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Nowadays, intelligent robots are widely applied in the manufacturing industry, in various

working places or assembly lines. In most manufacturing tasks, determining the category

and pose of parts is important, yet challenging, due to complex environments. This

paper presents a new two-stage intelligent vision system based on a deep neural

network with RGB-D image inputs for object recognition and 6D pose estimation. A

dense-connected network fusing multi-scale features is first built to segment the objects

from the background. The 2D pixels and 3D points in cropped object regions are then fed

into a pose estimation network to make object pose predictions based on fusion of color

and geometry features. By introducing the channel and position attention modules, the

pose estimation network presents an effective feature extraction method, by stressing

important features whilst suppressing unnecessary ones. Comparative experiments with

several state-of-the-art networks conducted on two well-known benchmark datasets,

YCB-Video and LineMOD, verified the effectiveness and superior performance of the

proposed method. Moreover, we built a vision-guided robotic grasping system based

on the proposed method using a Kinova Jaco2 manipulator with an RGB-D camera

installed. Grasping experiments proved that the robot system can effectively implement

common operations such as picking up and moving objects, thereby demonstrating its

potential to be applied in all kinds of real-time manufacturing applications.

Keywords: deep neural network, object recognition, 6D pose estimation, intelligent manufacturing, semantic

segmentation

1. INTRODUCTION

The assembly line is one of the greatest inventions in the manufacturing industry. With the rapid
development of artificial intelligence and robotics, more intelligent robotics have been deployed
in traditional assembly lines, replacing human workers. These robots are normally equipped with
intelligent vision systems which not only detect parts in the working spaces but also estimate
their poses before taking further actions such as grasping, rotating, moving, fitting, etc. Generally,
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object recognition and 6D pose estimation from images are the
base of almost all kinds of robotic applications, such as robot
manipulation (Tremblay et al., 2018), robot-human interaction
(Svenstrup et al., 2009), and virtual reality (Yang et al., 2018).

Many approaches have been reported in the past decade.
However, the problem remains challenging, especially in
cluttered scenes due to the chaos in backgrounds, heavy
occlusions between objects, and changing lighting conditions.
Most classical methods work with RGB inputs (color images)
(Kehl et al., 2017; Rad and Lepetit, 2017), and some of them
use RGB-D inputs (color and depth images) (Wagner et al.,
2008). In general, the basic idea of these methods is to estimate
the object pose by establishing the correspondence of 2D
image features between different viewpoints or constructing
mapping from 3D models to 2D images. Difficulties often occur
when dealing with low-textured objects and unstable lighting
conditions. With the advent of affordable depth sensors, RGB-D
data-based methods (Xiang et al., 2017; Qi et al., 2018; Xu et al.,
2018) have become more popular and has recently undergone
significant progress. Compared with the RGB image, the depth
image contains abundant geometric information, such as shape,
structure, surface, curvature, etc. Additionally, the depth channel
is more stable than RGB channels, usually free from perturbance
caused by texture and the changing of light, which makes these
approaches more reliable and robust than RGB-only methods.
However, due to involvement of a large amount of 3D data, it
is still a big challenge to achieve accurate pose estimation in
real-time.

With the appearance of powerful computing hardware, deep
learning has garnered wide attention in recent years. (Tekin
et al., 2018) proposed a single-shot deep CNN that takes the
2D image as the input, directly detects the 2D projections of
the 3D bounding box vertices and estimates 6D poses by a
PnP algorithm (Lepetit et al., 2009). Based on SSD architecture
(Liu et al., 2016), SSD-6D (Kehl et al., 2017) can realize object
detection and 6D pose estimation simultaneously, though it
does not work well with the small objects and occlusions. Most
recently, a series of data-driven methods using RGB-D inputs
such as PoseCNN (Xiang et al., 2017), MCN (Li et al., 2018a),
and DenseFusion (Wang et al., 2019) were presented and has
made significant progress in the field of visual recognition. In

FIGURE 1 | The overall framework of the two-stage network for object recognition and pose estimation.

addition, some methods, such as PointFusion (Xu et al., 2018)
and Frustrum PointNet (Qi et al., 2018), focus on how to
extract better features from color and depth images. Compared
with methods based on handcraft-features, the deep neural
network demonstrates a powerful ability for automatic feature
extraction, a flexible structure, and an amazing capacity of
resisting disturbance.

In this paper, we propose a new two-stage deep network
to segment objects from the cluttered scene and to estimate
their 6D poses. The overall framework is shown in Figure 1.
First, by applying a dense-connected way to aggregate features
of different scales, an improved segmentation network inspired
by U-Net (Ronneberger et al., 2015) is built. After determining
the segmentation mask, the objects are cropped from the scene
in both color and depth images. The cropped object images are
then fed into a 6D pose prediction network which makes use of
two backbone networks to extract color and geometry feature
embeddings. Both are then fused together and pass through
the channel attention module, position attention module, and
global feature extractionmodule to acquire more effective feature
representations. Finally, an iterative network is adopted to refine
outputs of the pose predictor.

In summary, the main contributions of our approach are
stated as follows:

• A new segmentation network is proposed using a densely
connected method to aggregate features of different scales
and to provide abundant semantic information for pixel-by-
pixel classification.

• The channel attention module and position attention module
are introduced into the pose estimation network and
effectively improve system performance.

• A vision-guided robotic grasping system is built to validate
the feasibility of the proposed algorithm being applied to
manufacturing applications like grasping, packaging, and
assembling etc.

The remainder of this paper is organized as follows: section 2
reviews related work. Section 3 describes the details of the
proposed method. The analysis of experimental results and
performance evaluation are presented in section 4. Section 5
concludes the paper.
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2. RELATED WORK

Our research mainly involves two topics: object recognition and
pose estimation. Semantic segmentation is the most popular
way to realize object recognition by predicting which object
each pixel in the image belongs to. For semantic segmentation,
Convolutional Neural Network (CNN) has proven to be the
most successful method so far. For object pose estimation,
prior works can be classified into three categories: feature-based
methods, learning-based methods, and CNN-based methods.
Theoretically, CNN is a specific framework in the machine
learning family. A boom in research on deep learning has led
to a dramatic number of CNN-based methods being reported in
recent years. We therefore placed the CNN-based methods into a
separate category.

2.1. Semantic Segmentation
Fully Convolutional Network (FCN) (Long et al., 2015) is the
first semantic segmentation network. (Ronneberger et al., 2015)
added skip connections to the network and created an excellent
network known as U-Net. Many subsequent networks (Drozdzal
et al., 2016) adopted this U-shape structure to develop their
own networks. In order to increase the area of the receptive
field without extra computing costs, Atrous Convolutions are
proposed in the Deeplab (Chen et al., 2017a). In PSPNet (Zhao
et al., 2017), the Pyramid Pooling Module (PPM) is proposed
to aggregate contextual information from different scales to
improve the network’s ability to acquire global information.

2.2. Object Pose Estimation
2.2.1. Feature-Based Method
The common idea for the feature-based methods is recovering
6D poses based on 2D-3D correspondences (Tulsiani and Malik,
2015) by matching the local features extracted in the 2D image
with those in the 3D model. However, this kind of approach
usually requires sufficient texture in objects. Some improved
versions of this algorithm (Wohlhart and Lepetit, 2015) are
proposed to deal with textureless objects.

2.2.2. Learning-Based Method
Machine learning has been widely applied to address classical
computer vision problems since 2000. Support Vector Machine
(SVM) is proposed in Gu and Ren (2010) for object pose
estimation. Hinterstoisser presented a model-based method
(Hinterstoisser et al., 2012) to classify objects and 3D poses
as well. In Lee et al. (2016), an adaptive Bayesian framework
is designed to implement object detection and pose estimation
in industrial environments. A decision forest is trained in
Brachmann et al. (2014) to classify each pixel in the RGB-D image
and determine the postures of objects.

2.2.3. CNN-Based Method
Most recently, with the rapid development of deep learning, CNN
has become the mainstream approach in most pose estimation
tasks. Zeng proposed a multi-stage feature learning network in
Zeng et al. (2016) for object detection and pose estimation with
RGB-D inputs. Literatures (Rad and Lepetit, 2017; Tekin et al.,
2018) predicted the 2D projections of 3D bounding box of a 3D

target by regression before computing poses by PnP algorithm.
Kehl localized the 2D bounding box of an object and searched
for the best pose from a pool of candidate 6D poses associated
with the bounding box (Kehl et al., 2017). Nigam improved the
accuracy of pose estimation in Nigam et al. (2018) through a
novel network architecture which combined global features for
target segmentation with local features for coordinate regression.
Li adapted a CNN-based framework by adding a channel for
3D feature extraction (Li et al., 2018a). PoseCNN (Xiang et al.,
2017) is a multi-stage, multi-branch deep network that takes the
6D object poses estimation as a regression problem. With RGB
images as inputs, the network can directly estimate the object
poses in the whole scene. DenseFusion (Wang et al., 2019) is a
general framework for estimating the 6D poses of known objects
with RGB-D image inputs. Two networks are utilized to extract
color and geometric features, followed by a novel dense network
fusing them. In addition, an end-to-end iterative refinement
network is also applied further improving the pose estimations.
In sum, DenseFusion is one of the best networks so far, perfectly
balancing accuracy and efficiency, thus making it appropriate for
many real-time manufacturing applications.

3. THEORY AND METHOD

As illustrated in Figure 1, the proposed system consists of
two stages: object segmentation and object pose estimation.
The final objective is to recover object pose parameters from
2D-3D correspondences between the color and depth image.
Therefore, an appropriate camera model should be determined
before calculation.

3.1. Pinhole Camera Model
Figure 2 shows the concept of the pinhole camera model with
four coordinate systems.

• World coordinate system (Xw,Yw,Zw) is the absolute
coordinate system of 3D world, also named as the object
coordinate system in our application.

• Camera coordinate system (Xc,Yc,Zc) is a 3D coordinate
system with camera optical center as the origin, cameras
optical axis as Zc-axis,Xc-axis andYc-axis parallel to x-axis and
y-axis of image coordinate system respectively.

• Image coordinate system (x, y) is a 2D coordinate system
located in the image plane with the intersection of Zc-axis
and image sensor as origin, x-axis and y-axis parallel to the
horizontal and vertical edges of image plane respectively. The
2D coordinates denote pixel position in physical units, such
as millimeters.

• Pixel coordinate system (u, v) is a 2D coordinate system with
the bottom-left corner of image plane as origin, u-axis and
v-axis parallel to x-axis and y-axis of image coordinate system
respectively. The digital image is represented by an M × N
array of pixels. The 2D coordinates denote the pixel position
in the image array.

By geometric analysis, the transformation between pixel
coordinate system and world coordinate system can be expressed
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FIGURE 2 | Four coordinate systems in the pinhole camera model: world coordinate system, camera coordinate system, image coordinate system and pixel

coordinate system. P(Xw,Yw,Zw ) is a 3D point and p(x, y) is the projection of P(Xw,Yw,Zw ) in the image plane. f is the focal length that is the length between origin of

camera coordinate system and origin of image coordinate system.

in homogeneous form by
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where (u0, v0) are the pixel coordinates of the origin of the
image coordinate system in the pixel coordinate system; dx and
dy are the physical dimensions of each pixel in the x-axis and
y-axis of the image plane respectively; f is the focal length; R
is a 3 × 3 orthogonal rotation matrix, and t is a 3D translation
vector indicating the transformation from the world coordinate
system to the camera coordinate system. It can be seen that the
parameters of matrixM1 are determined by the internal structure
of the camera sensor. Thus, M1 is called an intrinsic parameter
matrix of the camera. The rotation matrix R and translation
vector t, however, are determined by the position and orientation
of the camera coordinate system relative to the world coordinate
system.M2 is called the extrinsic parameter matrix of the camera
which is determined by three rotation and three translation
parameters. Parameters in M1 can be calculated through camera
calibration. Solving six pose parameters in M2 is actually called
the 6D pose estimation.

3.2. Semantic Segmentation
The architecture of the semantic segmentation network is
illustrated in Figure 3. The entire network is composed of two
parts: the encoder network (Figure 3A, left) and the decoder
network (Figure 3A, right). The encoder network is designed
to extract features of different scales, which consists of five
MaxPooling layers and 16 convolutional layers. Same parameter
settings such as the convolutional layer in VGG16 (Simonyan and
Zisserman, 2015) are applied in the first 13 convolutional layers.
In the decoder network, the Multi-scale Feature Fusion Module
(MFFM) is implemented to fuse multi-scale features and output
pixel-by-pixel classifications through the final convolutional and
softmax layer. The decoder network consists of three MFFMs,
two upsampling layers as well as several convolution layers.

In convolutional neural networks, feature maps of different
sizes not only have diverse receptive fields but also contain
complementary information generally. Therefore, fusing features
of different scales is an important technique to improve network
performance. Researchers have proposed different solutions for
multi-scale feature extraction and fusion. Deeplabv3 (Chen
et al., 2017b) utilized Atrous Spatial Pyramid Pooling (ASPP)
to fuse global content information with multi-scale features. In
Zhao et al. (2017), the global AvgPooling operation is applied
to generate different scale outputs from feature maps and to
extract high-level semantic multi-scale features. However, these
methods parallelly convolute and pool the same feature layer at
different scales to acquire multi-scale features. In essence, it is
not a real fusion of different layer features since these features
are all extended from the same layer. Theoretically, a lower-
layer feature contains more geometric detail and less semantic
information. Conversely, higher-layer feature maps discard some
geometric detail and preserve more semantic information. Thus,
a new MFFM is designed to effectively integrate lower-layer and
higher-layer features through a densely connected way, thereby
enhancing the network’s capability of understanding the images.
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As shown in Figure 3B, each MFFM layer in the decoder
takes the feature inputs from two sources: (1) the layers in the
encoder with the same or a lower resolution of the current
MFFM layer; (2) the previous layer in the decoder. First, all
feature inputs will be upsampled to the resolution of the current
MFFM layer, if necessary. Then each of them will pass through
an individual convolution layer before finally being aggregated
together and output. For inputs from encoder layers, the output
channel number is set to 64 to reduce computational complexity.
For inputs from the previous layer, the output channel number
remains unchanged in order to preserve information coming
from the previous layer as much as possible. Thus, different
MFFM layers may have various numbers of input layers, as
depicted in Figure 3A by arrows in different colors.

In the training stage, the lost function of the segmentation
network is defined as cross-entropy and is expressed by

Loss = −

H
∑

i=1

W
∑

j=1

y
′

i,j log yi,j, (2)

where yi,j ∈ {1, 2, ...,C} is the true label of each pixel and y
′

i,j is

the prediction.
In sum, the proposed semantic segmentation network

provides more effective pixel-by-pixel classification by, in a
densely connected way, fusing multi-scale features. Despite
the small increase in computational cost, more accurate
pixel classifications are helpful in determining the correct
correspondences between 2D pixels and 3D points, which is
crucial for the second stage of 6D pose estimation. Furthermore,
the segmentation network can also extract the correct object
contour, showing its ability in dealing with occlusions under
complex scenes.

3.3. 6D Object Pose Estimation
As mentioned in section 3.1, object pose estimation determines
the transform between the object coordinate system and the
camera coordinate system. A 3D translation vector t and a 3D
rotation matrix R are included in the transformation matrix.
So, there are six independent pose parameters to be calculated.
Figure 4 depicts the concept.

The architecture of our 6D pose estimation network is
illustrated in Figure 5. The entire network is composed of three
stages: feature extraction stage (Figure 5A), feature fusion stage
(Figure 5B), and pose regress stage (Figure 5C).

FIGURE 4 | Object 6D pose estimation. The pose transformation from the

object coordinate system to the camera coordinate system is determined by

the 3D rotation matrix R and the 3D translation vector t.

FIGURE 3 | The framework of semantic segmentation network. (A) Network architecture. VGG16 is utilized to extract features from the image while MFFM is applied

to aggregate feature maps from different layers. (B) The structure of MFFM. (C) Legends for (A,B).
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FIGURE 5 | The framework of the three-stage 6D pose estimation network. (A) Feature extraction stage: The color feature embedding is extracted by a full

convolution network and the geometric feature embedding is extracted by a PointNet-based network; (B) Feature fusion stage: Two feature embeddings are fused

together and then pass through the channel attention module, position attention module, and global feature extraction module, respectively, to generate three types of

features. All of them are fused and fed to the pose predictor. (C) Pose regression stage: The pose predictor consisting of several 1D convolutions is utilized to

regress the 6D pose parameters and confidence scores.

The color and geometric information of objects are acquired
through the RGB image and depth image. Though they have
similar storage formats, the physical meaning and distribution
space are quite different. Two CNNs are applied to extract color
and geometric features, respectively, as shown in Figure 5A.

Common neural networks generally treat all the features
equally. However, some features are better at describing
characteristics of objects and should receive more attention. To
stress important features whilst suppressing unnecessary ones,
we implemented three modules including the Position Attention
Module (PAM), Channel Attention Module (CAM), and the
Global Feature Extraction Module (GFEM). In the feature fusion
stage, color features and geometric features are concatenated
and fed into these modules, enabling the network to adaptively
capture the local features and the global feature dependencies,
providing better features for the pose predictor.

Position AttentionModule: For a specified input feature, it is
updated by weighting all the features according to their similarity
to this feature. Thus, more similar features will have a bigger
impact on the input feature. Figure 6 displays the process.

The original input feature matrix Vi (Vi ∈ RC×N , where C
is the feature dimension and N is the number of the features),

passes through two convolutional layers separately and get two

new feature matrices V1, V2 (V1,V2 ∈ RC
′×N . The dimension

of V1,V2’ changes from C to C′ after passing through, in this
paper, we set C′ = C

8 ). After transposing V1 multipling V2, and
followed by a softmax operation, the feature similarity matrixM
(M ∈ RN×N) is obtained. In the meantime, Vi passes through
the third convolution layer to obtain V3 (V3 ∈ RC×N), it is then
multiplied by M to aggregate global features. Finally, the output
features Vo are calculated as Vo = V3 ×M + Vi.

Channel Attention Module: For any two channel maps,
the self-attention mechanism is used to capture the channel
dependencies. The weighted sum of all channel maps is calculated
to update each channel map. The process of the channel attention
module is shown in Figure 7.

Global Feature Extraction Module: The global feature of the
objects is quite important for the pose estimation task. Here we
use a convolutional layer to adjust the features and apply an
AvgPooling layer to acquire the global features.

The output features from the PAM, CAM, and GFEM are
concatenated and fed into a pose predictor. The pose predictor
consists of several 1D convolution layers for regressing 6D pose
parameters and confidence scores. In addition, the same iterative
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FIGURE 6 | Schematic diagram of position attention module. N is number of the features and C is the feature dimension.

FIGURE 7 | Schematic diagram of channel attention module. N is the number of features and C is the feature dimension.

refinement network as DenseFusion (Wang et al., 2019) is also
utilized for further improvement in accuracy of pose estimation.

Due to the lack of a unique shape or texture associated with
poses for the objects with symmetric structures, we use two types
of loss functions in the training stage. For symmetric objects, the
loss for one point in the estimatedmodel is defined as the distance
between this point and its closest point after pose transformation.
The total loss of an object with n points is computed as follows:

Lsym =
1

n

n
∑

i=1

min

i<k<n

∥

∥Testpi − Tgtpk
∥

∥. (3)

where T = [R|t], R and t are rotation matrix and translation
vector, respectively. Meanwhile, pi represents the homogeneous
form of ith point. Test is the current predicted result and Tgt is
the ground truth. For the object with an asymmetric structure,
each pose is associated with a unique texture or shape. So, the
loss function of the asymmetric object is defined as the average
distance of each point after real pose transformation and the
predicted pose transformation, as described in Eq. (4). In the
training stage, we switch the loss function according to the labels
given with the dataset.

Lasy =
1

n

n
∑

i=1

∥

∥Testpi − Tgtpi
∥

∥. (4)

4. EXPERIMENTAL RESULTS AND
ANALYSIS

4.1. Experiment Setup
4.1.1. The Platform of Hardware and Software
The proposed network in this paper is built by Pytorch (Paszke
et al., 2019). All the experiments are conducted on a PC equipped
with an Intel(R) Core(TM) i7-6850k CPU at 3.6GHz and a
NVIDIA GeForce GTX1080Ti graphic card.

4.1.2. Training Setup
For the segmentation network, the initial learning rate is set to
0.0001, batch size is 4. The Stochastic Gradient Descent (SGD)
optimizer is used in the training. The learning rate decreased by
0.8 times for every 5,000 training steps.

For the pose estimation network, the initial learning rate is
set to 0.0001, batch size is 8. The Adam optimizer (Kingma and
Ba, 2015) is used in the training. When the test error drops to
a certain threshold of 0.14, the learning rate starts to decline 0.3
times. When the test error drops to 0.12, the iterative refinement
network starts to kick in the training process.

4.2. Datasets and Metrics
4.2.1. Datasets
Two well-known benchmark datasets, the YCB-video (Xiang
et al., 2017) and the LineMOD (Hinterstoisser et al., 2011), were
employed in our experiments.

The YCB-Video dataset is built from Xiang et al. (2017) for
object pose estimation. The dataset is composed of 92 RGB-
D video sequences taken in different indoor scenes, and 21
objects with different shapes and textures. Here we follow the
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same training and testing settings as the PoseCNN (Xiang et al.,
2017) where 80 video sequences are used for training, and 2,949
key frames extracted from the remaining 12 videos are used
to evaluate the trained model. In addition, 80,000 synthetically
rendered images provided by the dataset are also utilized to
augment the training set.

The LineMOD dataset (Hinterstoisser et al., 2011) is another
benchmark dataset for object pose estimation, which contains 15
video sequences of low-texture objects. There are approximately
1,100 images in each video sequence. For a fair comparison,
we choose the same 13 video sequences, and the same training
and testing set as some state-of-the-art methods (Kehl et al.,
2017; Rad and Lepetit, 2017; Xiang et al., 2017; Li et al.,
2018b; Sundermeyer et al., 2018; Xu et al., 2018). Besides, no
synthetic data are generated from the LineMOD dataset and used
for training.

4.2.2. Metrics
Metrics for semantic segmentation. Two common metrics,
Mean Pixel Accuracy (mPA) and Mean Intersection over Union
(mIoU) (Badrinarayanan et al., 2017; Garcia-Garcia et al., 2017)
are used to evaluate the segmentation results. The mPA is defined
as the mean of pixel accuracy for all classes, where the pixel
accuracy is computed by the ratio of correct pixels on a per-
class basis. The mIoU is defined as the mean of IoUs for all
classes in the dataset, where IoU for each class is computed as
the ratio of the intersection and the union of label pixels and
predicted pixels.

Metrics for pose estimation. We adopted three metrics to
evaluate system performance on the YCB-Video dataset, namely,
ADD-S (Xiang et al., 2017) (the average closest point distance),
ADD (the average distance) (Hinterstoisser et al., 2012), and
AUC (Xiang et al., 2017) (the area under the accuracy-threshold
curve of ADD/ADD-S). Given the ground truth pose P (P =

[R|T]) and estimated pose P̃ (P̃ = [R̃|T̃]), we can calculate
the distance between the point in the 3D model transformed
by P̃ and the nearest point to it in the 3D model transformed
by P. The average distance of all points is called ADD-S. ADD
has a similar definition as ADD-S, the difference is that the
distance is calculated from corresponding point pairs in the 3D
model transformed by P̃ and P. In our experiments, the accuracy,
defined as the percentage of testing samples with ADD/ADD-
S values less than a certain threshold, is used to evaluate the
performance of all methods. Here, the threshold is empirically
set to 2 cm. The accuracy values for all possible thresholds
are calculated and an accuracy-threshold curve of ADD/ADD-
S is generated. AUC is then defined as the area under this
curve within the threshold region [0,Tm]. To have a consistent
measurement, the maximum threshold Tm is set to 0.1 m. For
AUC and accuracy, a larger value indicates better accuracy of
pose estimation.

For LineMOD dataset, ADD (Hinterstoisser et al., 2012) is
used as the metric following prior works (Kehl et al., 2017; Rad
and Lepetit, 2017; Xiang et al., 2017; Li et al., 2018b; Sundermeyer
et al., 2018; Xu et al., 2018). Instead of a fixed value, we set the
distance threshold as 0.1 multiplied by the diameter of bounding
sphere of the 3D model.

4.3. Experiments on YCB-Video Dataset
Semantic segmentation: Table 1 shows the comparative
experiment results of pose estimation on the YCB-Video Dataset
where bold numbers represent the best results for each metric.
It is observed that our network is much better than the U-Net
in both mPA and mIoU. Moreover, our mPA score is a little
bit smaller than Deeplabv3 whilst our mIoU score outperforms
Deeplabv3 by 2.78.
6D Pose estimation: Tables 2, 3 show the comparative
experiment results of pose estimation on 21 objects in the
YCB-Video Dataset using our method and some state-of-the-art
methods, where the bold numbers represent the best results. In
Table 2, AUC and accuracy of ADD-S (<2 cm) are calculated
for all objects. As seen from the table, our mean accuracy score
is the second-best and the mean AUC score is the best. The
overall performance is very close to DenseFusion which is the
benchmark method thus far. In Table 3, AUC and accuracy of
ADD (<2 cm) are calculated. Apparently both mean accuracy
score and mean AUC score of the proposed network outperform
all the other methods. Essentially, ADD is a better and stricter
metric than ADD-S because it computes the distances between
matched point pairs, which usually requires matches on both
shape and texture. A better ADD accuracy score is more
convincible in evaluating the performance of our method.
Figure 8A displays the accuracy-threshold curve of the rotation
error and Figure 8B displays the accuracy-threshold curve of
the translation error. The rotation error is the angle formed
by the predicted and true rotation axes. The translation error
is the 2-Norm of the difference between the predicted and
true translation vectors. Accuracy is therefore defined as the
percentage of testing samples with fewer translation/rotation
errors than a threshold. For each threshold, the corresponding
accuracy is calculated to build the accuracy-threshold curve.
Figures 8A,B exhibit the superior accuracy of our method in
both rotation and translation predictions. Moreover, a steeper
curve is observed near zero degrees in the accuracy-threshold
curve of the rotation error, showing that the proposed method
can achieve higher accuracy at a small rotation error threshold,
which indicates the smaller pose estimation errors.

Figure 9 displays some qualitative results on the YCB-
Video dataset. Figure 9A is the original images in the dataset.
Figures 9B,D are segmentation results of DenseFusion and our
method. Different colors stand for different object categories
here. After acquiring the segmentation mask, the pixel-level area
of each object in the image is extracted. If the effective pixel
number in the depth map of an object is less than a certain
threshold, it is identified as an invalid object without estimating
its poses. For each valid object, the point cloud is transformed

TABLE 1 | Quantitative evaluation of semantic segmentation on YCB-Vedio

dataset.

mPA(%) mIoU(%)

U-Net 58.02 48.01

Deeplabv3 84.85 76.28

Ours 84.28 79.06

Bold values represent the best results for all metrics.
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TABLE 2 | Quantitative evaluation of 6D pose estimation (ADD-S) on YCB-Video Dataset.

PoseCNN PoseCNN+ICP PointFusion DenseFusion Ours

Object AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002 master chef can 83.9 71.5 95.8 100.0 90.9 99.8 96.4 100.0 96.1 100.0

003 cracker box 76.9 56.6 92.7 91.6 80.5 62.6 95.5 99.5 96.1 99.9

004 sugar box 84.2 71.2 98.2 100 90.4 95.4 97.5 100.0 97.2 100.0

005 tomato soup can 81.0 74.4 94.5 96.9 91.9 96.9 94.6 96.9 94.2 96.9

006 mustard bottle 90.4 95.8 98.6 100.0 88.5 84.0 97.2 100.0 97.2 100.0

007 tuna fish can 88.0 84.8 97.1 99.7 93.8 99.8 96.6 100.0 96.4 100.0

008 pudding box 79.1 58.4 97.9 100.0 87.5 96.7 96.5 100.0 96.6 100.0

009 gelatin box 87.2 89.7 98.8 100.0 95.0 100.0 98.1 100.0 97.5 100.0

010 potted meat can 78.5 68.0 92.7 93.6 86.4 88.5 91.3 93.1 90.9 93.0

011 banana 86.0 84.2 97.1 99.7 84.7 70.5 96.6 100.0 95.6 99.7

019 pitcher base 77.0 38.8 97.8 100.0 85.5 79.8 97.1 100.0 97.0 100.0

021 bleach cleanser 71.6 39.7 96.9 99.4 81.0 65.0 95.8 100.0 96.0 100.0

024 bowl 69.6 14.0 81.0 54.9 75.7 24.1 88.2 98.8 87.4 83.5

025 mug 78.2 58.5 94.9 99.8 94.2 99.8 97.1 100.0 97.1 99.5

035 power drill 72.7 53.1 98.2 99.6 71.5 22.8 96.0 98.7 96.1 99.5

036 wood block 64.3 8.3 87.6 80.2 68.1 18.2 89.7 94.6 86.9 79.3

037 scissors 56.9 18.2 91.7 95.6 76.7 35.9 95.2 100.0 94.0 100.0

040 large marker 71.7 46.1 97.2 99.7 87.9 80.4 97.5 100.0 97.0 100.0

051 large clamp 50.2 31.7 75.2 74.9 65.9 50.0 72.9 79.2 73.3 78.5

052 extra-large clamp 44.1 17.6 64.4 48.8 60.4 20.1 69.8 76.3 73.6 72.4

061 foam brick 88.0 87.5 97.2 100.0 91.8 100.0 92.5 100.0 95.3 100.0

Mean 75.8 58.2 93.0 93.2 83.9 74.1 93.1 96.8 93.2 96.0

Bold values represent the best results for all metrics.

TABLE 3 | Quantitative evaluation of 6D pose estimation (ADD) on YCB-Video

Dataset.

PoseCNN PoseCNN+ICP DenseFusion Ours

Object AUC <2 cm AUC <2 cm AUC <2 cm AUC <2 cm

002 master chef

can

50.2 8.25 68.1 51.1 73.2 72.8 73.4 72.8

003 cracker box 53.1 13.0 83.4 73.3 94.2 98.2 94.4 99.1

004 sugar box 68.4 41.1 97.2 99.5 96.5 100.0 95.6 99.9

005 tomato soup

can

66.2 42.9 81.8 76.6 85.4 82.9 89.5 89.8

006 mustard bottle 81.0 62.8 98.0 98.6 94.8 96.1 95.5 100.0

007 tuna fish can 70.7 47.3 83.9 72.1 81.9 62.8 79.8 60.5

008 pudding box 62.7 25.7 96.6 100.0 93.2 98.6 94.5 100.0

009 gelatin box 75.2 32.7 98.1 100.0 96.7 100.0 96.0 100.0

010 potted meat

can

59.5 30.4 83.5 77.9 83.6 79.8 82.0 80.0

011 banana 72.3 31.4 91.9 88.1 83.5 88.7 75.6 79.2

019 pitcher base 53.3 12.1 96.9 97.7 96.9 99.8 95.9 100.0

021 bleach

cleanser

50.3 11.4 92.5 92.7 90.1 90.4 90.7 90.6

024 bowl 3.33 0.0 14.4 0.25 5.85 0.00 7.59 0.0

025 mug 58.5 17.5 81.1 55.2 88.9 89.5 92.0 92.6

035 power drill 55.3 25.7 97.7 99.2 92.8 96.3 93.8 99.2

036 wood block 26.6 0.83 70.8 64.9 30.8 0.0 24.5 0.0

037 scissors 35.8 2.2 78.4 49.2 77.9 50.3 87.8 85.1

040 large marker 58.3 14.8 85.3 87.2 93.0 100.0 92.5 99.9

051 large clamp 24.6 3.7 52.1 36.4 26.4 0.0 40.5 38.1

052 extra-large

clamp

16.1 2.9 26.5 8.2 24.6 16.6 46.6 40.0

061 foam brick 40.2 0.0 48.1 0.0 59.1 0.0 44.1 0.0

MEAN 53.7 23.3 79.2 71.3 78.0 73.7 79.7 78.0

Bold values represent the best results for all metrics.

with the predicted pose parameters. Its projection in the 2D
image is then superimposed over the object region, as shown in
Figures 9C,E. As illustrated in the second column from the left,
the prediction for the bowl by DenseFusion is far away from its
real orientation. Our method, however, provides a more correct
prediction showing its advantage in dealing with symmetric
objects. For some poor-textured objects, such as the banana
in the first and fourth column, obvious errors are spotted for
DenseFusion with no visually perceptible errors for our method.

Time efficiency. Table 4 shows the time efficiency comparison
of our network with PoseCNN and DenseFusion. The time cost
of all computation components including segmentation, pose
estimation, and iterative refinement are calculated, respectively,
for a more intuitive comparison except for PoseCNN, as it is
not a pipeline structure network. For the total running time,
our method is five times faster than PoseCNN. Compared with
DenseFusion, our method is slightly slower in segmentation,
while being slightly faster in pose estimation. Although the total
time consumption is slightly lower than DenseFusion, it meets
the requirements of real-time applications at a processing rate
of 18 frames per second with about five objects in each frame.
Considering the better accuracy of pose estimation, our method
is overall proved to be the best among these state-of-the-art
methods. What is more, a lightweight network will be applied for
feature extraction in the future, which is expected to improve the
time efficiency tremendously.

4.4. Experiments on LineMOD Dataset
Table 5 shows the comparison of our method with some
other methods [BB8(Rad and Lepetit, 2017), PoseCNN+DeepIM
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FIGURE 8 | The accuracy-threshold curves of pose parameter error. (A) The accuracy-threshold curve of rotation angle error, (B) The accuracy-threshold curve of

translation error.

FIGURE 9 | Some qualitative experimental results on the YCB-Video dataset. (A) The original images in the dataset, (B) Segmentation results of DenseFusion, (C)

Pose estimation results of DenseFusion, (D) Segmentation results of our method, (E) Pose estimation results of our method.
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TABLE 4 | Time efficiency of three methods (sec.).

PoseCNN DenseFusion Ours

Seg+PE (ALL) Seg PE Refine ALL Seg PE Refine ALL

0.283 0.035 0.010 0.002 0.047 0.045 0.009 0.002 0.056

Seg, segmentation; PE, pose estimation; Refine, iterative refinement.

TABLE 5 | Quantitative evaluation of 6D pose estimation (ADD) on LineMOD

Dataset.

RGB RGB-D

BB8 PoseCNN Implicit SSD-6D Point

Fusion

Dense

Fusion

Ours

object +DeepIM +ICP +ICP

ape 40.4 77.0 20.6 65 70.4 92.3 91.8

benchvise 91.8 97.5 64.3 80 80.7 93.2 96.9

camera 55.7 93.5 63.2 78 60.8 94.4 98.3

can 64.1 96.5 76.1 86 61.1 93.1 96.9

cat 62.6 82.1 72.0 70 79.1 96.5 97.0

driller 74.4 95.0 41.6 73 47.3 87.0 94.7

duck 44.3 77.7 32.4 66 63.0 92.3 95.3

eggbox 57.8 97.1 98.6 100 99.9 99.8 100.0

glue 41.2 99.4 96.4 100 99.3 100.0 100.0

holepuncher 67.2 52.8 49.9 49 71.8 92.1 96.2

iron 84.7 98.3 63.1 78 83.2 97.0 97.8

lamp 76.5 97.5 91.7 73 62.3 95.3 97.5

phone 54.0 87.7 71.0 79 78.8 92.8 97.5

MEAN 62.7 88.6 64.7 79 73.7 94.3 96.9

Bold values represent the best results for all metrics.

(Xiang et al., 2017; Li et al., 2018b), Implicit (Sundermeyer
et al., 2018)+ICP, SSD-6D (Kehl et al., 2017)+ICP, PointFusion
(Xu et al., 2018), DenseFusion (Wang et al., 2019)] on the
LineMOD Dataset with the accuracy of ADD (< 2cm) adopted
as metric. For the mean accuracy, our method outperforms
DenseFusion by 2.6, Figure 10 visualizes the pose estimation
results of our method on LineMOD Dataset. As expected,
only small errors are perceived in these images even if under
cluttered environments.

FIGURE 11 | The framework of a vision-guided robotic grasping system.

FIGURE 10 | Pose estimation results of our method for some images with cluttered background in the LineMOD dataset. The red box and the green box are 2D

projections of the 3D bounding box of objects which, transformed by true pose parameters and predicted ones, respectively.
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FIGURE 12 | Equipment and target objects used in grasping experiments. (A) Some building blocks as target objects, (B) The Kinova Jaco2 manipulator with a

percipio RGB-D camera installed on the side of the gripper.

4.5. Vision-guided Robotic Grasping
System
Object recognition and pose estimation methods can be widely
used in robot visual servo systems (Xu et al., 2019, 2020; Wu
et al., 2020). In order to explore the feasibility of the proposed
method being applied in manufacturing industry scenarios,
we have built a vision-guided robotic system for the most
common manufacturing task: object grasping. The framework
of the system is illustrated in Figure 11. A camera is installed
on the manipulator of the robot. Three coordinate systems are
labeled including the robot coordinate system Cr , the camera
coordinate system Cc, and the object coordinate system Co. T1

is the 6D transform from Cr to Cc, and T2 is that from Co to
Cc. T1 is calculated by the famous navy hand-eye calibration
algorithm (Park and Martin, 1994) and T2 is predicted by the
proposed algorithm. The object poses relative to the robot are
then computed as T = T1 × T2. The pose matrix is crucial
for manipulator path planning and motion control in the
grasping task.

The system is composed of a 6 DOFKinova Jaco2manipulator
and a percipio RGB-D camera FM830-I installed on the side of
the gripper, as shown in Figure 12B. The percipio camera utilizes
structured light as well as binocular vision to build accurate depth
maps. The precision of the captured depth data is up to 1 mm.
Morevoer, we also take some building blocks as the target objects
in the grasping experiments, as Figure 12A shows.

Before the experiment, first we need to calibrate T1, then
train the semantic segmentation network and 6D pose estimation
network. The experiment process is explained as follows: (1)
Before grabbing objects, the manipulator should move to a
certain position. (2) The RGB-D camera starts to capture images
and sends the data to the image processing server. (3) On the
server, the RGB-D images are fed into the segmentation network

and pose estimation network to predict the 6D pose parameters
of the target objects. (4) Based on the predicted transformation
matrix, the host computer completes path planning and sends
signals to the manipulator making it move to planned positions
and performs the operation of grabbing objects, and then placing
them in the target area.

Some experimental results are illustrated in Figure 13. In this
case, the segmentation is perfect. However, for some objects,
the predictions are not satisfactory. One possible reason is
that the poor-textured building blocks may mislead the color
feature extractor. In general, the grasping operation runs quickly
and smoothly, which, to some extent, verifies the possibility of
the new network being applied to all kinds of manufacturing
applications. Figure 14 shows the complete process of the
grasping experiment.

5. CONCLUSION

This paper presents a new two-stage deep neural network
which can efficiently implement object recognition and 6D pose
estimation on the input RGB-D images. First, a segmentation
network is applied to segment the object from the scene
using a densely connected way to fuse different scale features and
effectively improve the semantic segmentation results. Second, by
introducing the channel and position attention modules, better
color and geometric features are extracted for the pose predictor;
third, the output pose parameters are further improved by an
iterative refinement network. A large number of experiments
conducted on two benchmark datasets demonstrated the
effectiveness and accuracy of the proposed method in
comparison with some state-of-the-art methods. Moreover, a
vision-guided robotic grasping systemwas built, and the grasping
experiment has verified the potential of this algorithm being
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FIGURE 13 | Some experimental results of the robot vision system. Panel (A) show the segmentation results, where different colors represent different objects. Panel

(B) shows the pose estimation results, where the colored points are the 2D projections of the target object point cloud after pose transform.

FIGURE 14 | The complete process of picking objects and moving it to target area by the manipulator.

applied in real-time manufacturing applications. Currently,
the proposed method still has some problems in dealing with
textureless or poor-textured objects. Finer differential geometric
features with clear physical meaning and better shape detail are
preferred and will be considered in future work.
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