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The fault safety monitoring of hydrogen sensors is very important for their practical

application. The precondition of traditional machine learning methods for sensor fault

diagnosis is that enough fault data with the same distribution and feature space under

the same working environment must exist. Widely used fault diagnosis methods are

not suitable for real working environments because they are easily complicated by

environmental conditions such as temperature, humidity, shock, and vibration. Under

the influence of such complex conditions, the acquisition of sensor fault data is limited.

In order to improve fault diagnosis accuracy under complex environmental conditions,

a novel method of transfer learning (TL) with LeNet-5 is proposed in this paper. Firstly,

LeNet-5 is applied to learn the features of the data-rich datasets of gas sensor faults in

a normal environment and to adjust the parameters accordingly. The parameters of the

LeNet-5 are transferred from the task in the normal environment to a task in a complex

environment by using the TL method. Then, the migrated LeNet-5 is used for the fault

diagnosis of gas sensors with a small amount of fault data in a complex environment.

Finally, a prototype hydrogen sensor array is designed and implemented for experimental

verification. The gas sensor fault diagnosis accuracy of the traditional LeNet-5 was 88.48

± 1.04%, while the fault diagnosis accuracy of TL with LeNet-5 was 92.49± 1.28%. The

experimental results show that the method adopted presents an excellent solution for the

fault diagnosis of a hydrogen sensor using a small quantity of fault data obtained under

complex environmental conditions.

Keywords: hydrogen sensor, fault diagnosis, transfer learning, LeNet-5, machine learning

INTRODUCTION

With the gradual depletion of traditional energy sources and the development of clean fuel, clean
fuel plays a prominent role throughout many fields (Tsujita et al., 2005; Brown et al., 2015). As
hydrogen is a clean fuel, its application range is therefore rapidly expanding (Chalk and Miller,
2006). It is widely used in meteorological science, aerospace technology, the metallurgical industry,
the electronics industry, national defense, the chemical industry, and so on, and its consumption
is also increasing rapidly (Poirier and Sapundzhiev, 1997; Winter, 2005; Staffell et al., 2019).
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Hydrogen is a colorless, odorless, flammable, and explosive
gas. It is necessary to monitor hydrogen concentrations using
hydrogen sensors because it is considered a dangerous chemical
(Song et al., 2019).

Semiconductor gas sensors have been widely used in hydrogen
detection based on SnO2-sensitive materials (Fedorenko et al.,
2017; Zhang Q. et al., 2018). However, they can be hindered
by sensor aging, environmental temperature and humidity,
sensitive material falling off the sensor, gas adsorption poisoning,
and other factors that could affect the reliability of the
sensors. Hydrogen sensors are prone to failure in its hydrogen
safety detection function, which may lead to combustion and
explosion. Therefore, hydrogen sensors’ fault diagnosis is of
great importance. Ingimundarson et al. proposed model-based
detection of hydrogen leaks in 2008 (Ingimundarson et al., 2008).
Ma et al. proposed hydrogen sensor for fault detection of power
transformer in 2012 (Ma et al., 2012). Song et al. proposed a
fault diagnosis and reconfiguration strategy for hydrogen sensor
array in 2019 (Song et al., 2019). Sun et al. proposed a new
convolutional neural network method for hydrogen sensor fault
diagnosis in 2020 (Sun et al., 2020).

Recently, traditional machine learning (ML) methods have
been widely used for fault diagnoses, such as the extreme
learning machine (ELM) (Song et al., 2019), empirical mode
decomposition (Chen Y. S. et al., 2016), support vector machines
(SVM) (Hu et al., 2005), KNN (Yang et al., 2016b), non-negative
matrix factorization (Yang et al., 2016a), gray forecasting (Chen
Y. et al., 2016), learning vector quantization (LVQ) (Bassiuny
et al., 2007), random forest (RF) (Mohapatra et al., 2020),
and kernel principal component analysis (KPCA) (Navi et al.,
2018). These methods can effectively extract fault features to
a certain extent, but there are some limitations. ML methods
are unable to generate discriminative features of fault signal
data, there methods always combined with the signal features
extraction process, the features should be predesigned. However,
predesigning handcrafted features is difficult. The features
extraction process of fault signal is an exhausted work and
impacts the fault diagnosis result. These methods require experts
to have a rich mathematical knowledge about manual feature
extraction, and the degree of automation of feature extraction is
greatly limited. Themethod selected by the experts directly affects
the diagnosis results.

As a branch of ML, deep learning (DL) has powerful
functionality and flexibility. DL does not need to rely on expert
experience andmanual feature extraction (ZhangW. et al., 2018),
so many scholars have gradually introduced DL methods, such
as the deep belief network (Shao et al., 2018; Wang et al., 2020),
sparse autoencoders, and convolution neural networks (CNNs)
(Wen et al., 2018; Wu and Zhao, 2018; Gou et al., 2020; Sun et al.,
2020) into fault diagnosis processes. These methods can improve
the accuracy of fault diagnosis, but there are some limitations.
These methods require certain preconditions: sufficient sample
data are required, and the training and test samples need to have
the same data distribution. When the distributions of sample
data are different, the performances of the above methods would
drop. They does not consider the use of fault data under different
environments for fault diagnosis.

The concept of transfer Learning (TL) was first proposed in
1995 at a conference on neural information processing systems
(Thrun, 1995). TL is adopted to improve the performance of the
current task by using data, models, or tasks from the source task
that are different from (but similar to) the target task (Pan and
Yang, 2009; Chen et al., 2019). When the data attributes and
feature spaces in the source domain and the target domain are
similar but not identical, previous learning experience is used to
solve the crossing domain problem (Pan and Yang, 2009; Wen
et al., 2017a). There are many scenarios of TL, such as multi-
task learning (Caruan, 1997) and domain adaptation (Saenko
et al., 2010). Model-based TL can use the pre training knowledge
acquired in the source domain to transform and summarize the
deep model (Donahue et al., 2014). As a new ML method, many
scholars have started to introduce the TLmethod into the process
of fault diagnosis under variable conditions (Wen et al., 2017b;
Wu et al., 2020). However, this method is rarely used in gas sensor
fault diagnosis.

In this paper, a gas sensor fault diagnosis method based on
TL with LeNet-5 in a complex environment is proposed. A large
set of gas sensor fault signal data under normal environmental
conditions is adopted to train the traditional LeNet-5 model until
an excellent performance is observed. However, it is difficult
to obtain an amount of fault signal data due to the limitation
of experimental conditions under complex environment, so
the fault signal data is limited. The traditional model and
parameters of the LeNet-5 can transfer to a new target task with
a small amount of fault data using the TL method. The TL
with LeNet-5 method could make use of gas sensor fault data
from different environments, resulting in a better performance
in complex environments. The benefits of this novel method
improve the accuracy of fault diagnosis in complex environments
by utilizing gas sensor fault signal data from normal and
complex environments when only a small quantity of target fault
data exists.

The remainder of this article is organized as follows. The
second section introduces the theoretical fundamentals. In the
third section, a novel model based on TL with LeNet-5 for
hydrogen sensor fault diagnosis is introduced. The fourth section
verifies the performance of the proposed method. The fifth
section contains the conclusions and future researches.

THEORETICAL FUNDAMENTALS

CNNs and LeNet-5
CNNs are widely used in image processing. They consist
of a convolutional layer, pooling layer, and full connection
(FC) layer. The convolutional layer can extract features via
a convolutional operation on the previous layers of different
convolutional kernels. More features can be extracted by using
multiple convolutional kernels. The pooling layer can sample the
features extracted from the convolutional layer. The sampling
method can be divided into two parts: maximum sampling and
mean sampling. In this paper, the maximum sampling method
is adopted. Each node of the FC layer is connected with all
nodes of the previous layer, which are used to integrate the
features extracted from the front edge (Wu and Zhao, 2018). The
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mathematical model of the CNN follows Equation (1).

xlj = f (
∑

i∈Mj
xl−1
j × klij + blj) (1)

where Mj denotes the input characteristic graph, k denotes the
convolution kernel, b denotes the network bias, x1j denotes the l

layer output, and xl−1
j denotes the l layer input. The calculation

method for subsampling layer neurons follows Equation (2):

xlj = f (β l
jdown(x

l−1
i )+ blj) (2)

where down(xl−1
i ) denotes the subsampling function and β

denotes the network multiplicative bias. The CNN’s output layer
model follows Equation (3):

O = (bo + wofv) (3)

where fv denotes the eigenvector, bo, wo denotes the deviation
vector and the weight matrix.

There are many CNN models; for example, GoogLeNet
(Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2017), and
LeNet-5 (LeCun, 2015). As a classic CNN, LeNet-5 is widely
used for handwritten digital character recognition (Tivive and
Bouzerdoum, 2005) and fault diagnosis (Wen et al., 2018; Sun
et al., 2020). LeNet-5 is a CNN with a gradient-based learning
structure, and its input layer is an image with a size of 32× 32
pixels. The typical LeNet-5 structure consists of two alternating
convolutional layers, two pooling layers, and the two-layer FC
artificial neural network. Compared with Alenet, GoogLenet,
VGG16, and other CNN algorithms, LeNet-5 method has simple
structure and high accuracy (Wen et al., 2018; Lu et al., 2019), and
has achieved good results in hydrogen sensor fault diagnosis (Sun
et al., 2020). Therefore, this study adpots LeNet-5 as classifier.

Transfer Learning
TL is committed to transferring information of knowledge
obtained on sufficient labeled data of a source domain to a small
amount of data of a target domain. From the data volume, the
source domain data are easy to obtain, the data samples are
sufficient, the target domain data are difficult to obtain, and the
data samples are very limited. When the content of previous
learning and the content of new problems are similar, and the
potential data share some common characteristics, the migration
effect is significant. For example, it is easier for a person to learn
to ride a motorcycle after learning to ride a bicycle. The domain
and task follow Equations (4) and (5)

D = {X, P(X)} (4)

T = {Y , P(Y/X)} (5)

where D denotes the domain and T denotes the task. X, Y
are the feature space and category space, respectively, and
P(X), P(Y/X) are the marginal probability distribution and
the conditional probability density, respectively. TL based on
parameters migration is adopted in this paper; that is, some
parameters are shared between the target domain model and

the source domain model. Its purpose is to mine the prior
distributions or parameters shared between the source domain
and target domain.

PROPOSED MODEL FOR FAULT
DIAGNOSIS OF HYDROGEN SENSORS
BASED ON TL WITH LENET-5

In this section, a novel model of TL with LeNet-5 is proposed
for the fault diagnosis of hydrogen sensors. Firstly, a method
for preprocessing the raw signal of hydrogen sensors is adopted.
Secondly, TL with the LeNet-5 method is proposed for gas sensor
fault diagnosis.

Hydrogen Sensor Fault Signal
Pre-treatment
In this paper, the data preprocessing method we adopted
changes the raw fault signal into a two-dimensional gray image
conversion (Sun et al., 2020). We normalized the fault data. This
method could not only realize end-to-end data conversion, but
also eliminate the influence of expert experiences as much as
possible without any predefined parameters. Supposing that the
sensor fault signal is L(n), it follows Equation (6)

L(n), n = 1, 2, · · · · ·,N ×M (6)

and the resolution of the two-dimensional gray image is N ×

M pixels, where N is the width and M is the height. To ensure
the symmetry of L[i], the MOL as the matrix of L[i] follows
Equation (7)

MOL =







L(1) · · · L(N)
...

. . .
...

L((M − 1)N + 1) · · · L(NM)






(7)

The process of sensor fault signal pretreatment is shown in
Figure 1.

The Proposed Method of the TL With
LeNet-5
Many CNN models have been proposed in recent years. This
paper adopts the classic LeNet-5 model, which has been applied
in many fields. The proposed LeNet-5 method consists of two
parts: feature extraction and fault classification. It requires an
image size of 32× 32 pixels as the input; however, in order
to improve the results of the gas sensor fault classification, we
changed the size of the LeNet-5 input image. The revised width
N of the gray image is 50 pixels, and the height M is 40 pixels.
These adjustments depend on the volume of the raw fault signal
and the architecture of feature extraction. The LeNet-5 consists
of two convolution layers, two pooling layers, and two FC layers
with two strategies: dropout and batch normalization (BN). The
LeNet-5 structure proposed in this paper is shown in Figure 2.

This paper proposes TL with LeNet-5 method for gas sensor
fault diagnosis in a complex environment, which involves two
domains: the source domain and task domain. The source
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FIGURE 1 | The process of gas sensor fault signal pretreatment. (A) One dimensional time domain gas sensor fault signal, (B) Two dimensional gray image.

FIGURE 2 | The LeNet-5 structure proposed in this paper.

domain contains S kinds of gas sensor signal modes with
sufficient fault data under a normal environment. The target
domain contains T kinds of gas sensor signal modes with a small
amount of fault data under a complex environment. The process
of fault diagnosis is presented in six steps.

(1) S kinds of signal mode data in the source domain
are preprocessed and converted into two-dimensional
gray images.

(2) The images of source domain are input into the LeNet-5
model for training.

(3) The trained LeNet-5 model and parameters are transferred
to the target domain.

(4) T kinds of signal mode data in the task domain
are preprocessed and converted into two-dimensional
gray images.

(5) The images of task domain are placed into the TL with

LeNet-5 model for training, and the model parameters are

fine tuned.
(6) The test sample data are adopted to test the trained model

in order to verify the accuracy of the proposed method. The

detailed process of the TL with LeNet-5-based gas sensor
fault diagnosis model described in this paper is shown in
Figure 3.

EXPERIMENT AND VALIDATION OF THE
PROPOSED METHOD

Experimental Setup
Based on the environmental adaptability, reliability, and
performance tests, together with the related literature, several
typical fault signal modes of the SnO2 sensors are summarized
in this study. These include heating wire disconnection (HWD),
aging of the heating wire (AHW), aging of the sensitive body
(ASB), exfoliation of the sensitive body (ESB), and false welding
of the sensitive body (FWSB) (Sun et al., 2020). In order to
obtain the data from five modes of fault signals under normal
and complex environments, we collected fault data through
a self-made special gas sensor test system. The test system
is composed of a constant temperature and humidity box, a
shaking table, an electric fan, a standard hydrogen concentration
bottle, a standard air bottle, a gas molecular flow meter, a gas
mixer, a bidirectional regulated power supply, a data collector,
a computer, a temperature sensor, a humidity sensor, a sensor
chamber, and six SnO2 sensor arrays.

The constant temperature and humidity box provided the
test environment for temperature and humidity changes, the
shaking table provided the test environment for vibration
changes, and the electric fan provided the test environment
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FIGURE 3 | A detailed process of transfer learning with the LeNet-5-based gas sensor fault diagnosis model.

FIGURE 4 | A system diagram of hydrogen sensor arrays.

for wind changes. The hydrogen sensor array system diagram
is shown in Figure 4. A sensor array and gas chamber were
placed into the constant temperature and humidity box and
vibration table, respectively, to simulate temperature, humidity,
and vibration variations in the environment. The fan was
placed in the gas chamber to simulate wind changes in the
test environment.

The structure of the SnO2 sensor model (MQ-8) is shown
in Figure 5. It is composed of a four-leg plastic base, nickel-
plated copper column, stainless steel explosion-proof net, metal
buckle ring, nickel-chromium heating wire, gas-sensitive body,
gold lead, and porcelain tube carrier. The gold lead and the
porcelain tube carrier were connected via gold slurry sintering
welding, the nickel-chromium heating wire and the gold lead
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FIGURE 5 | The MQ-8 sensor structure diagram.

FIGURE 6 | The experimental setup of MQ-8 gas sensor array.

were connected via tin welding with the nickel-copper column,
and the nickel-chromium heating wire and the gas-sensitive body
were the key components of the hydrogen sensors. The nickel-
chromium heating wire can provide a high-temperature working
environment for the sensors. The function of the sensitive
body was to detect the concentration of hydrogen and convert
the value of the concentration into the resistance change. The
function of the gold lead wire was to pass the information of
the resistance change to the outside of the sensors through the
nickel-copper column. The functional components of the gas
sensormentioned above are themain factors leading to the failure
of the MQ-8 sensor. These variables keep constant during the
experiment. The process of data acquisition is listed as follows:
in the sensor array, each sensor has a separate power supply and
a separate voltage divider. When the signals of the six sensors
are collected, they are input to the single-chip microcomputer,
integrated into the data acquisition card, and finally uploaded
to the upper computer. The experimental device (the MQ-8
sensor array) is shown in Figure 6. The DL program was run
on a 3.0 GHz Intel CPU and 8 GB RAM with Python 3.7.4 and
TensorFlow 1.15.0 running Windows 10.

The general static calibration method of gas sensor is used to
put the sensor into a standard gas box, and inject pure measured

gas on the basis of the known space structure volume of the gas
tank. After conversion, the standard gas concentration can be
obtained. The standard gas concentration is placed on the sensor,
and the sensor has output, then the standard gas concentration
can be established the corresponding relationship with output
can achieve the purpose of sensor calibration.

In this study, the normal environmental conditions are
defined as a standard atmospheric pressure, temperature range
between 17 to 23◦C, humidity concentration range from 30 to
60%. The complex environmental conditions are defined as high
humidity concentration range from 90 to 95%, low humidity
concentration range from 10 to 20%, low temperature range from
−10 to −30◦C, high temperature range from 40 to 60◦C. The
wind is five meters per second, and it vibrates. The concentration
range of hydrogen is 0.1–1%.

The data from six signal modes (i.e., without fault and the
five fault types) were obtained through the instrument and
equipment we set up. We obtained the six signal modes of the
MQ-8 sensor under a normal environment, as shown in Figure 7.
The fault signal data were stable, so we used Matlab to simulate
the six signal modes under a normal environment and increased
the fault signal data number of the six signal modes. The sample
data includes real samples and Matlab simulation samples under
normal environment. The simulation data under different fault
modes were obtained by the following ways: (1) The HWD fault
was a linear signal with a larger slope which was superimposed
on the normal output signal from a certain moment. The signal
was stable at a certain value and at a certain moment. (2) The
AHW fault was a linear signal with small slope superimposed at a
certain moment of the normal output signal. (3) The aging cycle
of ASB fault was long, so the aging process is accelerated in the
simulation for the convenience of research, a linear signal with
very small slope was superimposed on the normal signal from a
certain time. (4) The ESB fault was to add a constant deviation
data on the normal output signal from a certain time. (5) The
output signal of the FWSB fault was 0 at a random time, and the
output was normal at a certain time. On this basis, the white noise
signal was superimposed.

Gas sensors often encounter complex environments in
practice. In order to observe gas sensor fault signals in
complex environments, we changed the temperature and
humidity of a constant humidity incubator to increase the
noise interference. The vibration noise interference could be
increased by changing the vibration spectrum of the shaking
table; the wind speed noise interference could be increased by
the wind force generated by the electric fan in the gas chamber.
In the end, the fault signals were obtained under complex
environmental conditions. Therefore, the experiment under
complex environment constructs a transformation environment,
but carries on the measurement under the stable situation. Due
to the complexity of the test conditions, we only get twenty-nine
fault data for each fault type.

The six signal modes of the MQ-8 sensor under a
complex environment are shown in Figure 7. As shown, the
collected gas sensor fault signal changed greatly and was
complex, so it was difficult to obtain these data through the
Matlab simulation.
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FIGURE 7 | Six signal modes of MQ-8 gas sensor under a normal environment and complex environment. (A) Normal signal; (B) The signal including heating wire

disconnection (HWD) fault; (C) The signal including aging of the heating wire (AHW) fault; (D) The signal including aging of the sensitive body (ASB) fault; (E) The signal

including exfoliation of the sensitive body (ESB) fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

TABLE 1 | Signal mode types and samples of every type under normal and

complex environments using transfer learning with LeNet-5.

Source task Target task

Working environments Normal environment Complex environment

Signal mode types 6 6

Samples of every type 100 29

Through the experiments, the MQ-8 gas sensor signal mode
types and samples of every type (i.e., the five fault types and
without fault) under normal and complex environments were
obtained to verify the effectiveness of TL with LeNet-5, as shown
in Table 1.

Validation of the TL With LeNet-5 Method
To validate the advantages of the proposed model in the fault
diagnosis of a hydrogen sensor, tests were performed. The results
of TL with LeNet-5 training and inference are presented in
this section.

TL With LeNet-5 Training

There are data-rich sensor fault training samples under a
normal environment in the source data compared with the
target data under a complex environment. The LeNet-5 was
trained and transferred from a normal environment to a complex
environment. 100 samples of fault signal modes for each type in
the source task were used to train the traditional LeNet-5. In the
target task, only 20 samples of signal modes for each type were
obtained to train the transferred LeNet-5. Nine samples of signal
modes for each type in the target task were obtained for the test.
The details of the labels and samples under normal and complex
environmental conditions are shown in Table 2.

As shown in Figures 8, 9, the six sensor signal modes under
normal and complex environments were converted into two-
dimensional gray images, and the size of each image was 50×
40 pixels.

The two-dimensional gray images under a normal
environment were input into the traditional LeNet-5 for
training, and the number of experimental samples was 100 sets.
The traditional LeNet-5 was trained for 500 iterations. As can be

TABLE 2 | Labels and samples under normal and complex

environmental conditions.

Label Signals

modes

description

Normal

environment

conditions

Complex environmental conditions

Number of

training

samples

Number of

training

samples

Number of test

samples

1 Normal

signal

100 20 9

2 HWD signal 100 20 9

3 AHW signal 100 20 9

4 ASB signal 100 20 9

5 ESB signal 100 20 9

6 FWSB signal 100 20 9

The gas sensor signal data of six modes under normal environmental conditions were

the source data of the transfer learning with LeNet-5 method. The data under complex

environmental conditions were the target data of the transfer learning with LeNet-

5 method. They were also the training data for other methods without transfer in

the experiment.

seen from Figure 10, the training accuracy reached 100%, and
the training loss was close to 0 after about 50 iterations.

In order to verify the effectiveness of TL with LeNet-5 method,
two methods were used to train the gray images. As shown in
Figure 11, firstly, the traditional LeNet-5 model and parameters,
which were trained in the source task, were transferred to the
target task. The two-dimensional gray images under a complex
environment were used as the target domain data for retraining.
The TL with LeNet-5 method was trained for 500 iterations. The
training accuracy reached 100%, and the training loss was close
to 0 after about 150 iterations. Secondly, the two-dimensional
gray images under a complex environment were input into the
traditional LeNet-5 directly. The traditional LeNet-5 was trained
for 500 iterations. The training accuracy reached 100%, and the
training loss was close to 0 after about 200 iterations. The two
methods both used 20 sets of experimental samples.

TL With LeNet-5 Inference

To obtain better results, the TL with LeNet-5 used cross-
validation method. The experiments repeated 30 times. The
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FIGURE 8 | Converted two-dimensional gray images of the gas sensor signals

of six modes under a normal environment. (A) Normal signal; (B) The signal

including heating wire disconnection (HWD) fault; (C) The signal including aging

of the heating wire (AHW) fault; (D) The signal including aging of the sensitive

body (ASB) fault; (E) The signal including exfoliation of the sensitive body (ESB)

fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

FIGURE 9 | Converted two-dimensional gray images of the gas sensor signals

of six modes under a complex environment. (A) Normal signal; (B) The signal

including heating wire disconnection (HWD) fault; (C) The signal including aging

of the heating wire (AHW) fault; (D) The signal including aging of the sensitive

body (ASB) fault; (E) The signal including exfoliation of the sensitive body (ESB)

fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

diagnosis results of TL with LeNet-5 compared with the results
of the traditional LeNet-5 without transfer, compared under a
complex environment (in terms of accuracy). The total fault
diagnosis accuracy of the traditional LeNet-5 was 88.48± 1.04%,
while the total fault diagnosis accuracy of TL with LeNet-5 was
92.49 ± 1.28%. All the results of the fault diagnosis accuracy for
different signal modes are shown in Table 3. The boxplot of total
fault diagnosis accuracy is shown in Figure 12.

Discussion
In this study, the experimental conditions are limited, and only
twenty-nine fault data are available for each fault under complex
environment. The accuracy of fault diagnosis can be improved
by using TL with LeNet-5 method. As shown in Figure 11, the
convergence of the accuracy and the loss of the TL with LeNet-
5 training were faster compared with the traditional LeNet-5

FIGURE 10 | The LeNet-5 method’s training accuracy and loss from the

source task under a normal environment.

FIGURE 11 | Training accuracy and loss of transfer learning with the LeNet-5

method and the traditional LeNet-5 method under a complex environment for

the target task.

method without transfer. As can be seen in Table 3, transferring
to different target task results in different performance. That is to
say, the similarities of source task and target task could affect the
performance of transfer learning.

Two other methods (Zhang P. et al., 2018) were added
to comprehensively evaluate the performance: (1) using only
the samples from normal environment to train the LeNet-5
model, and the same testing data as in the TL method were
tested. (2) Using both the samples from the normal environment
and the complex environment to directly train the LeNet-5
model (Without TL), and the same testing data as in the TL
method were tested. The diagnostic results were 87.05% and
90.75%, respectively.

We also compared the TL with LeNet-5 method to traditional
ML methods, such as LVQ (Bassiuny et al., 2007), ELM
(the kernels is 116) (Song et al., 2019), SVM (the gamma
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TABLE 3 | Fault diagnosis accuracy of the different methods.

Signals

modes

description

From normal environment to complex environment

Without

transfer (%)*

Transfer

learning (%)*

Improvements

(%)*

Normal signal 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00

HWD signal 88.53 ± 2.03 98.89 ± 3.39 10.36 ± 4.05

AHW signal 87.42 ± 4.82 88.90 ± 2.92 1.48 ± 3.84

ASB signal 88.16 ± 2.82 89.64 ± 2.82 1.48 ± 4.82

ESB signal 77.43 ± 2.03 78.54 ± 2.82 1.11 ± 3.39

FWSB signal 89.27 ± 2.03 99.26 ± 2.82 9.99 ± 3.39

Total 88.48 ± 1.04 92.49 ± 1.28 4.01 ± 1.61

*X ± SD.

FIGURE 12 | Boxplot of fault diagnosis accuracy of the different methods.

value of polynomial kernel is 2) (Hu et al., 2005), KNN
(Yang et al., 2016b), and RF (Mohapatra et al., 2020). All
the experiments repeated 30 times, respectively, and all the
results are presented in Table 4. The novel method had
a higher accuracy than the traditional ML methods in a
complex environment.

CONCLUSIONS AND FUTURE
RESEARCHES

In this paper, a novel TL with LeNet-5 method was proposed for
gas sensor fault diagnosis. The novel method has been validated

TABLE 4 | Diagnosis accuracy based on seven different methods under a

complex environment.

Methods Accuracy (%)

LVQ 77.48 ± 1.12

ELM 79.50 ± 0.48

SVM 87.10 ± 0.92

KNN 85.19 ± 0.50

RF 88.01 ± 0.58

LeNet-5 88.48 ± 1.04

TL with LeNet-5 92.49 ± 1.28

by our self-made experimental system dataset. Traditional LeNet-
5 without TL and other traditional ML methods were adopted
for comparison.

In practice, there are usually abundant fault signal data under
normal environmental conditions and limited fault signal data
under complex environmental conditions. Furthermore, fault
signal data in normal and complex environments might have
different distributions. LeNet-5 improves the fault diagnosis
accuracy of gas sensors in the same environment where the
training data are abundant; however, it is not suitable for fault
diagnosis in complex environments with limited training data.
The experimental results show that the TL with LeNet-5 method
could improve the accuracy of the fault diagnosis compared
with the LeNet-5 without TL method and other traditional ML
methods, which cannot take advantage of fault signal data in
different distributions. The proposed method can provide a good
fault diagnosis scheme for hydrogen sensors when only a small
amount of fault data existing under complex environment.

The limitations of the proposed method is that, the common
hydrogen sensor signal modes are needed to be represented in
the dictionary list type. Otherwise the signal modes which have
not been learned would be misclassified to be the known ones.
Based on the limitation, the method can be modified to find an
unknown signal mode in our future research work.
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