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Connectionist and dynamic field models consist of a set of coupled first-order differential

equations describing the evolution in time of different units. We compare three numerical

methods for the integration of these equations: the Euler method, and two methods

we have developed and present here: a modified version of the fourth-order Runge

Kutta method, and one semi-analytical method. We apply them to solve a well-known

nonlinear connectionist model of retrieval in single-digit multiplication, and show that,

in many regimes, the semi-analytical and modified Runge Kutta methods outperform

the Euler method, in some regimes by more than three orders of magnitude. Given the

outstanding difference in execution time of the methods, and that the EM is widely used,

we conclude that the researchers in the field can greatly benefit from our analysis and

developed methods.

Keywords: cognitive neuroscience, connectionism and neural nets, neurorobotic, cognitive models, numerical
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INTRODUCTION

Recent research indicates that connectionist and dynamic field theory (DFT) models might push
developments in various branches of robotics (Schürmann et al., 2019; Tekülve et al., 2019;
Schürmann and Beckerle, 2020; Torricelli et al., 2020) and specifically in embodied artificial
cognitive systems (Lomp et al., 2016). Optimum integration procedures for these models may
greatly contribute to the development of proper architectures, by accelerating simulation times,
or equivalently, by reducing numerical errors.

For instance, when DFT architectures are used in artificial cognitive systems that are tied to
real sensory data and drive autonomous robots, the relation between the physical time, when the
computer provides a new value for the dynamical variables, and the simulated time is important.
Ideally, computation time is not a concern because the computer is fast enough to provide updates
within the time interval that is an adequate time step for the dynamics with the desired time scales.
But, if the computer systematically takes longer to provide an update of the dynamic variables than
the simulated time, then the dynamics cannot be realized on the artificial cognitive system. Open
software frameworks as cedar typically address these cases by decreasing the simulation time at
the next update, by increasing the integration time step, to bring the simulation time back in line
with physical time. But given that DFT architectures can become large and complex, potentially
including dozens of fields of different dimensionality, this procedure may lead to prohibitively large
errors (Lomp et al., 2016).
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Another example comes from the field of mathematical
cognition, where a well-known non-linear connectionist model
is used to simulate response times and error patterns in single-
digit multiplication (Verguts and Fias, 2005). Thismodel explains
why, for instance, universally the most common mistake when
retrieving 7×8 is to answer 54 instead of 56. In order to verify
that this model produces observed pattern of human responses,
thousands of simulations with different input values and noise
levels are required. Also, if this model, as suggested in recent
articles (Campbell et al., 2015; Bellon et al., 2016), should be
extended or modified to explain phenomena such as retrieval-
induced interference between multiplications and additions
(Campbell et al., 2015) or inhibition related to individual
differences (Bellon et al., 2016), it is clear that the exploration
of different tentative architectures require optimum integration
procedures to be practical, taking reasonable simulation times.

To the best of our knowledge, in order to simulate
connectionist and dynamic field models the Euler Method (EM)
is widely used. It was used, for instance, in Thelen et al. (2001)
(as explicitly stated in page 21, second paragraph), in Verguts
and Fias (2005) (according to a personal communication), in
Lomp et al. (2016), and in Tekülve et al. (2019). In Lomp
et al. (2016), the authors explicitly stated that they use the EM
and did not use higher-order numerical methods because they
require very many function evaluations per time step, which
defeats their computational advantage when each evaluation is
computationally costly.

Here we introduce two alternative numerical methods (a
modified version of the fourth-order Runge Kutta method, and
one semi-analytical method) and apply them to solve a well-
known non-linear connectionist model of retrieval in single-digit
multiplication (Verguts and Fias, 2005). We show that, in many
regimes, the semi-analytical and modified Runge Kutta methods
outperform the Euler method, in some regimes by more than
three orders of magnitude. Given the difference in execution time
of the methods, and that the EM is widely used, we conclude that
the researchers in the field can greatly benefit from our analysis.

METHODS

In the connectionist and dynamic field frameworks, the
propagation of activation is a dynamic process operating in
a continuous state space and evolving continuously over time
(Grossberg, 1982; Thelen et al., 2001; Munakata and McClelland,
2003). In models that simulate this gradual activation process, it
is typically formalized as a differential equation relating the rate
of change of some variable (such as the activation of some unit) to
the inputs it is currently receiving from other units via weighted
connections. Equations describing the dynamic behavior of each
unit are of the form

u̇ (t) = a (t) ∗u (t) + b (t) ≡ F (u, t) (1)

where u(t) describes the activation of one unit. a(t) and b(t) are
weighted sums over all other units, governed each one by an
equation of this form. a(t) also contains a spontaneous decay
term, i.e., a(t) = −1 + . . . In Appendix A we discuss how

connectionist and dynamic field equations can be reorganized to
have the form of Equation (1) using two specific examples. We
take advantage of the fact that both models have this form to
develop optimum integration procedures that can potentially be
applied to integrate both models, since the procedures we present
here can in principle be applied to any set of coupled equations
with the form given by Equation (1).

On the one hand, the Euler Method (EM) to solve Equation
(1) is given by

u
(

t + dt
)

= u (t) + F (u, t) ∗ dt (2)

where dt is the integration time-step.
On the other hand, to apply the fourth-order Runge-Kutta

method (RK4M) to solve Equation (1) we need to calculate the
coefficients a(t) and b(t) many times at each step. Since these
coefficients are weighted sums over all other units, the bulk
of the computing time is expended on these terms, at a great
computational cost. The improved accuracy by the application
of the RK4M comes with the cost of computing a(t) and b(t) to
obtain k2, k3, and k4. To avoid this calculation, in the modified
version we apply the original algorithm to calculate k1, but we
only update the value for u(t) for the calculation of k2, k3, and
k4. If, in Equation (1), we explicitly write the dependency of F on
a(t) and b(t), the modified RK4M obeys

k1 (t) = F[t, u(t), a(t), b(t)]

k2 (t) = F[t +
dt

2
, u (t) + k1∗

dt

2
, a(t), b(t)]

k3 (t) = F

(

t +
dt

2
, u (t) + k2∗

dt

2
, a (t) , b (t)

)

k4 (t) = F[t + dt, u (t) + k3∗dt, a(t), b(t)]

and, as usual, u(t + dt)= u(t)+ dt∗(k1+ 2k2+ 2k3+ k4)/6.
Finally, for the derivation of the semi-analytical method

(SAM), note that, in the particular case in which a(t) = cte =

a and b(t)= cte= b, Equation (1) has analytical solution:

f
(

t + dt
)

=

(

f (t) +
b(t)

a(t)

)

∗ ea(t) ∗dt −
b(t)

a(t)
(3)

Even though a(t) and b(t) are not constants, the implementation
of this “analytical” solution at each step of integration converges
to the solution when dt goes to zero. One of us (AR) used a similar
approach to study optical amplifiers’ dynamic behavior (Rieznik
and Fragnito, 2004), also governed by equations of the form of
Equation (1). The analogy with an amplified signal can be more
easily understood by rearranging Equation (3) as

f
(

t + dt
)

= f (t) ∗G (t) +
b (t)

a (t)
(G (t) − 1) (4)

where G(t) = exp[a(t)∗dt] is the signal gain. In Equation (4), the
first term of the right-hand side represents the input activation
multiplied by the gain or absorption that all other units produce
on the activated unit. The second term is the noise term, named
this way because it is present even in the absence of an input
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signal, and it is not modulated by this input. In fact, using this
analogy, the effects of all other units on the activation of one given
unit can be divided into two contributions: the noise contribution
and the contribution that amplifies or absorbs the input signal.

We implement the SAM, the EM, and the modified RK4M to
solve the IN model equations (Verguts and Fias, 2005), described
in Appendix B. IN is a connectionist model of retrieval in
single-digits multiplications, an area of interest for our research
group (Zimmerman et al., 2016; Rieznik et al., 2017). The most
important facts of arithmetic retrieval are (Verguts and Fias,
2005; Zimmerman et al., 2016): the problem size effect (small
multiplication problems are easier than larger ones; cf. 3×2 and
7×8), the five effect (problems with five are easier than can
be accounted for by their size), and the tie effect (problems
with identical operands are easier than other problems; cf. 8×8
and 8×7). The basic assumption is that candidate answers to a
particular problem are in cooperative/competitive interactions,
and these interactions favor small, five, and tie problems.

RESULTS

To compare the three methods, we simulate the activation
patterns of the network for the input 7×8, the most difficult
operation in the multiplications table. The IN model describes
a total of 107 coupled equations (see Appendix B): eight for each
of the two-input fields (varying from 2 to 9), 36 semantic fields,
nine tens fields (from 0 to 8), 10 units fields (from 0 to 9), and
36 response fields. To measure the accuracy of a simulation, we
compute an average error over the response fields: if un is the
numerical solution and ur is the real one, the error is given by

error = sum(|un − ur|)/36 (5)

Observe that the sum is performed over the 36 response fields,
which explains why we divide by 36 to compute the error. Here,
the real solution ur is obtained using a very small dt (in our case,
10−9). We checked that the three methods converge to the same
ur solution.

We use the following input parameters: B = 20, M = 10, S =
2, tao= 19.5, alpha= 0.75, and C = 0.5. It was shown in Verguts
and Fias (2005) that these parameters fit human performance of
retrieval in single-digits multiplications. All 107 input fields were
zero at t = 0, except the first-operand input field for 7 and the
second-operand input field for 8, which values were 20 (B = 20).
After t = 0 it is assumed that the input stimuli are no longer
present. The simulation is stopped at t = 0.1 (a.u.), which is the
time that, for these parameters, it takes to themodel to provide an
answer (56, i.e., the result of 7×8). All simulation durations, given
in seconds, were taken in a Yoga-Lenovo personal computer
with an i7 intel processor running Matlab 2008 for windows.
The Matlab codes are available at https://github.com/arieznik/
IN_simulations (see Appendix C for instructions). Results are
shown in Figure 1. In order to vary the simulation times and
errors, we vary dt from 10−4 to 10−7. The exponent j defining
the step size (dt = 10−j), was varied in steps of size 1 from 4 to
7 and for each of these values we also run two extra simulations,
one with dt = 0.5∗10−j and the other with dt = 0.25∗10−j.

FIGURE 1 | Simulation times vs. error for three methods: EM, SAM, and

modified RK4M. Results varying dt from 10−4 to 10−7 are shown.

It can be observed, in Figure 1, differences larger than three
orders of magnitudes among the methods, but no method is the
most efficient in all regimes. For any required error, the SAM
or EM are faster than the RK4, in most cases by more than
one or even two orders of magnitude. Equivalently, they are
more precise given any required simulation time. Importantly,
for commonly used errors, larger than∼10−8, the EM method is
overperformed by the SAMmethods in some cases by more than
three orders of magnitude.

DISCUSSION

The fact that connectionist and DFT models can be written in
the form of Equation (1) suggests that these results could be
generalized to the simulations of other similar models, simpler
or more complex. In the case here analyzed there are up to three
orders of magnitude of difference in execution time among the
models, but, despite that, the EM is the one that it is, to the best
of our knowledge, universally used. Researchers in the field can
benefit from these results: the two methods we introduce here
can be easily implemented in open software like cedar; the matlab
codes we share in our github repository (https://github.com/
arieznik/IN_simulations) are well-commented and easy to follow
in order to facilitate other researchers’ further investigations on
the regimes under which these methods overperform the EM in
areas which are not the areas we are interested in (the interacting
neighbors model for mathematical cognition).

These outstanding differences in simulation times using
different methods also pose a question: how could a naïve user
of the methods decide which one to use? Step-doubling is a well-
known technique to estimate the local error and could be used to
choose among methods (Gear, 1971).

In modeling optical amplifiers, adaptive step size selection
criteria are used (Sinkin et al., 2003; Heidt, 2009; Rieznik et al.,
2012). The integration step size (dt in this paper) varies along
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with the simulation according to a required-by-the-user local
error. Step-doubling and linear extrapolation is used to obtain
the higher-order solution (Gear, 1971). To the best of our
knowledge, although widely used in other fields, these techniques
have not been previously used, or even seriously investigated
in simulations of the connectionist and DFT frameworks with
applications in robotics. Although adaptive step size is not
suitable when the evolution in time of sensory readings must be
monitored, it may greatly improve simulations performances in

other areas of robotics research. Under this framework, the user
sets a target error and not a fixed step size.

In conclusion, we presented preliminary results suggesting
that the two alternative methods to the EM for the integration
of connectionist and dynamic field models (the SAM and
modified RK4M that we developed here) may greatly improve the
simulations, but further investigation is necessary to understand

the regimes under which the application of the SAM or RK4M is
preferable over the EM, which is, to the best of our knowledge,
the default method used by researchers.
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APPENDIX

Appendix A: Reorganizing connectionist and dynamic field

theory equations as Equation (1)

We show next two examples on how to reorganize model
equations in order to obtain the form of Equation (1). The two
examples are one connectionist model (Verguts and Fias, 2005)
and one dynamic field model (Thelen et al., 2001). We begin by
the later.
Equation (8) in Thelen et al. (2001) is

τ u̇(x, t) = −u (x, t) + S (x, t) +

∫

w
(

x− x′
)

f
(

u
(

x′
))

dx′

+h+ qξ(x, t) (A1)

If we define a(x, t) =−1/ τ and

τb(x, t) = S (x, t) +

∫

w
(

x− x′
)

f
(

u
(

x′
))

dx′ + h+ qξ(x, t)

(A2)

and we drop the x dependence, (A1) is

u̇ (t) = a ∗ u (t) + b(t) (A3)

which has the form of Equation (1), as we want to demonstrate.
Note that the Equation (A3) is linear because not a∗u(t)

nor b(t) contain non-linear terms [f (u) in Equation (A2) is a
step-function which equals 1 or 0 depending on the u value].
The example we give next, however, the connectionist IN model
equations, is non-linear, since, as we shall see, the term a(t)∗u(t)
contain non-linearities. The IN model equations are explained in
Appendix B. For the semantic fields, Equation (B2), we have

d

dt
yi (t) = −yi (t) +

∑

j

win
ji xj

(

B− yi (t)
)

(A4)

which can be reorganized as

d

dt
yi (t) = −yi (t)



1 +
∑

j

win
ji xj



+
∑

j
win
ji xjB (A5)

Now, defining

ai (t) = −



1 +
∑

j

win
ji xj





and

bi (t) =
∑

j
win
ji xjB,

And dropping the subscript i, Equation (A4) can be rewritten as

ẏ (t) = a(t) ∗ y (t) + b(t)

TABLE A1 | Coefficients a(t) and b(t) for each field in the IN model equations.

(Equation) Field ai(t) bi (t)

(B1) input field − (1 + Ii (t)) BIi (t)

(B2) semantic field −

(

1 +
∑

j

win
ji xj (t)

)

B
∑

j

win
ji xj (t)

(B3) decade field −

(

1 +M
∑

j

wT
ji yj (t)+

∑

j 6=i

zTj (t)

)

BM
∑

j

wT
ji yj (t)

(B4) unit field −

(

1 +M
∑

j

wU
ji yj (t)+

∑

j 6=i

zUj (t)

)

BM
∑

j

wU
ji yj (t)

(B5) response field −

(

1 +
∑

j

wR
ji zj (t)

)

B
∑

j

wR
ji zj (t)

Which, as we want to demonstrate, has the form of Equation
(1). Observe that a(t)∗y(t) contains non-linearities, since a(t)
is linear on the other units and then a(t)∗y(t) contains the
multiplication of two units’ values. In Table A1 we show
the expressions for a(t) and b(t) for the other fields in the
IN model.

Appendix B: IN model equations

Note: the equation here shown had some typos in the original
article in which they were presented (Verguts and Fias, 2005).
The authors sent us, through a personal communication, a
corrected version, which we explain next.

For each of the two input fields, for an input unit i at time t,
activation xi of that unit at time t is described by

d

dt
xi (t) = −xi (t) + Ii(t)(B− xi (t)) (B1)

In Equation (A1), –xi(t) functions as a decay term. The factor
Ii(t) is an indicator function. which, at time t, equals one if
number i was presented in its input field and zero otherwise. The
parameter B is an upper bound to the activation values xi. Hence,
the combination of the decay term and the Ii(t)[B – xi(t)] terms
restrict xi between zero and B.

The activation yi of a semantic unit i has the
following equation:

d

dt
yi (t) = −yi (t) +

∑

j
win
ji xj

(

B− yi (t)
)

(B2)

In Equation (B2), the sum is taken over all nodes in both input
fields. Again, the factor B – yi bounds the equation below B. The
equation is also bounded above zero: For example, in the absence
of any input, the equation becomes dyi(t)/dt = –yi(t), and yi
decays exponentially toward zero. The connection weight win

ji

are given by win
ji = exp[–α ∗ abs(i–j)] – C, where α and C are

two input parameters for the model.
The equation describing activation zi

T of unit i in the decade
field (with superscript T for tens, or decades) is

d

dt
zTi (t) = −zTi +M

∑

j
wT
ji yj

(

B− zTi (t)
)

− zTi

∑

j 6=i
zTj

(B3)
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and similarly, for the units field, with superscript U for units,

d

dt
zUi (t) = −zUi +M

∑

j
wU
ji yj

(

B− zUi (t)
)

− zUi

∑

j 6=i
zUj

(B4)

The weights wji
T and wji

U are zero or one depending on whether
node j should feed into decomposition field unit i or not. For
example, the weight from the 24-node in the semantic field to
the twenties node in the decades field is one, to the thirties node
it is zero, and so on.

In the response field, for node i with activation ri(t),

d

dt
ri (t) = − ri (t) +

∑

j
wR
jizj (B− ri (t)) (A5)

The weights wji
R are zero or S, again depending on whether the

connection between the decomposition (decade or unit) node
and the response node should be formed or not. The parameter
S is a scaling parameter which influences the overall speed of
responding in the network.

In addition to these parameters, there is also a threshold that
has to be reached before a response is executed, which is denoted
alpha. To sum up, the parameters used in the model are B, M,
S, and alpha, in addition to the parameters α and C describing
the connection weight between two semantic fields. The first
four of these are scaling parameters, in the sense that changing
their values changes the simulated RTs (e.g., RTs are generally
slower with a higher threshold alpha), but does not change the
qualitative pattern of predictions.

Appendix C: Download, installation and running the codes

You must save the compressed folder called INmodel.zip in your
computer. When you extract it, five matlab files (.m) will be
created inside the folder IN_model:

- IN_SAM.m, IN_EM.m, and IN_RK4.m: these functions
use the SAM, EM, and RK4 methods to solve the IN
equations using as inputs the first operand (op1), the
second operand (op2 ≤ op1), alpha, C, and dt. Be sure
of adding these functions to the matlab path before the
simulation starts.

- IN_Simulation.m: this is the file you must run in order to
perform the simulations. By default, it runs the simulation
using op1 = 8 and op2 = 7, since in this article we
simulated the pattern of activations for the input 8×7. It
also uses by default the IN_SAM.m function. It is easy to
change the problem to be simulated (for instance, to 8×8)
or the method used for the integration since the code is
well-commented.

- Figure_1.m: if you run this file, after a few seconds Figure 1 in
this article will pop put.

Apart from these .m files, a set of .mat files will be created inside
the IN_model folder. These are matlab variables containing the
results of the simulations using the three methods here presented
for the input 8×7 and with dt varying from 10-4 to 10-7. These
files are used when ran Figure_1.m in order to generate Figure 1.
Be sure they are included in the matlab path when running
this file.
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