-keeping and
lateral localization in the FoV are the two criteria to find a
successful behavior.

Thus, a distance-keeping reward is designed. Let dr = 2 m
define the distance radius from td = 4 m to its maximum
distance dmax = 6 m and minimum distance dmin = 2 m. In this
approach, the reward represents the distance change between the
head module and the target. The less distance changed toward
the target distance dt , the higher the reward. Similarly, the lower
reward is received by increasing or decreasing the distance from
the target distance dt . The reward function is defined as follows:

rd = (1−

∣

∣dt − dafter
∣

∣

dr
)− (1−

∣

∣dt − dbefore
∣

∣

dr
)

=

∣

∣dt − dbefore
∣

∣ −
∣

∣dt − dafter
∣

∣

dr

Here, dbefore defines the distance before the action, whereby the
distance after the action is defined as dafter. Note that the distance
change can also be denoted as velocity, since the measurements
are time dependent. The term |dt − d| calculates the absolute
distance difference between dt and the current head position. The

resulting normalization |dt−d|
dr

is 0, if d = dt and 1 if d = dt ± dr .

This effect is inverted by 1 −
|dt−d|
dr

. As a result, the maximum

reward of 1 is achieved if d = dt .
In the task of autonomous target tracking, it is important to

maintain vision of the target in order to react to its movement
changes. It is worth noting, different from the evaluation metric
defined in (2), that the reward function does not explicitly reward
that behavior. The agent has to learn independently that it must
observe the target’s position in order to follow it.

5.2. Training
In order to map the input (observation oti) and the output
(action ati), a fully connected 2-hidden-layer neural network is
constructed as an approximator to the policy πθ . The input
layer and the output layer share the same dimensions as
the observation space oti and action space ati . The proximal

policy optimization (PPO) algorithm adapted from is used to
train the network, since PPO performs better on continuous
action space tasks while being much simpler to implement and
tune (Schulman et al., 2017). We train our policy network on a
computer with an i7-9750H CPU and a Nvidia RTX 2070 GPU.

The model is trained by using the random track with a
changing random seed for every episode. Therefore, a variety of
tracks are generated and the model will not overfit to a specific
track. This is necessary because it has been observed that the
model tended to overfit while training on unvarying trajectories.
As result for overfitting, the controller was not be able to adapt to
other trajectory patterns. Based on the learning curve, a total of 3
million time steps (about 3,000 updates) were used for training
(see Figure 6). The training process will terminate itself either
when the target is out of view or reaching the end of the total
time-steps. The mean reward gradually increases and levels up at
around 2.4 with some fluctuation. This is because performance
of the controller varies from the randomly changing track for
each episode. The model at update 2,900 was selected for the
further usage.

6. RESULTS AND DISCUSSIONS

This section will first describe the performance of the gaits
generated by the RL controller in testing tracks. Then, we
compare our gaits to the gaits generated from traditional model-
based method in terms of tracking accuracy. Finally, we will give
the limitation of the simulated results.

6.1. Results
The performance of the RL controller was tested on four different
tracks (see Figure 2). For evaluation, the episode length is set
to 3, 000 time steps. The trajectories of the head module of
robot during the evaluation are shown using red solid lines in
Figure 7, together with its corresponding track pattern (blue
dash lines). In addition, the body curves are plotted every
1, 000 time step with the target position at that time using
green lines and dots. For all four tracks, the RL controller was
able to successfully follow the target. By comparing the trace
of the snake-like robot and the track, a variation is observed
in which the trajectories are not matched to each other. In
some sections, they go in parallel or cross each other. This
indicates that the snake-like robot is not heading directly for
the target’s position. In some cases, the head module’s trace
takes a shortcut in the curves of the target’s track. However,
the trace of the head module is maintaining a visible minimum
distance. We can thus conclude that the controller performs a

TABLE 2 | The statistics for the head to target distances (unit: meters).

Track Mean Std Min Max

Line 3.99 0.18 3.60 4.49

Random 3.96 0.24 3.48 4.43

Wave 3.99 0.24 3.46 4.85

Zigzag 3.88 0.22 3.40 4.46
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FIGURE 9 | The tracking metric curves of the RL controller and gait equation controller over the elapsed time (3,000 timestep in total) in four scenes. The tracking

metric is defined in (2).
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successful path-following behavior. Besides, the controller had
to maintain a certain distance to the target. The red lines and
the histogram in Figure 8 show the distance distribution of
runs on all tracks. In all runs, the distance varies around the
target of 4.0 m which is measured at the center of the head.
The oscillation movement of the head causes constant minimal
distance changes. Table 2 shows the statistics of the runs. As
result, the controller was able to maintain the distance from the
target with an adequate variance.

6.2. Comparisons
In order to evaluate the performances of the RL controller against
the model-based method, the gait equation controller (section 4)
was also executed on those four testing tracks.

We first compare the performance of the tracking accuracy.
Figure 8 shows the traces of the distance between the target
and the robot for both controllers. In general, we can observe
that the RL controller has a better tracking accuracy than the
gait equation controller. For the RL controller, it exhibits better
performances at the beginning process on all different tracks and
keeps the distance very close to the desired value. Then with the
accumulated error, all these four figures reach a relatively large
error at some point, but then correct its direction to the right
course. For the RL controller, the lag of tracking is much more
smaller. After the starting of the movement, RL-based controller
also exhibits better tracking accuracy. For the gait equation
controller, it deviates most at the beginning of the movement for
all four tracks. This is because the controller needs to response
to the changing visual information and the effect will only show
after the error has been accumulated for a period of time.

The second performance indicator is the tracking metric ATE
defined in (2). The ATE is plotted over time steps in Figure 9. It
can be observed that for both controllers, the metric curve gets
higher due to the accumulated error with time passing by. But for
all four scenes, the RL controller outperforms the gait equation
controller: by around 50% in the simple line and wave scene
and by 70% in the other difficult scenes. In conclusion, the RL
controller outperform the gait equation controller both in terms
of distance tracking accuracy and the averaged tracking error.

Since our training will terminate itself once the robot lose sight
of the target, there will be no target recovery behavior obtained
during training, such as retaining. In fact, the target recovery
behavior is associated with some memory-like function that can
predict the motion tendency of a moving object.

6.3. Limitations
It is worth noting that, our RL-based controller is demonstrated
by simulations now and has not been support with results of
physical snake-like robot yet. In order to ensure the validity
of the simulated results, we first try to close the simulation-
to-reality gap by setting simulation parameters with real-world
properties (e.g., dimension, density, friction, etc.). Second, all the
methods implemented in simulation can also be produced in a
real-world setup.

For prototype experiments, the main challenge is how to train
the RL controller in a real-world setup, which usually requires

millions of episodes. Different from a robotic arm that can
be set to its initial condition easily, there is no good way to
reset the training scene for mobile robots in real world. Some
algorithms (Fu et al., 2017; Hwangbo et al., 2019) may directly
transfer the learned policy from simulation and implement it in
real-world scenario. But this is out of the scope of this paper.

7. CONCLUSION

Performing target-tracking tasks for snake-like robots is a
challenging task, since it not only involves designing agile
locomotion patterns for the robot, but also overcoming
difficulties to obtain stable visual information due to the inherent
undulatory motions. In this paper, we try to solve this complex
perception-to-action control task by using reinforcement
learning, which directly maps the vision space to the joint
space and reduces the computational complexity of dealing
with object tracking and robot motion control in separate
components. In our test scenarios, the learned gait shows
much better tracking performances than the model-based
method. Our work contributes to designing sophisticated and
efficient moving patterns for perception-driven tasks with a
snake-like robot.

Our future work will aim at performing tracking tasks with
more complex visual information. For instance, the perception of
the visual information can be replaced with more sophisticated
technologies. To improve the adaptability of our RL controller,
we will further investigate locomotion skills for more challenging
scenarios, such as in a obstacle surrounding environment and
the capability to recover tracking when the target runs out of the
visual field of the robot.
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