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Most existing multi-focus color image fusion methods based on multi-scale

decomposition consider three color components separately during fusion, which leads

to inherent color structures change, and causes tonal distortion and blur in the fusion

results. In order to address these problems, a novel fusion algorithm based on the

quaternion multi-scale singular value decomposition (QMSVD) is proposed in this paper.

First, the multi-focus color images, which represented by quaternion, to be fused is

decomposed by multichannel QMSVD, and the low-frequency sub-image represented

by one channel and high-frequency sub-image represented by multiple channels are

obtained. Second, the activity level and matching level are exploited in the focus decision

mapping of the low-frequency sub-image fusion, with the former calculated by using local

window energy and the latter measured by the color difference between color pixels

expressed by a quaternion. Third, the fusion results of low-frequency coefficients are

incorporated into the fusion of high-frequency sub-images, and a local contrast fusion

rule based on the integration of high-frequency and low-frequency regions is proposed.

Finally, the fused images are reconstructed employing inverse transform of the QMSVD.

Simulation results show that image fusion using this method achieves great overall visual

effects, with high resolution images, rich colors, and low information loss.

Keywords: multi-focus color image, image fusion, quaternion, singular value decomposition, multi-scale

decomposition

INTRODUCTION

Image fusion is the process of combining the information from two or more images into a single
image. It has been applied widely, ranging frommedical analysis (Jin et al., 2018a,b, 2020), to remote
sensing imaging and artificial fog removal (Zhu et al., 2020). An important branch of image fusion
is multi-focus image fusion, which integrates images with different focal points into a full-focus
image with global clarity and rich details. Multi-focus image fusion algorithms mainly include
spatial domain methods, transform domain methods, and deep learning methods (Liu S. et al.,
2020; Liu Y. et al., 2020).

The spatial domain methods can be grouped into pixel-based method, block-
based method, and region-based method (Jin et al., 2018a,b; Qiu et al., 2019; Xiao
et al., 2020). Compared with the pixel-based method, the other two use the spatial
correlation of adjacent pixels to guide image fusion to avoid contrast reducing and
detail loss in the fusion images. First, the original images are divided into a number
of blocks or regions, and then the focus level and sharpness of each block or region is
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measured by image intensity information. Finally, a block or
region with a higher degree of focus as part of the fusion
image is selected. Vishal and Vinay (2018) proposed a block-
based spatial domain multi-focus image fusion method, and
used spatial frequency to measure the focus level of the blocks.
Duan et al. (2018) proposed a segmentation scheme based on
enhanced LSC, which embeds the depth information of pixels in
the clustering algorithm for multi-focus image fusion. The main
advantage of fusion methods based on spatial domain lies in the
fact that simple to implement, it can obtain the focus measure
with low computational complexity. However, the quality of
image fusion is relevant to the selection of image block sizes or
the segmentation algorithms. When the size of the image block
is not properly selected, the fusion image may generate a “block
effect.” And if the segmentation algorithm fails to segment the
region accurately, the focused region cannot be determined and
extracted correctly.

In the transform domain approach, various multi-scale
decomposition (MSD) methods are applied to multi-focus image
fusion. Multi-scale decomposition algorithm mainly includes
pyramid transform (Burt and Kolczynski, 1993; Du et al., 2016),
wavelet transform (Gonzalo and Jesús, 2002; Jaroslav et al., 2002)
and multi-scale geometric analysis (Li et al., 2017, 2018; Liu et al.,
2019a). Compared with the pyramid and wavelet transforms,
though the multi-scale geometric analysis method outperforms
the pyramid and wavelet transforms in feature representation
and excels in capturing multi-directional information and
translation invariance, it is not time-efficient when it comes to
decomposition and reconstruction. In addition to traditional
multi-scale decomposition methods mentioned above, some
other multi-scale fusion methods have been proposed. Zhou et al.
(2014) proposed a novel image fusion scheme based on large
and small dual-scale decomposition. In this scheme, the two-
scale method is used to determine the image gradient weight,
and removes the influence of anisotropic blur on the focused
region detection effectively. An and Li (2019) introduced a novel
adaptive image decomposition algorithm into the field of image
processing, which can fast decompose images and has multi-
scale characteristics. Zhang et al. (2017) proposed a multi-scale
decomposition scheme by changing the size of the structural
elements, and extracting the morphological gradient information
of the image on different scales to achieve multi-focus image
fusion. Ma et al. (2019) proposed a multi-focus image fusion
method based on to estimate a focus map directly using small-
scale and large-scale focus measures. Naidu (2011) proposed
a novel method of multi-focus images fusion. In this method,
multi-scale analysis and singular value decomposition are
combined to perform multi-scale singular value decomposition
on multi-focus images to obtain low-frequency sub-images
and high-frequency sub-images of different scales. This multi-
scale decomposition method has the stability and orthogonality
of SVD. Since no convolution operation is required, the
decomposition speed is fast.

Deep learning methods, which can be further grouped into
classification model based methods and regression model based
methods (Liu Y. et al., 2020). In the classification model, Liu et al.
(2017) first introduced convolutional neural networks (CNN)

into the field of multi-focus image fusion. With this method,
the activity level measurement and the fusion rule can be jointly
generated by learning a CNN model. In the regression model,
Li et al. (2020) proposed a novel deep regression pair learning
convolutional neural network for multi-focus image fusion. This
method directly converts the entire image into a binary mask
as the input of the network without dividing the input image
into small patche, thereby solving the problem of the blur level
estimation around the focused boundary due to patche division.
These methods can extract more image features through self-
learning of the deep network, and carry out image fusion based
on these features. However, the difficulties in training a large
number of parameters and large datasets have directly affected
the image fusion efficiency and quality. Compared with deep
learning methods, the conventional fusion methods are more
extensible and repeatable, facilitating real-world applications.
Thus, this paper mainly aims to improve the conventional multi-
focus image fusion algorithms.

Most of the existing multi-focus image fusion algorithms
mentioned above can process gray and color multi-focus images.
As for the color multi-focus image fusion, each color channel is
fused separately, and then combined to get the final fused image
(Naidu, 2011; Liang and He, 2012; Aymaz and Köse, 2019). These
traditional fusion methods ignore the inter-relationship between
the color channels, which will lead to hue distortions and blur
in the image fusion process. To solve the above problems, this
paper proposes a novel mathematical model for color images
based on quaternion matrix analysis. This model considers the
human visual characteristics and interaction between pixels in
color images and combines quaternion with multi-scale singular
value decomposition (MSVD) (Kakarla and Ogunbona, 2001;
Naidu, 2011). In this method, the three color components of
a color image are decomposed as a whole to extract the rich
color and detail information. Firstly, the three color components
of the pixel are represented by three imaginary parts of a
quaternion. Secondly, themulti-focus color image represented by
the quaternion matrix is decomposed into a low-frequency sub-
image and several high-frequency sub-images using multi-scale
singular value decomposition (MSVD). The former contains the
approximate structure and color information of the source image,
the latter contains detailed features. Then, the low-frequency
component and the high-frequency component are respectively
fused based on different fusion rules. The designed fusion rule
makes full use of the decomposition coefficient represented
by the quaternion and applies the structural information and
color information of the image to the fusion. Finally, the fusion
components are used to reconstruct the fusion image. The fused
image can more accurately maintain the spectral characteristics
of the color channel. We define this method as quaternion
multi-scale singular value decomposition (QMSVD). The main
innovations of this method are listed below:

• The combination of quaternion and multi-scale singular
value decomposition is applied to multi-focus color
image fusion for the first time. That is, the color image
represented by the quaternion is decomposed by multi-scale
singular value decomposition, and the sub-images obtained
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by decomposition better retain the structure and color
information of the original image.

• The multi-channel is introduced into the QMSVD for the
first time, and achieve the purpose of extracting the salient
features on the channels of different decomposition layers for
image fusion.

• In the fusion of low-frequency sub-images, in order to make
full use of the color information of the image, an improved
fusion rule of local energy maximization is proposed, and the
fusion rule introduces the color difference between pixels and
combines local energy. In the fusion of high-frequency sub-
images, the fusion results of low-frequency coefficients are
incorporated into the fusion of high-frequency sub-images,
and a local contrast fusion rule based on the integration of
high-frequency and low-frequency regions is proposed.

The structure of this paper is organized as follows. Section Multi-
Scale Singular Value Decomposition of a Color Image introduces
the concept of multi-scale singular value decomposition of a
color image. Section Multi-Focus Color Image Fusion Based on
QMSVD proposes multi-focus color image fusion model based
on QMSVD. Section Experimental Results and Discussion we
compare and analyze the results obtained through the state-of-
the-art methods. Finally, conclusions for this paper are made in
section Conclusion.

MULTI-SCALE SINGULAR VALUE
DECOMPOSITION OF A COLOR IMAGE

To decompose the color image we integrate quaternion
representation of color image with multi-scale decomposition.
In this way, the approximate and detailed parts represented
by quaternion can be obtained. The two parts are respectively
fused, and the fused components are used to reconstruct the
fusion image.

Quaternion Representation of a Color
Image
Quaternions were discovered in 1843 by the Irish mathematician
and physicist William Rowan Hamilton. It is extension of
ordinary complex number, which extends ordinary complex
numbers from a two-dimensional space to a four-dimensional
space. A quaternion is composed of a real part and three
imaginary parts. The operations of the three imaginary parts
are equivalent, which makes it very suitable for describing color
images and expressing the internal connection of color channels.
The three color channels of the image can be represented by three
imaginary parts of quaternion (Chen et al., 2014; Xu et al., 2015;
Grigoryan and Agaian, 2018). The general form of a quaternion
is q = qa + qbi+ qcj+ qdk. It contains one real part qa and three
imaginary parts qbi, qcj and qck, if the real part qa of a quaternion
q is zero, q is called a pure quaternion. The conjugation of
quaternions is defined as:

q∗ = qa − qbi− qcj− qdk (1)

The modulus of a quaternion is defined as:

∣

∣q
∣

∣ =
√

qq∗ =
√

q2a + q2
b
+ q2c + q2

d
(2)

The rotation theory of quaternions is stated as follows:
In the three-dimensional space, u is a unit of pure quaternion,

and the modulus is |u| = 1. If R = euθ , then RXR∗ indicates that
the pure quaternion X is rotated by 2θ radians about the axis. u
and θ are defined as:

u =
1

√

q2
b
+ q2c + q2

d

(qbi+ qcj+ qbiqdk)

θ =

{

tan−1
√

q2
b
+ q2c + q2

d
/qa, qa 6= 0

π/2 qa = 0

Let u = (i + j + k)/
√
3, which represents a three-dimensional

grayscale line in RGB space. The three color components of the
pixels on the grayscale line are all equal. Let θ = π/2, that is:

RXR∗ = euπ/2X(euπ/2)
∗ = (i+ j+ k)/

√
3*X*(−i− j− k)/

√
3 (3)

Equation (3) means that X is rotated around the gray line u by
180 degree. That is, X is turned to the opposite direction with u
as the axis of symmetry. Then, the pixel X + RXR∗ falls on the
grayscale line.

A color image can be represented as a pure quaternion, that is:

f (x, y) = fR(x, y) · i+ fG(x, y) · j+ fB(x, y) · k (4)

In Equation (4), fR(x, y), fG(x, y), fB(x, y) represent the R, G, and
B color channel components of the color image, respectively. The
x, y represent the rows and columns of the color image matrix,
where the pixels reside. Such a color image can be represented
by a quaternion matrix, and the processing of the color image
can be performed directly on the quaternion matrix. In contrast
with the traditional approaches, which convert a color image
to a grayscale one or process each color channel separately, the
quaternion method can process the color image as a whole.

Multi-Scale Decomposition of a Color
Image
The singular value decomposition is an important matrix
decomposition in linear algebra (Liu et al., 2019b), and it is to
decompose the image matrix diagonally according to the size of
the eigenvalues. There is no redundancy among the decomposed
images, and it is suitable to use different fusion rules for the fusion
of each sub-image. We extend decomposition to the multi-scale
form in this section. Using multi-scale can perform image fusion
in different scales and different directions.

Xq is the quaternion matrix form of the color image f (x, y).
The rank of the m × n quaternion matrix Xq is r. Given the
m×m quaternion unitarymatrixUq and n×n quaternion unitary
matrix Vq, we can get:

(Uq)
HXqVq =

[

3r 0
0 0

]

≡ 3 ∈ Rm×n (5)
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where the superscript H represents conjugate transpose, and
3r = diag{λ1, λ2, · · · , λr}, λi(1 ≤ i ≤ r) is the singular value
of Xq, λ1 ≥ λ2 ≥ · · · ≥ λr . It follows that the singular value
decomposition of the quaternion matrix Xq is:

Xq = Uq

[

3r 0
0 0

]

(Vq)
H (6)

In Equation (6), Uq(Uq)
H = Im×m,Vq(Vq)

H = In×nUnit matrix.
The multi-scale singular value decomposition of a color image

represented by a quaternion can be realized, according to the
ideas proposed in Naidu (2011). The M × N color image Xq,
represented by the quaternion, is divided into non-overlapping
m × n blocks, and each sub-block is arranged into an mn ×
1 vector. By combining these column vectors, a quaternion
matrix Xq

′ with a size of can be obtained. The singular value
decomposition of Xq

′ is:

Xq
′ = Uq

′3′(Vq
′)
H

(7)

Uq
′ and Vq

′ are orthogonal matrices, and 3′ is a non-
singular diagonal matrix after Xq

′ decomposition. According to
Equation (7):

S = (Uq
′)
H
Xq

′ = 3′(Vq
′)
H

(8)

the size of the quaternion matrix S ismn×MN/mn.
According to the singular value decomposition mentioned

above, the first column vector of Uq
′ corresponds to the

maximum singular value. When it is left multiplied by the matrix
Xq

′, the first row S(1, :) of S carries the main information from
the original image, which can be regarded as the approximate,
or smooth component of the original image. Similarly, the
other rows S(2 :mn, :) of S correspond to smaller singular
values, which retain such detailed information as the texture
and edge. Therefore, through singular value decomposition,
the image can be decomposed into low-frequency and high-
frequency sub-images by the singular value to achieve the multi-
scale decomposition of the image. In the QMSVD approach,
decomposition is goes layer by layer, repeating the process above.
In repeated decomposition, the approximate component S(1, :) of
the upper layer is used to replace the next layer of Xq.

When the original image is divided into m × n blocks,
according to the different values of m and n, QMSVD can be
called (m × n)-channel QMSVD. For example: when m = 2 and
n = 2, it is called four-channel QMSVD when m = 2 and n = 3
orm= 3 and n= 2, it is called six-channel QMSVD, whenm= 2
and n= 4 orm= 4 and n= 2, it is called eight-channel QMSVD.

We take six-channel QMSVD as an example to illustrate the
decomposition structure of each layer. Let m = 2, n = 3, and
m×n= 6:

φLL = S(1 :)
ψH1 = S(2 :),ψH2 = S(3 :),ψH3 = S(4 :)
ψH4 = S(5 :),ψH5 = S(6 :)

(9)

Xq → {φLL, {ψH1,ψH2,ψH3,ψH4,ψH5},U}

In Equation (9), the lowest-resolution approximation
component vector is φLL, the detail component vectors are
{ψH1,ψH2,ψH3,ψH4,ψH5}, and the eigenvector matrix is U.
During the transformation of the lower layer, φLL is replaced

with Xq, the decomposition operates by Equation (9) and
the next layer decomposition is obtained, and the multilayer
decomposition of the image can be obtained by repeating the
process. Because the decomposition process is reversible, the
original image can be reconstructed by inverse transformation
of QMSVD.

The QMSVD method proposed in this paper, the MSVD
(Naidu, 2011) method and the QSVD (Bihan and Sangwine,
2003) method all decompose the image through singular value
decomposition, but they have their distinct characteristics. In
Naidu (2011), the MSVD is mainly a decomposition method
for gray images. When decomposing a color image, the MSVD
method is used on each color channel, and then combine
the three decomposed color channels to obtain a decomposed
color image. This decomposition method of channel information
separation ignores the correlation between channels and take
no account of color information of image. The QMSVD
method overcomes the shortcomings of the MSVD method,
and can maintain the correlation between color channels while
decomposing color images. Comparedwith theQMSVDmethod,
QSVD directly decomposes color images to get the eigenvalues
and corresponding eigenvectors. Then, according to experience,
we use the truncation method on QSVD to divide the eigenvalues
in a descending order into different segments to realize image
decomposition. However, the decomposition process based on
experience truncation method lacks a definite physical meaning.
In order to ascribe a clear physical and geometric meaning
to the decomposition process, the multi-channel QMSVD is
introduced, which directly decomposes the image into low-
frequency and high-frequency components of different scales
according to the size of eigenvalues.

Figure 1 compares the results achieved by three
decomposition methods. It can be seen that: (1) The QMSVD
method directly decomposes the color image into a low-
frequency component and three high-frequency components.
The low frequency component is an approximation of the
original image, which retains the characteristics of the original
image in terms of structure and color. The high-frequency
components extract the edge and contour features of the original
image. (2) The MSVD method does not directly decompose
the color image. First, decompose each color channel, and
then combine the decomposed components into low-frequency
components and high-frequency components. Compared with
the QMSVD method, the low-frequency component does not
retain the color characteristics of the original image. As it can
be seen from the Figure 1, the main color of the low-frequency
component is blue, while the main color of the original image
is red. The high-frequency component extracts the edge and
contour features of the original image, but does not have the
fine features extracted by the QMSVD method. This is due to
the fact that the edge features of each component cannot be
completely overlapped when the components are combined. (3)
Compared with the QMSVD method, the QSVD method is not
strong on extracting detailed features. It can be seen from the
Figure 1 that the main structure and color information are in
the decomposed image corresponding to the first feature value,
and the other feature values are truncated into three segments,
corresponding to the three decomposed images respectively,
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FIGURE 1 | This figure shows the decomposition of color image by QMSVD, MSVD, and QSVD. (A) The low-frequency image of the origianl image after decomposed

by QMSVD, and (B–D) the high-frequency images of the origianl image. (E) The low-frequency image of the original image after decomposed by MSVD, and (F–H) the

high-frequency images of the original image. (I) The decomposition image corresponding to the first eigenvalue of the original image decomposed by QSVD, and (J)

the decomposition image corresponding to the eigenvalue truncated from the 2th to the 25th after QSVD decomposition, (K) the decomposition image corresponding

to the eigenvalue truncated from the 26th to the 50th, (L) the decomposition image corresponding to the eigenvalue truncated from the 51th to the 240th. The

eigenvalues are arranged from large to small.

and these images only carry a small amount of detailed features.
Since the QSVD method is mainly used for image compression,
in the experimental comparison part, we only compare QMSVD
with MSVD methods.

MULTI-FOCUS COLOR IMAGE FUSION
BASED ON QMSVD

Low-Frequency Component Fusion Rules
The low-frequency sub-image of QMSVD reflects the overall
characteristics of the color original image. Commonly used

low-frequency sub-image fusion rules include weighted average
and maximum local energy. The weighted average rule is
to get the fusion coefficient by weighted average of the low
frequency coefficients in the same position of the images,
which will result in the decline in the contrast of the fused
image. The rule of maximum local energy is to compare
the energy of low-frequency coefficients at the same position
of the images, and choose the higher energy as the fusion
coefficient. This fusion rule only considers the local energy
of the image, and does not factor in the color information
contained in the color image, so the visual effect of the
color fusion image is not desirable. In order to overcome
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FIGURE 2 | Fusion of sub-images by QMSVD with six channels. LL is the low-frequency component of the decomposed image, H1–H5 are the high-frequency

components of the decomposed image, UA and UB are the orthogonal matrices of the decomposed image, and UF = (UA + UB)/2.

the inadequacy, QMSVD uses a quaternion to represent the
color image, and calculates the color differences between two
color pixels based on the quaternion rotation theory. The
coefficient window energy is used as activity level of the low
frequency component, and the color difference between the
color pixels in the center of the coefficient window is deemed
as the matching level, with both jointly participating in the
decision mapping.

Activity Level

Given the human visual system is sensitive to local variation,
local window energy is used as the measurement of activity
level. Local areas with larger variance exhibit greater contrast

between pixels, and stronger window activity level. In contrast,
pixel values more uniform in local areas with smaller variance,
display weaker window activity level. Therefore, the pixel with
the highest contrast in the low-frequency coefficient is selected as
the fusion result.

a
j
S(x, y) =

∣

∣

∣

∣

C
j
S(x, y)− mean

(x′,y′)∈p
(C

j
S(x+ x′, y+ y′))

∣

∣

∣

∣

(10)

Where S represents the two color multi-focus images A and B to

be fused, j represents the decomposition scale, C
j
S(x, y) is the low-

frequency sub-band coefficient of the original image S on scale j

at pixel (x, y), P is the range of the coefficient window, a
j
S(x, y) is
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the activity level of C
j
S(x, y) at pixel (x, y), andmean(·) represents

mean filtering. Experiments show that the visual effect after
image fusion is themost optimal when P uses 3×3 local windows.

Matching Level

The matching level between A and B pixels of two color
multi-focus images can be measured by the color differences
between them, which can be calculated with the quaternion
rotation theory (Jin et al., 2013). As the color difference includes
chromaticity and luminance, the formula for calculating the
matching level is as follows:

m
j
AB(x, y) = t

∣

∣Q(q1, q2)
∣

∣ + (1− t)
∣

∣I(q1, q2)
∣

∣ (11)

In Equation (11), q1 = r1i + g1j + b1k and q2 = r2i + g2j + b2k
are the pixels represented by quaternions in the color original
images A and B, respectively. Q(q1, q2) and I(q1, q2) denote
the differences in chromaticity and luminance, respectively,
between q1 and q2, the weight t ∈ [0, 1] indicates the relative
importance of chromaticity and luminance, and j represents
the decomposition scale. According to the theory of quaternion
rotation, the relationship between q1 and q2 can be expressed as
q3 = q1+Rq2R

∗ = r3·i+g3·j+b3·k,R = euπ /2, u = (i+j+k)/
√
3.

If the chromaticity of q1 is similar to that of q2, q3 should be near
the grayscale line u, and the chromaticity difference between q1
and q2 can be expressed by the following equation:

Q(q1, q2) = (r3 − (r3 + g3 + b3)/3) · i+ (g3 − (r3 + g3

+b3)/3) · j+ (b3 − (r3 + g3 + b3)/3) · k (12)

WhenQ(q1, q2) is small, the chromaticity of q1 and q2 are similar;
when Q(q1, q2) = 0, q1 and q2 have the same chromaticity. The
difference in luminance between q1 and q2 can be illustrated as:

I(q1, q2) = (r1 − r2)/3+ (g1 − g2)/3+ (b1 − b2)/3 (13)

According to Equations (11–13), the size ofm
j
q1q2 is proportional

to the color difference between q1 and q2. Therefore, the
matching level between the two pixels can be measured by the
size of the color difference.

Decision Plan
The decision value of the color image focus judgment is
determined by the activity level and matching level of the local
window. They are obtained by Equations (10, 11), respectively.
The decision value is calculated by the following formula:

dj(x, y) =































1, if m
j
AB(x, y) > T and a

j
A(x, y) ≥ a

j
B(x, y)

0, if m
j
AB(x, y) > T and a

j
A(x, y) < a

j
B(x, y)

1
2 + 1

2

(

1−T

1−m
j
AB(x,y)

)

, if m
j
AB(x, y) ≤ T and a
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(14)

According to the decision value dj(x, y), the fused low-frequency

image can be obtained using F
j
L(x, y) = dj(x, y) ∗ Aj

L(x, y)+ (1−

dj(x, y)) ∗ B
j
L(x, y), where F

j
L(x, y) represents the low-frequency

sub-image after the fusion of A
j
L(x, y) and B

j
L(x, y) at scale j. In

Equation (14), T is the matching threshold between the pixel A
and pixel B of a multi-focus image.

High-Frequency Component Fusion Rules
In Equation (8), the first row of S represents low-frequency
component of the original image, which carries the primary
information from the image. The other rows S(2 :mn, :) of
S denotes the high-frequency components of the original
image, presenting the details of the image. According to the
orthogonality of singular value decomposition, each component
forms an orthogonal complement on the same scale. The direct
sum of each component is:

Ij = Ij+1 ⊕
∑mn

i=2
S(i, :)j+1

(

j = 2, 1, 0
)

(15)

where j represents the decomposition scale; when j = 2, the
highest decomposition layer is 3, I3 = S(1, :)3, and each
component can be written as:







I2 = S(1, :)3 ⊕
∑mn

i=2 S(i, :)3j = 2,
I1 = I2 ⊕

∑mn
i=2 S(i, :)2j = 1,

I0 = I1 ⊕
∑mn

i=2 S(i, :)1j = 0,
(16)

The high-frequency sub-images of QMSVD reflect the detailed
characteristics of the original image. Most of the fused methods
operate in the feature domain of high-frequency components,
without taking the influence of low frequency into account,
compromising the fusion quality. To factor in the influence
of low-frequency components in high-frequency component
fusion, a local contrast fusion rule, which is applicable to both
high-frequency and low-frequency regions, is proposed. After
the original image is decomposed by QMSVD, the local contrast
of the high-frequency and low-frequency components can be
obtained by the following equation (Pu and Ni, 2000):

Ck
Sj
(x, y) = I

Hk
Sj
(x, y)/ILABj (x, y), (Sj = AjorBj) (17)

In Equation (17), ILABj represents the fusion component of the

low-frequency sub-image of the original image A and B at scale

j, and I
Hk
Sj

represents the k-th high-frequency component of the

original image S at scale j. According to Equation (15), the high-
frequency is not aliased with low-frequency components, and
therefore the definition of the local contrast mirroring the high-
frequency components is valid. The high-frequency sub-image
fusion is defined as:

Hk
Fj
(x, y) =







I
Hk
Aj
(x, y), if

∣

∣

∣
Ck
Aj
(x, y)

∣
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∣
≥

∣

∣

∣
Ck
Bj
(x, y)

∣

∣

∣

I
Hk
Bj
(x, y), otherwise

(18)

where Hk
Fj
(x, y) represents the kth high-frequency component of

the fused image F at scale j.
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Multi-Focus Color Image Fusion Process
Figure 2 shows the scheme of multi-focus color image fusion
based on QMSVD with six channels, and the corresponding
fusion process is as follows:

Step 1: Two original color multi-focus images A and B are
decomposed by QMSVD. The low-frequency sub-image
AL, BL is represented by one channel and the high-
frequency sub-images AHi, BHi (Hi is the ith high-
frequency channel) are represented bymultiple channels.
The orthogonal matrices UA and UB, corresponding to
singular values, are also obtained.

Step 2: The low-frequency sub-imagesAL,BL are fused following
low-frequency fusion rules, and the high-frequency
sub-images AHi, BHi are fused using high-frequency
fusion rules.

Step 3: The orthogonal matrices UA and UB (obtained in Step
1) are fused. In the fusion of two images after QMSVD
decomposition, the roles of UA and UB are identical,
so the fusion rule for the orthogonal matrix is: UF =
(UA + UB)/2.

Step 4: The final fusion image is obtained by inverse QMSVD
transform of the fusion results in Step 2 and Step 3.

EXPERIMENTAL RESULTS AND
DISCUSSION

In this study, color information richness (CCM) (Yuan et al.,
2011), spatial frequency (SF), image contrast metric (ICM) (Yuan
et al., 2011), and edge information retention (QAB/F) (Liu et al.,
2012) are utilized to evaluate the multi-focus color fusion image
objectively, and to verify the effectiveness of the algorithm. The
CCM index value is determined by the color chromaticity and
color difference gradient of the fused image. The SF index reflects
the clarity of the image details. The ICM index is composed of the
grayscale contrast and color contrast of the fused image, with the
value denoting the contrast in the fused image. The QAB/F index
implies how much information about edge and structure from
the original image is retained in the fused image. For the above
evaluation indicators, a larger evaluation value suggests a better
fusion result.

The proposed QMSVD color image fusion method is
compared with five typical multi-focus image fusion methods,
which fall into the category of the multi-resolution singular value
decomposition fusionmethod (MSVD) (Naidu, 2011), theMulti-
scale weighted gradient-based fusion method (MWGF) (Zhou
et al., 2014), the boosted random walks-based fusion method
(RWTS) (Ma et al., 2019), the guided fifilter-based fusion method
(GFDF) (Qiu et al., 2019), the deep CNN fusion method (CNN)
(Liu et al., 2017). Among them, the MSVD, MWGF, RWTS
and GFDF are traditional image fusion methods. The CNN is a
recently proposed image fusion method based on deep learning.
In Liu et al. (2017), Liu chooses the Siamese as the CNN model,
and the network has three convolutional layers and one max-
pooling layer. The training sample is a high-quality natural image
of 50,000 from the ImageNet dataset, and input patch size is
set at 16 × 16. The Matlab implementation of the above five
fusion methods are all obtained online, and the parameters are

the default values given in the literature. The original multi-
focus images used in the experiment are obtained from multiple
image datasets. The four images (A), (B), (D), (E) in Figure 4

and the one image (I) in Figure 6 are obtained from the Lytro
dataset (Nejati et al., 2015). The Six images (A)–(F) in Figure 6

are obtained from the Slavica dataset (Slavica, 2011). The one
image (C) in Figure 4 and the two images (G) and (H) in Figure 6
are obtained from the Saeedi dataset (Saeedi and Faez, 2015). The
one image (J) in Figure 6 is obtained from the Bavirisetti dataset
(Bavirisetti). In this paper, five groups of color images with
rich colors are selected in the image datasets Lytro and Saeedi,
and they are used in the comparison experiment. In addition,
10 groups multi-focus images commonly used in other related
papers as the experimental data are used in the comparison
experiment, and they have different sizes and characteristics.

In the experimental process, firstly, the experimental
parameters of the algorithm set prior to the experiment.
Secondly, the fusion results achieved using the proposed
algorithm and the other algorithms are presented and compared.

Selection of Experimental Parameters
Multi-scale singular value decomposition of color images is
conducted through multiple independent layers and channels.
Image decomposition generally divides the image into three
layers. Channel decomposition usually divides the image into
four-channel, six-channel, eight-channel, and nine-channel.
Channel decomposition is illuminated in Equation (9). The result
of image fusion is also affected related to the size of the local
window P, and the typical size is 3×3 or 5×5. The experimental
comparison suggests, the 5×5 local window exceeds the size
of the important feature of the image, which undermines the
judgment of the local window activity. Therefore, in this paper,
we set a local window size at P = 3 × 3. As can be observed
from Equation (11), the weight t ∈ [0, 1] indicates the relative
importance of chromaticity and luminance, with t positively
related to chromaticity. In Equation (14), T represents the
matching threshold of the matching level between the pixels of
the two color multi-focus images to be fused, and the value of T
directly affects the decision value d(x, y) of low-frequency fusion.
The parameters discussed above ultimately determine the effect
of image fusion.

We set different parameter values, conducted repeated
comparative experiments, and used two objective indices spatial
frequency (SF) and color colorfulness metric (CCM) (Yuan
et al., 2011) to evaluate Figure 3. As Table 1 reveals, the SF
value decreases as the number of channels increases, the larger
the number of channels the smoother the image after multi-
scale singular value decomposition, and the lower the spatial
frequency. The maximum value of CCM occurs when t = 0.9.
According to Equation (11), value t indicates the importance of
chromaticity. The analysis shows that the algorithm proposed
in this paper is feasible. From further analysis in Table 1, the
preliminary parameters could be obtained: P = 3, t = 0.9, T
= 0.01, and P = 3, t = 0.9, T = 0.03, with six and eight
decomposition channels.

Figure 3 demonstrates the results obtained in the second
decomposition layer using the preliminary parameters analyzed
above. Obviously, the fusion image based on four channel
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FIGURE 3 | Tested multi-focus color image. (A,B) are original images. The parameters are selected: in (C–F), layer = 2, P = 3, t = 0.9, T = 0.01; in (G–J), layer = 2,

P = 3, t = 0.9, T = 0.03; with four, six, eight, and nine decomposition channels.

TABLE 1 | Selection of initial parameters (1).

Parameters Decompose Spatial frequency (SF) Color colorfulness metric (CCM)

4-channel 6-channel 8-channel 9-channel 4-channel 6-channel 8-channel 9-channel

t = 0.8, T = 0.01 1-layer 27.7544 27.1201 27.0089 24.0205 17.1906 17.2659 17.3272 17.1945

2-layer 27.7476 27.1008 26.9451 23.9930 17.2387 17.3145 17.3351 17.1784

3-layer 27.7046 27.0782 26.9962 24.0224 17.2168 17.3000 17.2959 17.1949

t = 0.8, T = 0.02 1-layer 27.7530 27.1597 27.0169 24.0233 17.1766 17.2540 17.3045 17.1713

2-layer 27.7565 27.0789 26.9332 23.9857 17.1433 17.2997 17.3361 17.1717

3-layer 27.7017 27.0856 26.9821 23.9763 17.1764 17.2824 17.2891 17.1752

t = 0.8, T = 0.03 1-layer 27.7701 27.1563 27.0112 24.0128 17.1863 17.2646 17.3160 17.1813

2-layer 27.7474 27.0726 26.9467 24.0115 17.1571 17.2842 17.3379 17.1754

3-layer 27.6838 27.0666 26.9722 23.9911 17.1753 17.2689 17.2997 17.1662

t = 0.9, T = 0.01 1-layer 27.7659 27.1194 27.0250 24.0425 17.1872 17.2721 17.3282 17.2052

2-layer 27.7655 27.0759 26.9507 24.0050 17.2252 17.3203 17.3368 17.1696

3-layer 27.7285 27.0611 26.9984 24.0227 17.2239 17.3126 17.3529 17.1971

t = 0.9, T = 0.02 1-layer 27.7560 27.1401 27.0168 24.0097 17.1729 17.2506 17.2962 17.1755

2-layer 27.7343 27.0708 26.9335 23.9877 17.1538 17.3002 17.3354 17.1735

3-layer 27.6954 27.0692 26.9641 23.9779 17.1793 17.2707 17.2944 17.1755

t = 0.9, T = 0.03 1-layer 27.7818 27.1624 27.0196 23.9995 17.1861 17.2599 17.3134 17.1780

2-layer 27.7563 27.0767 26.9629 24.0269 17.1555 17.2871 17.3332 17.1750

3-layer 27.7052 27.0612 26.9701 24.0058 17.1757 17.2689 17.3034 17.1634

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.
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TABLE 2 | Selection of initial parameters (2).

Channel Metrics t = 0.8, T = 0.01 t = 0.8, T = 0.02 t = 0.8, T = 0.03 t = 0.9, T = 0.01 t = 0.9, T = 0.02 t = 0.9, T = 0.03 Total

6-channel SF 81.2991 81.3242 81.2955 81.2564 81.2801 81.3003 798.8322

CCM 51.8804 51.8361 51.8177 51.905 51.8215 51.8159

8-channel SF 51.9582 51.9297 51.9536 52.0179 51.926 51.95 797.389

CCM 80.9502 80.9322 80.9301 80.9741 80.9144 80.9526

FIGURE 4 | Five groups of multi-focus color original images. Red frames are the area that need to be compared in image fusion. (A) Woman, (B) Child, (C) Book, (D)

Girl, and (E) Baby. The four images (A,B,D,E) from Lytro dataset, the image (C) from Saeedi dataset.

decomposition has the worst visual effect, and the edge of
detail appears zigzag distortion, which results from the block
effect caused by small channel decomposition. Artifacts emerge
at the edge of fused image obtained through nine- channel
decomposition. This due to the large channel decomposition
which lead to blurring of the fused image. Fused images
obtained through six-channel and eight-channel decomposition
have similar effects and the best quality. Judging from the
Table 1, it can be concluded that the subjective visual effects are
consistent with the objective evaluation values. In other words,
the objective evaluation value is positively proportional to the
subjective visual effect.

From the analysis above, the fusion effects of the six-channel
and eight-channel decomposition are superior to those of the
four-channel or nine-channel decomposition. Further analysis
from Table 2 reveals that the overall results of SF and CCM with
six channels are better than those with eight channels, therefore,
we finally adopt the six-channel decomposition approach.
According to Table 1, during the six-channel decomposition,
when P = 3, t = 0.9, T = 0.03, and layer = 1, the maximum SF
value is 27.1624, and when layer= 2, the maximumCCM value is
17.2871. To optimize the result of multi-focus color image fusion,
we take into account importance of color evaluation index CCM
in color image fusion, and take the six-channel decomposition
approach, and set P = 3, t = 0.9, T = 0.03, and layer= 2.

Subjective Evaluation
To verify the performance of the proposedmethod of multi-focus
color image fusion in terms of visual perception, 15 groups of

multi-focus color images are selected for our experiment. Five
groups come from the multi-focus image data set “Lytro,” while
the other 10 groups are widely used in multi-focus image fusion.
Meanwhile, the proposed fusion method is compared with five
typical multi-focus image fusion methods, which are the MSVD,
MWGF, RWTS, GFDF and CNN.

In Figure 4, we select five groups images from the multi-
focus data set “lytro” for experiments. They have rich colors,
which are also the experimental data used in the five comparison
algorithms. The areas in each image that need to be compared
are marked with a red frame. Figure 5 is the fusion result
corresponding to the five original images in Figure 4. For
better comparison, the red frame areas in the fusion image
are enlarged.

Group A(1)–A(6) show the images of the “woman” with the
size of 208 × 208 and the fused image obtained by 6 different
fusion methods. The comparison of red framed areas suggest
the QMSVD, RWTS, MSVD, and GFDF have the best visual
clarity, followed by CNN, and MDGF is the most blurry. A
further comparison shows that in the fused image obtained by
theMSVD, the red framed region and the image of “woman” have
obvious color distortion.

Group B(1)–B(6) show the images of the “child” with the size
of 256× 256 and the fused image obtained by six different fusion
methods. The comparison of the red framed areas demonstrates
that the QMSVD and MWGF have the best visual clarity, and
GFDF is the fuzziest. A further comparison shows that in the
fusion image obtained by the MSVD, the face brightness of
“child” is the lowest.
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FIGURE 5 | Corresponding to the fusion results of the five original images in Figure 4. A(1)–E(1) are the fusion images obtained by the GFDF method. A(2)–E(2) are

the fusion images obtained by the MWGF method. A(3)–E(3) are the fusion images obtained by the CNN method. A(4)–E(4) are the fusion images obtained by the

RWTS method. A(5)–E(5) are the fusion images obtained by the MSVD method. A(6)–E(6) are the fusion images obtained by the QMSVD method.
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FIGURE 6 | Ten groups of multi-focus color images. (A) Size of 267×171, (B) size of 267×175, (C) size of 267×177, (D) size of 267×177, (E) size of 267×174, (F)

size of 320×200, (G) size of 267×174, (H) size of 390×260, (I) size of 222×148, and (J) size of 360×360. The six images (A–F) from Slavica dataset, the two

images (G,H) from Saeedi dataset, the image (I) from Lytro dataset and the image (J) from Bavirisetti dataset.

Group C(1)–C(6) show the images of the “book” with the size
of 320× 240 and the fused image obtained by six different fusion
methods. Comparing the English letters in the red frame area
of each image. From a visual point of view, the MSVD-based
method is the most blurry, and fusion effects achieved by the
other methods are similar.

Group D(1)–D(6) show the images of the “girl” with the size
of 300 × 300 and the fused image obtained by six different
fusion methods. Comparing the leaves in the red frame area
of each image, the QMSVD and the RWTS can produce
the best fusion image effect, and the color is close to the
original image.

Group E(1)–E(6) show the images of the “baby” with the size
of 360 × 360 and the fused image obtained by 6 different fusion
methods. The comparison illustrates that the QMSVD, CNN, and
RWTS obtain the best fusion image effects, followed by the GFDF
and MSVD, and the MWGF lags behind.

To further prove the effectiveness of the QMSVD method for
multi-focus color image fusion, the 10 groups of original images
are given in Figure 6. In Figure 7, the fused image obtained by six
different fusion methods are shown. In Figures 8, 9, we compare
two groups of images in detail.

In Figure 8, the original image of “Coke Bottle” with a size
of 320 × 200 and the fused image obtained by six different
fusion methods are shown. Compare the bright spots in the red
frame area of each image, QMSVD, CNN, and GFDF achieve
better clarity, followed by MWGF and RWTS, and MSVD is the
most ambiguous.

In Figure 9, the original image of “Forest” with a size of
267 × 171 and the fused image obtained by six different fusion
methods are shown. Compare the brightness of leaves in the red
frame area of each image, QMSVD, superior to other methods,
obtains the best fusion image effect.

In general, the QMSVD method combines the advantages of
quaternions and multi-scale decomposition in color multi-focus
image fusion. The benefit is that quaternions can represent and
process different color channels of a color image as a whole,
producing the fused multi-focus image with high fidelity. Multi-
scale decomposition methods decompose the image into low-
frequency and high-frequency components at different levels.
In this way, the decomposed images can be fused accurately at
different components, scales, and levels, which renders the fused
color multi-focus image with high definition and contrast, and
good visual effects.
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FIGURE 7 | Ten groups of multi-focus color fusion images.
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FIGURE 8 | “Coke Bottle” fusion images obtained by six different fusion methods.

FIGURE 9 | “Forest” fusion images obtained by six different fusion methods.

Objective Evaluation
We proposed the method for multi-focus color image fusion.
We classify experimental images in two categories. One type
is multi-focus color pictures with rich color information, and
their objective evaluation metrics of different methods are
presented in Table 3. The other type is commonly used multi-
focus color images. We have selected two groups, and their
objective evaluation metrics of different methods are counted
in Table 4. Table 5 is the average objective evaluation metrics
of different methods on 15 groups color images. The analysis
of Tables 3–5 shows that the average values of the 15 groups
using CCM and ICM indicators of the QMSVD algorithm are

significantly higher than those of other fusion algorithms. This
also shows that the fused image has a high definition and rich
color, which is consistent with the visual performance of the fused
image in the subjective evaluation. Of all the fusion algorithms,
the CCM index of the QMSVD algorithm ranks first. For the
QAB/F indicator, the QMSVD algorithm performs worse than
other algorithms in preserving edge and structure information.
In general, the QMSVD method achieves the best results on the
CCM indicator and performs well on the ICM and SF indicators.
This shows that the QMSVD method is effective, and the fused
image has a high definition, rich color, less information loss, and
good overall visual effects.
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TABLE 3 | Objective evaluation values of multi-focus color images.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

“Woman” CCM 19.8116 19.6341 19.8065 19.8219 19.2142 19.9050 1

ICM 0.5448 0.5555 0.5447 0.5451 0.5463 0.5538 2

SF 30.2661 29.4158 30.3256 29.8675 27.3840 30.8316 1

QAB/F 0.6845 0.6656 0.6847 0.6866 0.6523 0.6692 4

“Child” CCM 26.6408 26.5463 26.6100 26.5925 25.5832 26.7334 1

ICM 0.4910 0.4913 0.4912 0.4915 0.3638 0.4988 1

SF 25.1688 24.9778 24.8987 24.6005 18.9458 25.4489 1

QAB/F 0.6240 0.6202 0.6251 0.6248 0.5054 0.5955 5

“Book” CCM 28.7924 28.7851 28.7922 28.7846 26.9576 28.9861 1

ICM 0.4582 0.4578 0.4578 0.4578 0.3506 0.4610 1

SF 35.3490 35.5172 35.3293 35.2197 17.5239 33.9891 5

QAB/F 0.6832 0.6814 0.6848 0.6853 0.3768 0.5944 5

“Girl” CCM 20.5994 20.5039 20.5796 20.5546 17.5183 20.6437 1

ICM 0.5311 0.5313 0.5312 0.5317 0.4446 0.5340 1

SF 48.7194 48.5660 48.3491 47.8869 35.3703 48.8196 1

QAB/F 0.6992 0.6943 0.7015 0.7023 0.6260 0.6854 5

“Baby” CCM 24.9107 24.8468 24.9080 24.9040 16.6895 24.9657 1

ICM 0.5161 0.5377 0.5161 0.5162 0.4229 0.5739 1

SF 19.4409 19.1723 19.3729 19.2464 13.3334 19.3610 3

QAB/F 0.6682 0.6599 0.6701 0.6712 0.5066 0.6479 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.

TABLE 4 | Objective evaluation metrics of multi-focus color images in Figures 8, 9.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

“Coke Bottle” CCM 17.2691 17.2181 17.2865 17.2782 15.1438 17.2871 1

ICM 0.5521 0.5523 0.5521 0.5521 0.4400 0.5508 2

SF 27.5118 27.0422 27.4867 27.4254 19.1469 27.0767 4

QAB/F 0.7609 0.7446 0.7609 0.7613 0.4820 0.7563 4

“Forest” CCM 21.2723 21.2740 21.2442 21.2616 20.7242 21.5211 1

ICM 0.4493 0.4496 0.4503 0.4495 0.4346 0.5120 1

SF 26.5008 26.4351 26.6436 26.3499 23.4413 29.6777 1

QAB/F 0.6232 0.6229 0.6188 0.6171 0.4182 0.4626 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.

TABLE 5 | Average objective evaluation metrics of different methods on 15 groups color images.

Image Metrics GFDF MWGF RWTS CNN MSVD QMSVD Rank

15 groups color images CCM 20.0358 19.9940 20.0308 20.0249 20.5252 21.4558 1

ICM 0.4606 0.4641 0.4599 0.4581 0.3558 0.4763 1

SF 28.4214 28.2365 28.3956 28.1854 23.6767 28.3095 3

QAB/F 0.6821 0.6713 0.6820 0.6818 0.4619 0.6030 5

The numbers in bold indicate the maximum value obtained with different objective evaluation indicators.
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CONCLUSION

In this paper, a multi-focus color image fusion algorithm based
on quaternion multi-scale singular value decomposition
is proposed. In the algorithm, the color multi-focus
image, represented by quaternions, undergoes multi-scale
decomposition as a whole, avoiding the loss of color information
caused by the multi-scale decomposition of each color channel
separately. In addition, the algorithm can fuse the information
of the decomposed image accurately in different components,
scales, and levels. To verify the effectiveness of the algorithm, it
has been analyzed qualitatively and quantitatively, and compared
with the classical multi-scale decomposition fusion algorithm
and fusion algorithms proposed in the latest literature. The
experimental results show that the fusion result of this method
reports great enhancement in the subjective visual effects. It
also performs well in objective evaluation indices, particularly
the CCM index of color information richness of the fused
image. Because the algorithm proposed in this paper is based
on multi-focus color images represented by quaternion, it
takes more time to process the multi-scale decomposition of
the images. Further research needs to be done to improve the
efficiency of the algorithm and ensure the quality of image
fusion. Regarding the setting of algorithm parameters, it is
mainly based on empirical values, such as the selection of the
number of channels, the selection of local window size, etc. In
the future, the adaptive selection of parameters is also the focus
of our future research. Additionally, the color images are not
represented by the complete quaternion components, but by
pure quaternion in image fusion. How to exploit the real part

information of quaternion in color image processing will be our
focus in the future study.
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