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The study of student behavior analysis in class plays a key role in teaching and

educational reforms that can help the university to find an effective way to improve

students’ learning efficiency and innovation ability. It is also one of the effective ways

to cultivate innovative talents. The traditional behavior recognition methods have many

disadvantages, such as poor robustness and low efficiency. From a heterogeneous view

perception point of view, it introduces the students’ behavior recognition. Therefore, we

propose a 3-D multiscale residual dense network from heterogeneous view perception

for analysis of student behavior recognition in class. First, the proposed method adopts

3-D multiscale residual dense blocks as the basic module of the network, and the

module extracts the hierarchical features of students’ behavior through the densely

connected convolutional layer. Second, the local dense feature of student behavior

is to learn adaptively. Third, the residual connection module is used to improve the

training efficiency. Finally, experimental results show that the proposed algorithm has

good robustness and transfer learning ability compared with the state-of-the-art behavior

recognition algorithms, and it can effectively handle multiple video behavior recognition

tasks. The design of an intelligent human behavior recognition algorithm has great

practical significance to analyze the learning and teaching of students in the class.

Keywords: students behavior analysis, 3-D multiscale residual dense network, hierarchical feature, transfer

learning, heterogeneous view perception

INTRODUCTION

A country is prosperous and strong when the education is strong. China has always attached great
importance to the development of education. In the report to the 19th National Congress of the
COMMUNIST Party of China (CPC), it was clearly stated that “priority should be given to the
development of education.”

Over the years, the construction of educational informatization has supported and led the
modernization of China’s education. It has also effectively promoted the renewal of educational
ideas, mode reform and system reconstruction.
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With the wide application of new information technologies,
such as big data, internet of things andmobile internet, university
informatization has gone from “digital” to “intelligent” and
entered into a new stage of the smart campus where big data,
as the key supporting technology of smart campus construction,
plays an irreplaceable role in smart campus construction. Big data
refers to those data sets that are too large for traditional software
tools to collect, store, and analyze. They are characterized by
“4Vs” (namely volume, variety, velocity, and value). All kinds
of system data built by the smart campus are gathered into
the big data exchange platform, and massive heterogeneous
multidimensional campus data are accessed, shared, distributed,
and mined.

Through the comprehensive analysis of big data, the behavior
rules of teachers and students in the campus and the overall
operation level of the school can be grasped. The overall
research and judgment and dynamic monitoring of the overall
teaching and scientific research situation and development trend
of the school can be carried out to transform from passive
response to active service so as to realize source discovery and
intelligent service.

Video understanding is a challenging task in the field
of computer vision (Wang et al., 2020a; Zeng, 2020). The
recognition of human behavior in video is an important branch.
With the development of computer science and technology,
remarkable progress has been made in the related areas.
According to different ways of extracting features from video
sequences, behavior recognition methods proposed in reference
(Yao et al., 2019) could be divided into two categories:
manual feature construction and feature automatic learning.
In early human behavior recognition algorithms, manually
constructed features are usually used to describe local spatial-
temporal changes in videos, such as scale-invariant feature
transform (SIFT) (Yin et al., 2019, 2020), histogram of oriented
gradients (HOG)/histogram of oriented optical flow (HOF),
motion boundary histogram (MBH) (Li et al., 2018), contour
(Teng et al., 2020), motion attributes, and dense trajectory
characteristics (Li et al., 2017; Papakonstantis and Tsatsara, 2018),
etc. Reference (Zhang et al., 2013) proposes an improved dense
trajectory (IDT) for behavior recognition; it uses the Fisher
vector feature encoding, which presents excellent performance
in behavior recognition. The manually constructed features are
usually modeled based on human visual features and other
prior knowledge to design the features. It is mainly designed
for a specific task and not suitable for all scenarios. Also, its
computation is complex.

With the rise of deep learning algorithms, the way of
automatic learning features gradually replaces the traditional
elaborately designed features. Meanwhile, the model with
automatic learning is applicable to the current task. Also, the
network can be trained end-to-end, which makes the model
calculation more efficient. In the numerous deep learning
network structures, the convolutional neural network (CNN) is
the most widely used (Sun et al., 2019; Teng and Li, 2019; Yin
and Bi, 2019).

CNN has achieved great success in the static image field.
It also has great advantages in studying video processing. To

encode spatial and temporal information in the deep convolution
model, Park and Kim (2019) carries out simple and effective
expansion for a 2-D convolutional network and proposes a 3-D
CNN model for learning dynamic continuous video sequences
and deeply learned spatial-temporal features. Li et al. (2019)
finds the optimal convolution kernel size in the 3-D CNN after
systematic research and proposes a 3-D CNN (C3D) that is
suitable for large-scale data sets. C3D was used to extract the
spatial-temporal features of the video. The extracted features
had strong universality and high computational efficiency. In
addition, Zhu et al. (2019) improves the 3-D CNN in the deep
residual network and proposes the Res3D network, which is
superior to C3D in operation speed and recognition accuracy.
Hara et al. (2018) shows that the kinetics data set has sufficient
data for training of deep 3-D CNN, and enables the training
of up to 152 ResNets layers. Kinetics pretrains simple 3-D
architectures that outperform complex 2-D architectures. Tran
et al. (2018) further decomposes the 3-D convolution operations
in the 3-D convolutional network into two independent
continuous operations: two-dimensional space convolution and
one-dimensional time convolution and proposes the R(2+1)D
network. Compared with C3D, this network effectively increases
the capacity of the model and is beneficial to the optimization
of the network. The 3-D convolution network has received
widespread attention and application because of its simple and
effective strategy, but the network also has some defects. Due
to its huge network parameters, convergence is very difficult.
Chen et al. (2018) proposes a lightweight multifiber network
architecture, which significantly reduces the computational
complexity of 3-D networks and improves the model recognition
performance. Yang et al. (2019) proposes an asymmetric 3-D
CNNmodel. It reduces the number of parameters and calculation
costs. This model introduces mult-source enhanced input and a
multiscale 3-D convolution branch to process the convolution
features of different scales in the videos. By fusing the effective
information of RGB and optical flow frame, the expression ability
of the model is significantly improved. The above methods only
consider the depth of CNN layers; they ignore the parameter size
and the time computing complexity.

Additionally, the 3-D convolution network has a gap with
the baseline method in the space–time feature modeling. In
the ResNext framework, the spatio-temporal channel correlation
(STC) block is used as its new residual module, which could
effectively capture the spatial and temporal channel correlation
information in the entire network layer. Hussein et al. (2019)
focuses on the time clues in behavior recognition. To model
complex actions within the long time range, an improved 3-D
convolutional network Timeception layer is proposed. It uses
multiscale time convolution, which is learning about long-term
dependencies by focusing on short-term details.

To supplement the modeling of video temporal dimension
information, two CNNs were used to study the features of the
original single-frame RGB image and the optical flow image of
the video frame, respectively (Simonyan and Zisserman, 2014;
Liu and Yin, 2017). Finally, information fusion was conducted
for the output, and a dual-stream network architecture was
designed to study the space–time characteristics. Wang et al.
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(2019) combine the sparse time sampling strategy and video
fragment fusion and introduce the temporal segment network
(TSN) to improve the long-term time structure modeling
capability of the video. Other studies focus on using correlations
between temporal and spatial networks to improve recognition
performance. For example, Feichtenhofer et al. (2017) use
a residual connection to conduct spatial-temporal interaction
between dual-stream networks. Feichtenhofer et al. (2016)
introduce fusion information into the model and specifically
analyze the influence of different fusion features on the
recognition results. Carreira and Zisserman (2017) extends the
kernels of convolution and pooling in the double-flow network
as a 3-D form and proposes an inflated 3-D ConvNet model.
Through the pretraining in large data sets, it achieves advanced
results (recognition rate is 97.9% in UCF-101; the recognition
rate is 80.7% in HMDB-51).

Dual-flow networks and their derived models form a strong
baseline. However, their application is limited due to the
calculation complexity and dense sampling strategy. Ma et al.
(2016) proposes a long short-term memory (LSTM) network
to model the video long sequence structure. Donahue et al.
(2017) proposes a long time sequence recursive neural network
combining a convolutional layer and a long time sequence
recursion, which could be used to learn variable length input
and simulate a complex dynamic time sequence. Ng et al. (2015)
computes the global video-level features by connecting multiple
stacked LSTM on each frame’s convolution feature. Ji et al.
(2016) shows that modeling multiple flows through LSTM could
improve the performance of behavior recognition. Schuldt et al.
(2004) proposes that LSTM networks are able to model long-
time video and high-level motion changes, but they are unable to
capture important low-level movements. Furthermore, network
training is time-consuming.

This paper focuses on the behavior recognition architecture

based on a 3-D CNN. 3-D convolution can be used to extract
universal and reliable space-time features directly from the

original video, which is intuitive and effective. However, the

traditional 3-D CNN algorithm lacks the full utilization of the
multilayer convolution features of the network, which affects

the generalization performance of the network. Combining the
multiscale residual dense network and dense network, this paper

proposes a 3-D multiscale residual dense network (3D-MRDN).
Our main contributions are as follows:

1) This new network can make full use of the hierarchical

features of all convolutional layers and uses a 3-D multiscale
residual dense block (3D-MRDB) as the building module. The

features of each convolutional layer in the 3D-MRDB can be

transferred directly to all subsequent layers.
2) Then, local dense feature aggregation is used to retain the

useful information adaptively, and local residual learning is
carried out for the input and output feature aggregation. The
sampled output of the 3D-MRDB module is directly accessed
to all layers in the next 3D-MRDB module, forming a state of
continuous transmission and feature reuse.

3) Meanwhile, the feature output in each 3D-MRDB
module is used by concatenating after convolutional

sampling so that multiple levels of features can be
adaptively retained in a global manner to complete global
feature aggregation.

4) To verify the effectiveness of the proposed algorithm, this
paper trains and tests it on KTH and UCF-101 data sets.
Compared with the state-of-the-art algorithms, the proposed
method achieves a more accurate recognition rate. The
experimental results show that the 3-D multiscale residual
dense network can effectively recognize student behavior in
the video.

This paper is organized as follows. In section (2), we state in
detail the proposed behavior recognition framework. Section (3)
gives the experiments and analysis. There is a conclusion in
section (4).

PROPOSED BEHAVIOR RECOGNITION
FRAMEWORK

3-D CNN
In a 3-D CNN, 3-D convolution essentially executes the 3-D
convolution kernel operation on a cube formed by stacking
multiple video frames. Because each feature map in the
convolutional layer is connected to multiple adjacent continuous
frames in the upper layer, movement information can be
captured (Scherpf et al., 2020; Ruan and Li, 2021). A 3-D
convolution operation can be described as C (n, d, f), which
means that it inputs the convolution layer with the size of n
× n × n and d feature graphs with the size of f × f × f. The
output at position (x, y, z) on the mth feature graph of the 3-D
convolutional layer can be expressed as:
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where blm is the bias of feature mapping, q is the feature map

in the traversed l − 1 layer, and w
ijk

lmq
is the weight at the kernel

location q of the (i, j, k) th feature map. Weights and deviations
are obtained through training.

C3D based on 3-D convolution construction is widely used
in the field of video behavior recognition. Features extracted
by C3D also have strong recognition ability in other tasks,
such as behavior recognition, timing behavior detection, gesture
recognition, etc. (He et al., 2017). Compared with C3D,
improved 3-D convolutional networks based on ResNet and
DenseNet architectures, such as 3D-ResNet and 3D-DenseNet,
can significantly improve the effect of video behavior recognition
tasks. The following are the networks constructed based on 3-
D convolution. They are C3D, 3DResNet network, and 3D-
MDenseNet. The input, output, and convolution kernel size of
the network are the 3-D tensors with L×H×W,where L, H, and
W represent the length, height, and width of time, respectively.
To reduce data redundancy, even frames are skipped in the
network input with size 8× 112× 112, which adapts to the GPU
memory limit and retains an appropriate batch size. Additionally,
the three networks adopt the same data enhancement and data
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FIGURE 1 | 3D multiscale dense residual network.
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preprocessing methods. The proposed C3D in this paper has five
convolutional layers and five lower sampling layers with size 3×
3 × 3. These are cascaded connections between layers. Finally, it
goes through two fully connected layers and the Softmax layer.
Its output consists of 101 category probabilities.

The 3D-ResNet network is extended by 2D-ResNet; the
convolutional layer is expanded from d × d to 3 × d ×

d. The step of the lower sampling layer except the Conv1
convolutional layer is changed to 2 × 2 × 2. The convolution
kernel of the Conv1 layer is 3 × 7 × 7, and the convolution
kernel of the other layers is 3 × 3 × 3. Residual connections
are adopted in the Conv1, Conv2-x, conv3-x, Conv4-x, and
Conv5-x layers, which makes it easier to optimize the network.
The 3-D densenet network is constructed in a similar way to
the 3D-Resnet network. The hierarchical connection mode of
each convolutional layer adopts a dense connection, and the
network is composed of multiple dense blocks. Each layer in the
same dense block reads information from all preceding layers,
and finally, it is concatenated. In the same dense block, the
bottleneck layer is used in which a 1 × 1 × 1 convolution
operation is used to reduce the number of input feature
graphs. It reduces the computation and merges the features of
each channel.

3-D Multiscale Residual Dense Network
The proposed 3-D multiscale residual dense network (3D-
MRDNet) imitates the residual of ResNet learning and the dense
DenseNet network connection mode to build the 3-D residual
dense blocks and extract the multilevel space–time features in 3-
D video behavior recognition. It combines low-level features with
high-level semantic features to improve the expression ability of
the model as shown in Figure 1.

As shown in Figure 1, the 3-D multiscale dense residual
network is divided into three parts: the shallow feature
extraction layer, the multiscale dense residual layer, and the
global feature aggregation layer (Wang et al., 2020b). The
shallow feature extraction layer (Part A) includes the two
3-D Conv, and the multiscale residual dense layer (Part
B) includes a pooling layer (Maxpool), multiple residual
dense blocks (3D-RDB), and convolutional layer 3D Conv1
and 3D Conv2 for convolution down-sampling. The global
feature aggregation layer (Part C) consists of a concatenated
layer for feature splicing and a convolutional layer for
feature aggregation.

The input and output of the 3-D residual dense network are
defined as Pclip and Pcls, respectively. The first two convolutional
layers of the network are used to extract shallow features.
Specifically, the process of extracting features from the shallow
layer can be described as

P0 = Gsh(Pclip), (2)

where Gsh represents the composite function of the first two
convolution layers and the down-sampling operation, and P0 is
the feature graph extracted from the video clip, which is used for
input of the first layer residue dense block. Here,N residual dense

FIGURE 2 | 3-D residual sense block.
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blocks are set. The output of the nth residual dense block is Pn.
Its calculation process is as follows:

Pn = G3D−MRDB,n(G3D−MRDB,n−1

(· · · (G3D−MRDB,1(P0)) · · · )), (3)

whereG3D−MRDB,n represents the calculation operation of the nth
residual dense block (3D-MRDB) and sub-sampling (Maxpool).
When n = N, G3D−MRDB,N only contains the computation
operation of the residual dense block. G3D−MRDB,n is a composite
operation function that includes multilayer convolution and
rectifying linear units. Because Pn is generated by multiple
convolution layer operations in the nth residual dense block, Pn
can be regarded as a locally dense feature.

After multilayered local dense features are extracted by 3D-
MRDNet through multiple 3D-MRdB, global feature aggregation
(GFA) is further achieved. The GFA takes full advantage of the
features in the preceding layers. Specifically, the feature Pn in
different levels of input is sampled as a 1× 7× 7 feature graphXn.
And l2 norm normalization is performed. Then, concatenate is
used to splice the local dense feature Xn from different levels. The
convolution with size 1 × 1 × 1 is used for feature aggregation
and channel adjustment to obtain the feature graph of global
feature aggregation where the stitching process of local dense
features can be described as follows:

PGFA = GGFA([X0,X1, · · · ,XN]), (4)

where PGFA is a feature graph output by the global feature
aggregation. GGFA is a composite function with 1 × 1 × 1
convolution, which is used for features adaptive fusion from

TABLE 1 | The parameters in 3D-MRDNet.

Network layer Size of output Structure parameter

Conv1 8 × 112 × 112 3 × 3 × 3, stride, 1 × 2

× 2

Conv2 8 × 56 × 56 3 × 3 × 3

Conv3_x 4 × 28 × 28

[

1× 1× 1

3× 3× 3

]

× 4

Conv4_x 2 × 14 × 14

[

1× 1× 1

3× 3× 3

]

× 4

Conv5_x 1 × 7 × 7

[

1× 1× 1

3× 3× 3

]

× 4

– 1 × 1 × 1 Global average pooling,

101-d FC, softmax

TABLE 2 | Params and FIOPs in different models.

Network Params/106 FIOPs/109

C3D 11.6 6.3

3D-RESnet 33.1 19.2

3D-Densenet 17.5 8.1

3D-MRDNET 13.5 6.8

different layers. [X0,X1, · · · ,XN] refers to the concatenation
of N feature graphs after 3-D residual dense blocks and
convolution sampling.

Based on the above analysis, the network extracts shallow
features from the input clip, and then it obtains rich local features
through multiple residual dense blocks and gets global features
through global feature aggregation. Finally, it obtains scores
of each class through a softmax classifier. The entire network
3D-MRDNet calculation process can be expressed as

Pcls = GMRDNet(Pclip), (5)

whereGMRDNet is the operation of the entire 3D-RDNet network.
Pcls is the output of the network.

3-D Residual Dense Block
A 3-D residual dense network is composed of multiple 3-D
residual dense blocks. Figure 2 is the network structure diagram
of 3-D residual dense blocks (3D-RDB). 3D-RDB includes
dense joint layers, local feature aggregation (LFA), and local
residual learning (LRL), which enables the network to fully learn
multilayer convolution features.

The 3D-RDB module consists of multiple convolution layers,
a linear rectifier unit (ReLU), and the batch normalization
(BatchNorm) feature extraction unit is beneficial for training
of the deeper network. The features learned by the former 3D-
RDB are delivered directly to each layer in the current 3D-RDB.
Meanwhile, there is a direct connection between each layer inside
the module, which makes the transfer of features and gradients
more effective. It promotes feature reuse, retains the forward-
propagating feature, and extracts the local dense feature. Here,
we define Pn−1 and Pn as the nth input and n + 1th input of 3D-
RDB, respectively. The output of the ath Conv layer in the nth
3D-RDB can be expressed as

Pn,a = σ (Wn,a[Pn−1, Pn,1, Pn,2, · · · , Pn,a−1]), (6)

where σ is the activation function of ReLU, Wn,a is the weight
of the ath convolution layer, and the bias term is omitted here
for simplicity.

Assuming that Pn,a is composed of a multiple feature graph,
[Pn−1, Pn,1, Pn,2, · · · , Pn,a−1, ] is the concatenation of the output
feature graph of the (n−1) th 3D-RDB and the nth 3D-RDB.

After learning multilevel spatiotemporal features through the
dense connection mode, 3D-RDB fuses local dense features.
Specifically, a series of convolutional layer features from the
previous 3D-RDB and the current 3D-RDB are extracted and
spliced. A 1 × 1 × 1 convolutional layer is introduced for
adaptive feature fusion with different levels, and this operation is
named LFA. The calculation process can be described as follows:

Pd,LF = Gn
LFA([Pn−1, Pn,1, Pn,2, · · · , Pn,a, · · · , Pn,A]), (7)

where Gn
LFA represents the composite operation of the 1 × 1

× 1 convolutional layer in the nth 3D-RDB, which can reduce
the number of feature graphs and the computations to fuse each
channel at the same time. As the growth rate of dense networks
increases, LFA contributes to very dense network training.
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FIGURE 3 | Six types of behavior examples in KTH data set.

In the deep network structure, to ensure the maximum
information flow between different levels in the network, the skip
connection mode of the residual network is adopted in 3D-RDB,
which connects feature graphs with the same feature map size so
that the output of each layer is directly connected to the input of
the subsequent layer. This kind of jumping connection alleviates
the problem of network gradient disappearance, enhances feature
propagation, promotes feature reuse, and retains the features of
forward propagation. The output of the nth 3D-RDB can be
expressed as

Pn = Pn−1 + Pn,LF . (8)

The use of LRL can improve the network expression ability and
achieve a better network effect. This module architecture is called
a 3-D residual dense block (3D-RDB) due to dense connection
patterns and LRL.

In the proposed 3D-MRDNET network, the convolution
kernel size is 1× 1× 1 in local and global feature aggregation; the
convolution kernel size in other layers is set as 3 × 3 × 3. There
are 96 filters in the first layer of the network, 512 filters in the GFA
convolution layer, and 128 filters in the rest of the network.

In addition, the number of dense 3-D residual blocks in the
3D-RDNet network tested in this paper is set as three, and the
number of dense layers within the dense 3-D residual block is
set as four. In the 3D-RDNet network, except for convolutional
layers, such as 3D Conv1 and 3D Conv2, which are convolved
with deconvolution sampling in the dense residual layer, the
other structural parameters are shown in Table 1, where the step
size is 2× 2× 2.

Four network model parameters (Params) and floating point
operations (FIOPs) can be obtained by analyzing Table 1 as
shown in Table 2.

Table 2 shows that, compared with C3D, the proposed 3D-
MRDNet network has more parameters and computations.
Compared with 3D-ResNet and 3D-DenseNet models,
3D-MRDNet has the advantages of fewer parameters and
less computations.

EXPERIMENTS AND ANALYSIS

Data Sets
The experimental data in this paper include KTH and UCF-
101 as well as the data set collected and produced in this paper,
including student behaviors in class. KTH and UCF-101 are the
most commonly used data sets in the field of computer visual
behavior recognition. The KTH data set is completed by 25
people performing six action types under four different scenarios
with a total of 600 video samples. Here, behavioral categories
include boxing, clapping, waving, jogging, running, and walking.
The four scenarios include different lighting conditions, clothing
changes, and background scale changes. However, its background
is relatively simple with few behavioral categories, and the camera
shooting angle is fixed. The experiment in this paper uses the
behavioral video with 16 people as training and the behavioral
video of the remaining nine people as test. The six kinds of
actions in the KTH data set are shown in Figure 3.

UCF-101 is also the most widely used data set in the
field of behavior recognition. The sample is collected from
the YouTube video site and consists of 13,320 videos and
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101 behavioral categories. UCF-101 provides a great variety
of behavior categories. Different from previous data sets,
it is characterized by great variation in background type,
camera movement, lighting conditions, angle of view, object
proportions, and posture. Videos in each behavior category
are divided into 25 groups, each containing 47 behavior
videos. The behavior can be divided into five types: (1)

human–object interaction, (2) only physical movement, (3)
human interaction, (4) play an instrument, (5) movement.
There are three recommended training/test groupings for
the entire data set. In this paper, the split1 training/testing
group recommended by UCF-101 is used for experiments.
The nine types of behavior listed by UCF-101 are shown
in Figure 4.

FIGURE 4 | Nine types of behavior examples in UCF-101 data set.

FIGURE 5 | Student behavior examples in class.
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In this paper, the data sets of real scenes are established
according to the requirements of teaching tasks in class. The
video is collected through the camera equipment installed in
the classroom with a resolution of 2,560 × 1,536 and includes
six actions frequently appearing in class: having class, sleeping,
playing on a mobile phone, taking notes, looking around, and
reading. After collecting the video, uniform frame sampling
is carried out to convert the video into images, and then the
original images are cropped into images containing individual
students and reconstructed into 128 × 128 pixels. After labeling
the class behavior of students in each image, a total of 1,020
labeled class behavior images are obtained. The original data
set is expanded by mirror-symmetric data enhancement. The
class behavior recognition data set containing 2,040 images is
finally obtained. Some of the images in the data set are shown
in Figure 5 in which the number of images for each behavior is
the same; 1,560 images are randomly selected as the training set,
and the remaining 480 images are used as the test set.

Experiment Set
This paper adopts Keras (an open deep learning framework
of Google). The experimental platform is Ubuntu 16.04 and

TABLE 3 | Comparison with different methods on KTH data.

Method Accuracy False detection rate

DHL 71.52% 21.26%

SPPDCN 79.38% 18.47%

MMDSTL 88.47% 15.33%

C3D 90.27% 10.25%

3D-ResNet 91.57% 6.94%

3D-DenseNet 92.36% 5.93%

Proposed 94.28% 1.65%

The bold values denote the best values with proposed method.

NVIDIA GTX1060. The input of the model is a clip composed
of 16 consecutive frames of a video sequence. The sampling rate
of the clip is set to two. During the training, skipping even frames
is adopted on the network input. The random cropping, random
flipping, and random rotation of images are used to increase the
diversity of training samples. During the test, the input video clips
are preprocessed in the same way as the training stage, and then
the trainedmodel is used to estimate the behavior classification of
each video clip sequence. If the classification results of the whole
video level are needed, multiple clips of the current video are
selected to obtain the classification results, respectively. Then the
final behavior classification of the video is averaged.

The Experiment on the KTH Data Set
In order to verify the effectiveness of the 3-D multiscale residual
dense network proposed in this paper, experiments are carried
out on three data sets, including KTH, UCF-101, and the real
scene data set made by ourselves. First, experiments are carried
out on the small KTH data set to test the video behavior
recognition accuracy of four network models, respectively.

When training the data, after data enhancement and
preprocessing, the video frame input size of the KTH data
set is 8 × 112 × 112. Batch size is set to 16; it uses the
Adam optimizer. Parameters are β1= 0.9, β2= 0.999. The initial
learning rate is 10−4. The loss function uses a multiclass cross-
entropy function, and the training duration is 25 cycles. The
performance results of human behavior recognition algorithms,
such as C3D, 3DResNet, 3D-DenseNet, 3D-MRDNet, DHL
(Cahyadi et al., 2018), SPPDCN (Yang et al., 2018), and
MMDSTL (Zhao et al., 2019) are shown in Table 3. Here, the
accuracy of behavior recognition is calculated based on video-
level classification results, namely video top-1. Cahyadi et al.
(2018) proposes an improved recurrent neural network matching
strategy by explicitly transforming the feature in Euclidean space
by a distance learning function. The distance function is based

FIGURE 6 | PR comparison.
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TABLE 4 | Confusion matrix with proposed method on KTH data set.

True label Jogging 0.98 0.00 0.00 0.02 0.02 0.00

Boxing 0.00 1.00 0.00 0.00 0.00 0.00

Waving 0.00 0.02 0.97 0.00 0.00 0.01

Walking 0.02 0.00 0.00 0.98 0.00 0.00

Running 0.07 0.00 0.00 0.01 0.95 0.00

Clapping 0.00 0.00 0.00 0.00 0.00 1.00

Jogging Boxing Waving Walking Running Clapping

Predicted label

on a simple Siamese network with two subnetworks sharing
the same weights. The network consists of the learned feature
based on unsupervised dictionary learning as an intermediate
layer between raw input and fully connected layers with non-
linear activation and regularization. Yang et al. (2018) proposes
a 3-D densely connected convolutional network based on spatial
pyramid pooling (3D-DenseNet-SPP). As the name implies, the
network structure is mainly composed of three parts: 3DCNN,
DenseNet, and SPPNet. These models were evaluated on a KTH
data set and UCF101 data set separately, which got better results.
Zhao et al. (2019) proposes a dual-stream 3-D space–time CNN
action recognition framework and achieves the best result in the
test on the public data set.

It can be seen from Table 3 that the accuracy of the 3-D
multiscale convolutional network in the KTH data set has a
great advantage over other algorithms. Meanwhile, the improved
networks 3D-ResNet and 3D-DenseNet have better results than
C3D, which improved by 1.30 and 2.09% over C3D. And the
proposed 3-Dmultiscale residual density network in this paper is
improved by 4.01% over the C3D. Figure 6 is the PR comparison
with the different methods. It shows that the PR with proposed
method is better than other models.

The model trained on the KTH training set is tested on the
whole data set, and the confusion matrix is obtained as shown
in Table 4. It can be seen from the confusion matrix that the
overall recognition rate of the 3D-MRDNet network on the
KTH data set is very high, but the model is not very good at
distinguishing running, jogging, walking, and other behaviors.
On the one hand, the similarity of these actions is higher. On
the other hand, the resolution of the video is low, which easily
causes misjudgment. In general, the 3D-MRDNet network has a
good recognition effect on the KTH data set. The trained model
on the KTH training set tests the whole data set and obtains a
98.2% recognition rate.

Experiments on UCF-101 and Real Scene
Data Set
This paper also tests the UCF-101 data set and an established
real scene data set. The parameters are basically the same during
the experiment. The input of the network is a clip (a continuous
16 frames of a video extracted from each video). The width
and height of the video frame are resized as 171 × 128. After
data preprocessing, the input size is cut into 8 × 112 × 112.
In the aspect of network optimization, the stochastic gradient
descent method is adopted. The parameters of the network are as

TABLE 5 | Accuracy comparison with different methods on UCF-101 and real

scene data.

Method UCF-101 Real scene data

DHL 71.68% 79.63%

SPPDCN 72.93% 81.55%

MMDSTL 76.84% 87.37%

C3D 81.55% 89.68%

3D-ResNet 86.95% 92.01%

3D-DenseNet 91.87% 93.21%

Proposed 96.79% 96.86%

The bold values denote the best values with proposed method.

follows: initial learning rate= 0.01; momentum parameter= 0.9,
learning decay rate = 10–4, objective function = cross-entropy
loss function, network training cycle = 25, batch processing
size = 16. The experimental results of four networks C3D, 3D-
Resnet, 3D-Densenet, 3D-RDNET, and other human behavior
recognition algorithms in UCF-101 and real scene data sets are
given in Table 5. Where the accuracy is calculated based on Clip
top-1, which is 16 frames in a row.

The following can be seen from Table 5:

1) For the UCF-101 data sets, for the proposed model (3D-
MRDNet) compared with 3D-ResNet, 3D-DenseNet, and
C3D, the human behavior recognition rate increased by
9.84, 4.92, and 15.24%, respectively. It shows that the 3D-
MRDNet network combined with dense connection and
residual learning on complex data sets is more excellent than
a single network structure. The identification accuracy is
superior to other methods. It verifies the effectiveness of the
designed network and better performance.

2) On the real scene data set, the recognition effect of the model
in this paper is also better than that of other networks, which
achieves a recognition rate with 96.86%. In conclusion, the
3D-MRDNET network is still competent for tasks in real
scenes, and the network has good robustness and transfer
learning ability.

CONCLUSIONS

To solve the problem that the traditional 3-D CNN algorithm
lacks full utilization of the network’s multilevel convolutional
features, this paper proposes a 3-D multiscale residual dense
network architecture for human behavior recognition and verifies
the effectiveness of the proposed algorithm on public and real
scene data sets. The main work of this paper is as follows:

1) The 3-D CNN is improved, and the 3-D multiscale residual
dense network is proposed, which ensures the accuracy of the
network and reduces the complexity of the model.

2) A network construction module (3-D multiscale residual
dense block) is proposed. Through a dense connection
mode, LFA, and LRL, the network’s ability to fully learn
multilayer convolution features is enhanced, and the loss
risk of original video information during network training
is reduced.
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3) The proposed algorithm uses multiple 3-D residual dense
blocks to extract multilevel spatio-temporal features and then
combines low-level features with high-level semantic features
through global feature aggregation to improve the expression
ability of the model.

In addition, the data enhancement method and data
preprocessing method can significantly prevent the overfitting
phenomenon in the process of network training. Through a
public data set and real scene experimental data set, it verifies
that the proposed algorithm is better than most of the traditional
algorithms as well as the 3-D convolution, which significantly
enhances the accuracy in the video behavior recognition task.
In future work, we will research more advanced deep learning
methods for human behavior recognition.
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