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Significant objects in a scene canmake a great contribution to scene recognition. Besides

the three scene-selective regions: parahippocampal place area (PPA), retrosplenial

complex (RSC), and occipital place area (OPA), some neuroimaging studies have

shown that the lateral occipital complex (LOC) is also engaged in scene recognition

processing. In this study, the multivariate pattern analysis was adopted to explore the

object-scene association in scene recognition when different amounts of significant

objects were masked. The scene classification only succeeded in the intact scene in

the ROIs. In addition, the average signal intensity in LOC [including the lateral occipital

cortex (LO) and the posterior fusiform area (pF)] decreased when there were masked

objects, but such a decrease was not observed in scene-selective regions. These results

suggested that LOC was sensitive to the loss of significant objects and mainly involved

in scene recognition by the object-scene semantic association. The performance of

the scene-selective areas may be mainly due to the fact that they responded to the

change of the scene’s entire attribute, such as the spatial information, when they

were employed in the scene recognition processing. These findings further enrich our

knowledge of the significant objects’ influence on the activation pattern during the

process of scene recognition.

Keywords: scene recognition, significant object, semantic relationship, multivariate pattern analysis, fMRI

INTRODUCTION

Scene recognition is a common and important brain activity that can help us access environmental
information. Previous studies have indicated that scene recognition relies on intrinsic properties
of scenes related to 3D spatial structure, such as expanse or degree of openness (Kravitz et al.,
2011; Park et al., 2011; Lowe et al., 2016), and the deepness of scene (Greene and Oliva, 2009;
Amit et al., 2012; Park et al., 2015). Furthermore, it has been appreciated that the significant
objects in the scene play a vital role in scene recognition. As an important part of the scene,
the objects in the scene are of great significance to the scene recognition. In addition to the
object size or other related properties (Cate et al., 2011; Konkle and Oliva, 2012; Bainbridge and
Oliva, 2015), the scene recognition can be influenced by the association of the scene and objects
(Gagne and MacEvoy, 2014; Linsley and Macevoy, 2014a; Sastyin et al., 2015). Many studies have
suggested that the nature of scene recognition is the information integration of objects in the scene
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(Biederman, 1987; Biederman et al., 1988). Moreover, behavioral
studies have shown that there is a significant decline in the
recognition accuracy when objects are removed from the scene,
and the classification accuracy based on brain activation pattern
was lower when the objects were removed (MacEvoy and Epstein,
2011). Furthermore, there is a decrease in recognition accuracy
when adding the objects that are not semantically associated with
the scene (Davenport and Potter, 2004; Joubert et al., 2007).

The related neural mechanism of scene processing has
received much attention in the decades. With the help of
functional magnetic resonance imaging (fMRI) and other
neuroimaging technologies, it has been found that there are
three main areas involved in scene processing (MacEvoy and
Epstein, 2011; Dilks et al., 2013; Cukur et al., 2016). Previous
neuroimaging studies have indicated that the parahippocampal
place area (PPA) exhibited a stronger response to scenes than the
single object (Henderson et al., 2008; Persichetti and Dilks, 2016).
In addition, stimuli from different scenes could activate different
signal patterns in PPA (Walther et al., 2009, 2011; MacEvoy and
Epstein, 2011; Epstein andMorgan, 2012), which can suggest that
the PPA is associated with the processing of scene recognition.
The retrosplenial complex (RSC) can be activated when people
view or imagine scenes (O’Craven and Kanwisher, 2000), and
it has been suggested to be responsible for spatial navigation
(Henderson et al., 2008; Auger et al., 2012; Marchette et al.,
2014). Moreover, different scenes could evoke different encoding
information in RSC (Walther et al., 2009). The occipital place
area (OPA) can respond to visually presented scenes (Hasson
et al., 2003; MacEvoy and Epstein, 2007; Dilks et al., 2011). In
recent years, some neuroimaging studies have found that OPA
also plays a causal role in scene perception (Dilks et al., 2013;
Ganaden et al., 2013; Kamps et al., 2016b).

It has been appreciated that PPA, RSC, and OPA are the key
cortical regions underlying our ability to recognize scenes and use
this information in navigation, however, these regions may play
different roles in the specific process of scene recognition (Kamps
et al., 2016a). There is still no consensus on what information
can be encoded in these regions, and the neural mechanism
underlying the association between significant objects and scene
recognition remains to be clarified. In related studies, the PPA
was demonstrated to be responsible for processing the semantic
information and showed a stronger response to objects that
shared a strong semantic with the scene (Aminoff et al., 2007;
Hassabis et al., 2007; Bar et al., 2008; Summerfield, 2010; Howard
et al., 2011). Harel et al. found that the PPA could integrate
the spatial information of scenes and object information in
scenes, and was sensitive to the absence or presence of both the
objects and the scene (Harel et al., 2013). However, MacEvoy
and Epstein argued that the lateral occipital complex (LOC)
could process the semantic information between the scene and
objects, which was not found in the PPA (MacEvoy and Epstein,
2011). These inconsistent findings indicate that the role of the
PPA has not been definitively determined in describing the
semantic association between the scene and the objects. The
RSC may share similar functions in scene processing (Maguire,
2001) and one recent functional connectivity study suggested
the RSC and PPA formed a scene recognition component

(Hao et al., 2016). However, it is unclear whether activation on
the RSC is significantly affected by the objects within the scene.
Another scene-selective region OPAmay prefer to deal with local
scene elements rather than global scene properties (Kamps et al.,
2016a), therefore we speculated the activation on the OPA would
be different if the significant objects are masked in the scenes.

In addition to the above scene-selective regions, the object-
selective region can take part in the scene processing and process
the relationship between objects and scene. As an important
area related to object recognition, the lateral occipital complex
(LOC) has shown the correlation between the activity pattern
induced by objects and that induced by scenes in several studies
(Biederman, 1987; Malach et al., 1995; Grill-Spector et al., 1998;
Kourtzi and Kanwisher, 2000; Carlson et al., 2003; James et al.,
2003; Sayres and Grill-Spector, 2008; Pitcher et al., 2009). Scenes
could be decoded by the activity pattern of objects that had strong
semantic relationships with scenes (Peelen et al., 2009; MacEvoy
and Epstein, 2011). Furthermore, Harel et al. reported a strong
decrease in neural activity when objects were removed from the
scene (Harel et al., 2013). These studies indicated a relationship
between the activation in the LOC [including the lateral occipital
cortex (LO) and the posterior fusiform area (pF)] and significant
objects within the scene.

To study the brain neural mechanism of the association
between significant objects and scene recognition, we designed
an experiment with the scene-categorization task including
behavioral and fMRI procedure which has been reported in the
work of Miao et al. (2018). In the experiments, four types of
images were shown to the participants, with each type including
intact images of the scene and images after removing one or
two significant objects from the scene. By masking the object
in the scene picture, we can study the effect of objects in scene
recognition. In our previous study, Miao et al. calculated the
signal change and performed functional connectivity analysis
based on the object-selective region LOC, and the results
showed that the masking objects affected the brain network
during scene recognition. In the present study, we focused on
the influence of masking objects on the regions of interests
(ROIs) in scene recognition by the multivariate pattern analysis
(MVPA). In the neuroimaging research, the method has been
implemented in various studies (Haxby et al., 2001; Norman et al.,
2006; Harrison and Tong, 2009). Compared with the univariate
analysis, MVPA can extract multidimensional information more
adequately (Norman et al., 2006; Davis et al., 2014). Combined
with appropriate classification algorithms, MVPA can be used to
classify activity patterns according to stimuli categories (Harrison
and Tong, 2009; Emmerling et al., 2016). Therefore,MVPA shows
more advantages when we want to study the spatial patterns
across multiple brain states. Considering the high dimensional
and small sample size of fMRI data, the Support Vector
Machine (SVM) algorithm has been widely used in the brain
states classification, which has shown a significant advantage in
the classification performance and robustness (LaConte et al.,
2005; Mourao-Miranda et al., 2005). In recent studies, cross-
classification (classifiers trained on data from a condition and
tested on data from the other condition or vice versa) has
been applied to analyze the brain activity in different conditions
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(Albers et al., 2013; Boccia et al., 2017), which can contribute
to comparing these related but not identical brain activities. For
example, cross-classification between perception and imagery
was performed to study their association and difference (Cichy
et al., 2012; Vetter et al., 2014).

In the present study, we studied the influence of significant
objects by the change of scene recognition capacity in some ROIs.
To the effects of significant objects on related brain regions,
we conducted the univariate analysis to research the signal
change on the ROIs and used MVPA to analyze the activation
patterns change when the significant objects were masked in the
scene. We speculated that the LO and pF were mainly involved
in processing the semantic correlation between the scene and
significant objects in the scene, which caused the object-selective
regions were sensitive to the absence of significant objects.
Since the scene-selective regions play different roles in scene
recognition, we speculated that the masked significant objects
may have different effects on the PPA, RSC, and OPA. By the
above analysis, there would be a further understanding of the
significant objects’ influence on the activation pattern during the
process of scene recognition.

MATERIALS AND METHODS

fMRI Data
In this paper, the fMRI dataset is from our previous study
published by Miao et al. (2018). Here, we gave a brief description
of the fMRI experiment for a better understanding, and more
details could be found in their publication.

Fourteen right-hand healthy participants were recruited in a
visual experiment, in which they watched four kinds of scenes
images: kitchen and bathroom (indoor scenes), intersection,
and playground (outdoor scenes). Each kind of scene had
four versions (NM: complete photographs; M1(A): photographs
where only object A wasmasked;M1(B): photographs where only
object B was masked; M2: photographs where both object A and
object B were masked). Defining the combination of each type of
scene and masking degree as a condition, the photographs can be
divided into 16 conditions (4 scene categories× 4 versions) when
considering the scene category and masked degree.

A block-design paradigm was used in this study. The
experiment consisted of three functional runs and one localizer
run. In the three functional runs, photographs of all the 16
different conditions were presented, in which 8 s of baseline
was first presented, followed by 16 blocks. The sample object
images and experimental design were shown in Figure 1, which
referenced to the fMRI data description of Miao et al. (2018).
In addition, the localizer run referred to the paradigm designed
by MacEvoy (MacEvoy and Epstein, 2011) which could help
us define the related brain areas. Then the details of fMRI
data preprocessing can be found in the part of experimental
procedures in the publication of Miao et al. (2018).

ROI Selection
According to previous studies on the localization method of
visual ROI (Malach et al., 1995; Grill-Spector et al., 1998), ROIs
were defined based on the activation diagram from the localizer

run. Compared with our previous work (Miao et al., 2018), we
added four new ROIs, including the pF, LO, OPA, and EVC.
The pF and LO were defined as through the contrast object
minus phase-scrambled objects, we set the peak response in
the later-ventral occipitotemporal cortex, and we located the
pF and LO, respectively. OPA was defined in the transverse
occipital sulcus where the response to scenes condition was
stronger than objects condition. As a control area, the EVC was
defined in the posterior occipital lobe through the contrast of
phase-scrambled objects minus intact objects. The PPA and RSC
were defined in the posterior parahippocampal-collateral sulcus
region and retrosplenial cortex, referring to the work of Miao
et al. (2018). Figure 2 showed the activation in each of ROI
at the group level. The peak coordinates and peak intensity of
functional ROIs at the group level were shown in Table 1. To
avoid the interindividual differences in anatomic locations of
the regions, the ROIs were identified as spheres with an 8mm
radius in every subject and the ROI coordinates for each subject
were located defined at the local maxima closest to the group
peak coordinates.

Multivariate Pattern Analysis
To clarify the roles of significant objects in scene recognition in
ROIs, we calculated the scene classification accuracy using the
activation pattern in these regions (LO, pF, PPA, RSC, and OPA)
and the control area EVC. The defined ROIs contribute to feature
selection, and the voxels involved in the defined ROIs were
included in the classification analysis. Brain patterns are labeled
according to all the scene conditions (scene categories × mask
conditions). In the present study, the SVM classifier was used
to implement the four-way classification (kitchen, bathroom,
intersection, and playground) in different mask conditions (NM,
M1, and M2) (Chang and Lin, 2011). Unsmoothed functional
data were used in the classification processing because the
spatial smoothing would destroy some useful variables (Samuel
Schwarzkopf and Rees, 2011). The classification was conducted
through the leave-one run out cross-validation approach, which
contributed to the stable and dependable classification results
by avoiding the higher correlation of the data from the same
run (Wolbers et al., 2011; Axelrod and Yovel, 2012). Afterward,
we conducted the one-sample t-test on the classification
performances to test whether the statistical value was statistically
significant (p < 0.05). Then the one-way repeated measures
ANOVA was performed to test the effect of mask conditions.
In order to assure the classification performances were reliable,
we shuffled the labels and randomly assigned to the training
samples and performed the four scene classification analysis with
the same procedure based on the “shuffled” data (Stelzer et al.,
2013).

In addition, we performed the cross-classification analysis
in which the intact (NM) scene data were used to train the
SVM model, and M1 and M2 data were used as the test
dataset. Then, the one-sample t-test was performed on the
classification results to show the difference and similarity of
activation pattern between the complete scene and scene with
masked significant objects.
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FIGURE 1 | Experiment design and materials. (A) The experimental paradigm of a single run: the run started with an 8-s fixation and followed by 16 blocks, which

were separated by an 8-s rest interval. Each block consists of 8 trials with images of the same scene category. (B) The paradigm of a single trial: a 500ms fixation was

shown at first, then a 150ms stimulus image, followed by a 350ms mask. Subjects were then required to judge the scene category within 3000ms. (C) Stimulus

examples from all kinds of scene categories: four kinds of scenes images in the conditions of no object was masked (NM), only one object was masked (M1), and two

objects were masked (M2).

FIGURE 2 | Locations of functional ROIs based on the group analysis in the localizer run. LO, lateral occipital complex; pF, posterior fusiform area; PPA,

parahippocampal place area; RSC, retrosplenial complex; OPA, occipital place area; EVC, early visual cortex.

Univariate Analysis
The result of pattern recognition reflected the overall pattern
of all voxels in the same region, while percent signal change

can reflect the activation intensity in a single region. We
used the marsbar software (http://marsbar.sourceforge.net/) to
calculate the signal change in the ROIs in three masked
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TABLE 1 | The peak coordinates and peak intensity of functional ROIs in the

group level.

Functional ROIs MNI coordinates Peak intensity

x y z

Left LO −39 −90 −3 15.02

Right LO 42 −81 0 12.44

Left pF −36 −52 −23 10.58

Right pF 39 −52 −20 12.55

Left PPA −33 −43 −8 5.64

Right PPA 36 −40 −11 4.69

Left RSC −15 −49 16 4.87

Right RSC 21 −49 10 6.05

Left OPA −39 −85 28 2.02

Right OPA 48 −76 28 3.36

Left EVC −9 −103 13 8.45

Right EVC 9 −103 16 11.85

conditions separately (NM, M1, and M2). Then paired samples
t-test was conducted between the conditions in each region to
investigate whether the activation is different across different
masked conditions. In addition, we performed repeated-
measures ANOVA to study the difference of activation intensity
across ROIs.

RESULTS

Classification Analysis by MVPA
Scene Classification in Different Mask Condition

To study the influence of masked objects on the scene
classification, we calculated and compared the classification
accuracy of the activation pattern in the three kinds of mask
conditions (NM, M1, and M2). When we classified scenes based
on the activation pattern in the LO, the results showed that the
classification accuracy is not significant higher than the chance
level (25%) when there was object masked in the scene picture
(NM: 49.44%, t13 = 8.13, p < 0.001; M1: 21.83%, t13 =−2.75,
p = 0.017; M2: 27.12%, t13 = 0.89, p = 0.391). One-way
repeated-measures ANOVA was performed to test the role of
mask conditions in the accuracy decline, and the result showed
that the classification differences in different conditions were
statistically significant (F = 35.69, p < 0.001). The post-hoc tests
showed accuracy in NM was significantly >M1 (p < 0.001) and
M2 (p < 0.001), however, there wasn’t a significant difference
between M1 and M2 (p= 0.085).

Then we performed the above analysis on other ROIs, and
the activation pattern corresponding to scenes with masked
objects was not significantly classified. The results showed greater
classification accuracies in the NM than the conditions with
masked objects.

In the pF, the successful classification was only observed in the
NM condition (NM: 47.73%, t13 = 6.85, p < 0.001; M1: 24.63%,
t13 = −0.24, p = 0.818; M2: 26.90%, t13 = 1.12, p = 0.283), and
there was significant difference in the different mask conditions

(F = 23.49, p < 0.001) by the one-way repeated measures
ANOVA. The post-hoc tests showed classification accuracy in NM
condition was significantly>M1 (p< 0.001) andM2 (p< 0.001).
We also compared the classification accuracies in theM1 andM2,
however, there wasn’t significant difference (p= 0.406).

There was also a decline for the accuracies of scene
classification in the PPA with more objects masked in three
conditions (NM: 46.02%, t13 = 6.39, p < 0.001; M1: 25.48%,
t13 = 0.40, p = 0.693; M2: 27.79%, t13 = 1.49, p = 0.160). One-
way repeated measures ANOVA showed significant differences
in three conditions (F = 26.28, p < 0.001) and accuracy in
NM was significantly >M1 and M2 (p < 0.001) by post-hoc
tests. However, there wasn’t significant difference between M1
and M2 (p= 0.289).

In the RSC, the decoding only succeed in NM condition
(NM: 49.93%, t13 = 8.59, p < 0.001; M1: 23.79%, t13 = −1.05,
p= 0.311; M2: 27.75%, t13 = 1.26, p = 0.229), and the accuracy
differences in the different mask conditions were statistically
significant (F = 41.16, p < 0.001). The difference was from the
classification accuracy in the NM and that in the M1 and M2
(p < 0.001) by post-hoc tests, however, there wasn’t significant
difference between M1 and M2 (p = 0.182). The classification
results in the OPA were similar, that is, classification accuracies
were significantly above the chance level in the NM conditions
(NM: 49.18%, t13 = 9.96, p < 0.001; M1: 24.48%, t13 =−0.40,
p= 0.697; M2: 29.72%, t13 = 2.04, p= 0.063). There was
significant difference in the different mask conditions (F = 41.56,
p < 0.001), and post-hoc tests showed NMwas significantly >M1
and M2 (p < 0.001). However, there wasn’t significant difference
between M1 and M2 (p= 0.054).

In the EVC, the successful classifications were observed in
the NM (NM: 51.15%, t13 = 9.65, p < 0.001; M1: 27.85%,
t13 = 1.72, p = 0.110; M2: 28.61%, t13 = 1.80, p = 0.096). One-
way repeated measures ANOVA showed significant differences
in three conditions (F = 28.70, p < 0.001). The classification
accuracy in the NM was significantly >M1 (p < 0.001) and M2
(p < 0.001) by post-hoc tests, however, there wasn’t significant
difference between M1 and M2 (p = 0.803). The classification
results in all ROIs were shown in Figure 3.

Cross-Classification Between Different Conditions

In the cross-classification analysis, the brain data from M1
condition can be decoded when we used the data from NM as
the train data. In the objects-selective regions and scene-selective
regions, the classification accuracies were significantly higher
than chance-level (LO: 29.56%, t13 = 3.85, p= 0.002; pF: 29.48%,
t13 = 2.38, p < 0.001; PPA: 28.83%, t13 = 3.20, p = 0.007; RSC:
28.03%, t13 = 3.22, p= 0.007; OPA:28.83% t13 = 3.09, p= 0.009;
EVC:28.42%, t13 = 2.67, p = 0.019). However, the classification
failed in the M2 condition when we used the classification model
trained on the NM condition. The cross-classification results in
the M1 and M2 conditions were shown in Figure 4.

Signal Changes in the Univariate Analysis
In addition to analyzing the changes in activation patterns,
we also compared the intensity of activation in these brain
regions under different conditions. During the process of scene
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FIGURE 3 | Pattern classification analysis based on the activation in ROIs. The black line indicates the chance level (25%). Stars indicate significant classification

accuracy in each condition and the significant difference between the two conditions;***p < 0.001, **p < 0.01,*p < 0.05.

recognition, there were significant signal changes in the LO, pF,
PPA, and the control region EVC relative to the baseline state.
The significant signal change and trend of reduction can be
found in the LO (NM: 0.48, t13 = 4.25, p < 0.001; M1: 0.37,
t13 = 4.27, p < 0.001; and M2: 0.36, t13 = 3.237, p = 0.006).
The paired t-tests indicated that the signal change of NM was
significantly greater than that of M1 (t13 = 2.63, p = 0.021) and
M2 (t13 = 2.250, p= 0.043). The similar results can be found
in the pF with significant signal changes in all the conditions
(NM: 0.31, t13 = 6.06, p < 0.001; M1: 0.27, t13 = 8.38, p < 0.001;
and M2: 0.22, t13 = 8.00, p < 0.001). There is also a significant
difference between NM and M2 (t13 = 2.33, p = 0.037, paired
t-test). These results are consistent with the signal change results
of Miao et al. (2018), in which the LOC was studies as a whole.

In the PPA, the significant signal change was observed (NM:
0.12, t13 = 4.57, p < 0.001; M1: 0.10, t13 = 4.28, p < 0.001;
and M2: 0.12, t13 = 3.34, p < 0.01), but paired t-tests indicated
that there was no obvious reduction trend across different mask
conditions. The results of signal change in the RSC and PPA were
reported in the work of Miao et al. The results of signal change
in the RSC and OPA were not significant, and we added some
detailed description about the value of signal change in present

study (RSC: NM:−0.012, t13 =−1.03, p= 0.320;M1:−0.017, t13
= −1.98, p = 0.070; and M2: −0.020%, t13 = −1.51, p= 0.154;
OPA: NM: 0.12, t13 = 2.10, p = 0.06; M1: 0.02, t13 = 0.36,
p= 0.73; and M2: 0.12, t13 = 1.65, p= 0.12).

In the control area EVC, significant signal change was
observed in each condition (NM: 1.13, t13 = 8.61, p < 0.001;
M1: 1.05, t13 = 9.90, p < 0.001; and M2: 1.09, t13 = 8.68,
p < 0.001). Paired t-tests suggested that there was no significant
transformation trend in the different mask conditions. The
results of all ROIs were shown in Figure 5.

In addition to examining the differences in the activation
intensity under different conditions, we also compared the
signal changes across ROI in the same condition. The repeated-
measures ANOVA was performed and the results showed that
there were significant differences across ROIs in each condition
(NM: F = 69.66, p < 0.001; M1: F = 73.01, p < 0.001; and
M2: F = 66.00, p < 0.001). The signal change in EVC was
significantly higher than that in other ROIs in each of the
conditions (p < 0.001, post-hoc tests). The signal change in the
LO was not significantly different from that in the pF, while there
is a significant difference compared to scene-selective ROIs in
conditions of NM and M1 (NM: LO vs. PPA, p = 0.004, LO vs.
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FIGURE 4 | Cross-classification analysis in M1 and M2 conditions. The black line indicates the chance level (25%). Stars indicate significant classification accuracy

which is higher than the chance level in each condition; ***p < 0.001, **p < 0.01, *p < 0.05.

RSC, p = 0.004, and LO vs. OPA, p = 0.022; M1: LO vs. PPA,
p = 0.021, LO vs. RSC, p = 0.002, and LO vs. OPA, p = 0.014).
In the condition of M2, there is a significant difference between
the LO and RSC (p < 0.001), which is similar to the comparison
between pF and RSC (p < 0.001). In conditions of NM and M1,
signal change in the pF was significantly higher than that in the
PPA and RSC (NM: pF vs. PPA, p= 0.021, pF vs. RSC, p < 0.001;
M1: pF vs. PPA, p= 0.029, pF vs. RSC, p < 0.001).

DISCUSSION

The objects in the scene play an important role when people
identify the scene category. In the present study, we investigated
the neural mechanism of this phenomenon based on the change
of the brain activation pattern when participants viewed the
scenes in which the significant objects were masked. Miao et
al have reported the significant influence of masking objects on
behavior results that the accuracy of scene recognition decreased
as more masked objects were removed, while the reaction time of
the participants increased (Miao et al., 2018). Our analysis of the
brain activation pattern also showed the neural representation
activated by different mask conditions was significantly different
in the related brain regions, which suggested that significant
objects played an important role in the processing of scene
recognition. Furthermore, the activation pattern showed more

difference when more objects were masked, and the details are
different in these brain regions.

As the object-selective region, the LOC plays important role
in processing object information, which has been suggested
in many previous studies, but the relationship between the
LOC and scene recognition remains to be further demonstrated
(Biederman, 1987; Malach et al., 1995; Grill-Spector et al.,
1998; Carlson et al., 2003; James et al., 2003; Sayres and
Grill-Spector, 2008; Pitcher et al., 2009). In the present study,
significant classification accuracy was found in the NM condition
in the object-selective region, which was significantly higher
than those in M1 and M2 conditions. In the control region,
however, the activation intensity of EVC was not significantly
different in the three conditions. Therefore, we speculated
that the decline of the activation intensity in the LO and pF
suggested that the object-selective region was responsible for
processing object information. One recent study found that a
virtual scene with a single object induced stronger activations
than a scene without objects (Harel et al., 2013), which is
in line with our study. Harel’s work studied the virtual scene
with only one object, but real scenes are more complex and
there are different objects in a scene. In our study, we further
investigated whether it can induce a change in the activation
pattern in brain regions if different numbers of objects were
masked in the scene. According to the difference of the percent
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FIGURE 5 | Signal changes of all ROIs with different objects are masked. The significant signal change can be found in LO, pF, EVC, and PPA. The difference

between three mask conditions was observed by paired-sample t-test; ***p < 0.001, **p < 0.01, *p < 0.05.

signal change across the different scene conditions, we can
speculate that the activation intensity in the LOC had an intimate
relationship with the amount of within-scene objects. According
to classification analysis, the activation pattern of the complete
scene was more effective when it was used to decode the scene
categories compared with that in which one or two objects
were masked in LO and pF. Statistical results showed that the
accuracy of classification was not significantly different from
the chance level in both of the M1 and M2 conditions, and
the classification accuracies in M1 and M2 conditions were
significantly lower than that in NM. Furthermore, the cross-
classification succeeded between the NM and M1 conditions
rather than between the NM and M2, which is consistent with
the behavioral results that the more masked objects lead to the
lower the scene discrimination accuracy. These results suggested
there was a similar activation pattern when only one object
was masked compared with the condition M2. According to the
related research, we speculated that object-selective region could
process the integrated information of objects and scenes in the
processing of scene recognition (MacEvoy and Epstein, 2011;
Linsley and MacEvoy, 2014b; Lescroart et al., 2015), and the LO
and pF were responsible for processing the semantic association
between objects in scenes and scenes during the processing of
scene recognition.

For the scene-selective regions, the activation intensity did
not change significantly across different conditions. There were
significant signal changes in the PPA, however, it shows no
significant difference when objects were masked. Compared with
the object-selective region, the results suggested the activation
intensity in the PPA was not sensitive to the univariate
modulation caused by the masked object. Compared with the
univariate analysis, the MVPA can contribute to finding more
information based on the activation pattern. The classification
accuracy was significantly higher than chance-level in the PPA
under the condition of NM, however, the decoding failed in the
conditions of M1 and M2. The result showed that the masked
object made an effect on the activation pattern of PPA, although
there was no significant difference in the activation intensity.
In the scene recognition, the spatial properties of scenes may
be more dominant for the PPA. Previous studies suggested that
the PPA was only responsible for the attribute information of
scenes, and it could not be activated by objects(MacEvoy and
Epstein, 2011; Persichetti and Dilks, 2016), however, the other
studies argued that the PPA was capable of processing the objects’
information related to the scene (Aminoff et al., 2007; Hassabis
et al., 2007; Henderson et al., 2008; Summerfield, 2010; Harel
et al., 2013) and it could even be affected by the information
of significant objects (Linsley and Macevoy, 2014a), which was
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consistent with our results. Also, there was a study that confirmed
the structural and functional basis of the PPA on processing
the scene-relevant relationship between objects and scenes by
using the method of voxel-based morphometry and functional
connectivity (Hao et al., 2016).

In the activation intensity analysis, it was revealed that
the signal changes were not significant in the RSC and OPA
in full scenes or scenes with masked objects. As a control
region, it is conceivable that EVC activation intensity must
be significant. We speculated that the stimuli were presented
for participants a relatively short time, which made the
scene-selective regions acquire no enough information on the
scene attribute. Furthermore, these regions contribute more
to the spatial navigation and imagination instead of scene
categorization (Epstein, 2008; Marchette et al., 2014; Vass and
Epstein, 2016), which may be another reason for not finding
significant signal change. Although the signal change did not
show a significant value, the full scene could still be decoded
based on the activation pattern of the RSC and OPA. Based on
the classification results, we found that only full scenes could be
successfully decoded in the RSC, while the scenes with masked
objects could not be classified. The RSC was demonstrated to be
specifically responsible for processing the spatial information of
scenes (Henderson et al., 2008). One recent study indicated that
the RSC anchored to local topographical features and generalized
across local spatial contexts with similar structures (Marchette
et al., 2014). Moreover, the absence of objects might affect the
representation of the entire attribute of the scene space. When
one or two objects were removed, the spatial structure of the
scene was damaged, and the activation pattern could not provide
enough information, which caused the low accuracy of pattern
recognition. Therefore, we speculated that RSC is not recruited
to process the semantic associations between scenes and objects,
which is consistent with another research of our group about
scene processing (Wang et al., 2018). According to recent studies,
the OPA may pay more attention to local scene elements rather
than global scene properties (Kamps et al., 2016a). We speculated
that the masked objects in the scene might change the local
elements so the OPA is sensitive to the lack of objects. These
findings indicated that activation in the RSC and OPA was more
responsive to the properties of the scene. As a control region,
the MVPA results of the EVC shared more similarities with
the scene-selective regions. The scene classification succeeded
in the NM condition, and there was a significant decline in
the two masked scene conditions. The EVC process low-level
features properties in visual processing (such as the presence of
text). We speculated that scene-selective areas are recruited to
process scene recognition based on the entire attribute of the
scene while the object-selective region can process the semantic
association between objects and scenes in the processing of
scene recognition.

CONCLUSIONS

In this study, we tried to explore the roles and mechanisms
of related regions in processing the association between the

significant objects and scene by masking different objects in the
scene. The impact of significant objects in scene recognition
has been demonstrated in previous behavior research. The
present study suggested that the LO and pF were sensitive
to the absence of significant objects, and the effect may
be caused by processing the semantic correlation between
the scene and significant objects in the scene. The scene-
selective regions were sensitive to the masked objects which
might be due to the change of local scene elements, which
caused the difference in spatial properties of the scene.
Overall, the regions related to the scene recognition were
affected by the information of significant objects according
to their main function in the scene recognition, and the
significant objects in the scene could play an important role in
scene recognition.
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