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This paper proposes a novel framework for addressing the challenge of autonomous

overtaking and obstacle avoidance, which incorporates the overtaking path planning

into Gaussian Process-based model predictive control (GPMPC). Compared with

conventional control strategies, this approach has two main advantages. Firstly,

combining Gaussian Process (GP) regression with a nominal model allows for learning

from model mismatch and unmodeled dynamics, which enhances a simple model

and delivers significantly better results. Due to the approximation for propagating

uncertainties, we can furthermore satisfy the constraints and thereby the safety of the

vehicle is ensured. Secondly, we convert the geometric relationship between the ego

vehicle and other obstacle vehicles into the constraints. Without relying on a higher-level

path planner, this approach substantially reduces the computational burden. In addition,

we transform the state constraints under the model predictive control (MPC) framework

into a soft constraint and incorporate it as relaxed barrier function into the cost function,

which makes the optimizer more efficient. Simulation results indicate that the proposed

method can not only fulfill the overtaking tasks but also maintain safety at all times.

Keywords: autonomous driving, Gaussian process, model predictive control, overtaking, path planning

1. INTRODUCTION

Autonomous driving has attracted considerable attention because of its promising future (Chen
et al., 2021; Kiran et al., 2021). A number of modern techniques have been employed for advanced
driving assistant system, such as adaptive cruise control (Wu et al., 2019a), automatic parking (Ye
et al., 2019), etc, which can be regarded as the low level autonomous driving. However, due to
its demands of high reliability and real-time practicality of fully autonomous driving, performing
overtaking maneuvers imposes a major challenge (Cha et al., 2018). Even for human beings,
overtaking is also a dangerous task, therefore, reliable and safe autonomous overtaking systems
are becoming more and more appealing (Lattarulo et al., 2018).

Model predictive control (MPC) has the ability to incorporate constraints into the online
optimizations in a multivariable control framework and also provides a method to weigh the
competing goals by carefully designing the cost function, so MPC is widely applied in control
field. However, the control performance of MPC depends heavily on the accuracy of the acquired
model. While vehicle dynamics are disreputable difficult to model in complex situations. Learning-
based control method has been proposed and widely applied to solve this problem (Hewing et al.,
2020; Xie et al., 2020). Gaussian process (GP) regression is the most commonly applied method
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in learning-based control. GP is also a non-parametric machine
learning approach and has shown success in combining with
model predictive control, i.e., Gaussian process model predictive
control (GPMPC)method. Hewing et al. (2018) andHewing et al.
(2019) designed a GPMPC structure based on this conception
to improve traditional MPC control performance for a race car,
by making use of a relatively simple nominal model and an
additive learned term, which solves the problems of computing
demanding due to complex model and poor control performance
due to inaccurate model. GPMPC has also applied in mobile
robots to achieve path tracking control (McKinnon and Schoellig,
2019), where the control input can be modulated in time in the
face of rapidly changing dynamics. Rezvani Arany (2019) use
GPMPC to realize vehicle safety control in variable friction road
conditions. In Langåker (2018), GPMPC is applied for vehicle
obstacle avoidance.

In order to avoid collisions, there is one view stating that
the tracking control strategy needs a higher-level path planner.
This method was used in Gao et al. (2010), but the vehicle
was modeled as a simple point mass model which neglects
the vehicle kinematics and dynamics. This will strictly limit
the performance when the speed of vehicle increases. A more
complex dynamical model is adopted in the planner in Frazzoli
et al. (2005) to generate the reference trajectories for the low level
tracking controller. However, it is too complex to be solved due to
themixed-integer program optimization problem. Consequently,
this approach is not well-suited for real-time overtaking task.
Instead, one-level approach have been investigated recently.
Liniger et al. (2015) combined the path planning and path
tracking into one non-linear optimization problem, the path
planner was based on dynamic programming and merged into
model predictive contour control. However, they only take the
stationary obstacles rather than moving vehicles into account.
The complexity of obstacle avoidance would increase when
the obstacle is moving, this approach may not work in this
situation. A short-term path planning in Franco and Santos
(2019) considered both static obstacles and moving vehicles,
proposing a flexible overtaking paradigm based on adaptive
MPC. Since the bicycle model is only concerned with kinematics,
the lateral control with regard to tire model is simplified, the
generated trajectories were a bit infeasible.

In this paper, we investigate the autonomous overtaking
problems with GPMPC approach. There are three main
contributions. Firstly, the overtaking problem is cleverly
converted into constraint control, eliminating the need for path
planning. Secondly, a single track model considering the non-
linear wheel dynamics is adopted as the nominal model. GP is
used to learn the unknown deviation between the nominal model
and the true plant dynamics. Through the learning of GP, we
can use a relatively simple vehicle model but get better control
effect. By employing the Taylor approximation we can propagate
the uncertainties and evaluate the residual uncertainties in the
MPC prediction time domain, which increases the accurateness
and cautiousness of the controller. Thirdly, we transform the
state constraints under the model predictive control (MPC)
framework into a soft constraint and incorporate it as relaxed

barrier function into the cost function, which makes the
optimizer more efficient.

The rest of this paper is constructed as follows. The vehicle
model is introduced in section 2. In section 3, Gaussian
process regression is introduced. In this section, we first present
the preliminaries of GP, then give the approach of how to
obtain training data, and give an approximate approach for the
propagation of uncertainty in multi-step-ahead prediction. In
section 4, we design GPMPC controller for vehicle overtaking
problem. In section 5, simulations are conducted to verify the
effectiveness of the proposed controller. Finally, we conclude in
section 6.

2. VEHICLE MODEL

Establishing a reasonable vehicle model is not only a prerequisite
for designing a model predictive controller, but also a basis for
realizing vehicle overtaking control. Therefore, it is necessary
to select control variables according to the driving conditions
of the vehicle to establish a kinematics and dynamics model
that can accurately describe the vehicle. However, if the model
is too complex, it will affect the real-time performance of the
control algorithm.

In this chapter, a simplified vehicle model is introduced to
trade off computational performance and vehicle characteristics.
A single track model is adopted in this paper as shown in
Figure 1, where each side wheels are merged into one wheel. We
assume that only the front wheel can steer. Only the longitudinal
and lateral as well as yaw motion will be considered, the pitch
and roll dynamics are neglected (Langåker, 2018). The vehicle
is typically assumed to be a mass point with the global position
coordinates (X,Y) and the yaw angle ϕ, while vx and vy represent
the longitudinal and lateral velocities, respectively. ω refers to the
yaw rate. The other parameters are vehicle massM, yaw moment
of inertia Iz , the steering angle δ, the distance between the center
of gravity (c.g.) of the vehicle and the front and rear wheel are Lf
and Lr , respectively. The forces which act on the front and rear

FIGURE 1 | A schematic drawing of the bicycle model.
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wheel in longitudinal and lateral direction are defined by Ff ,x,
Ff ,y, Fr,x, Fr,y. Finally, the front- and rear-slip angle are αf and
αr , respectively. Then the vehicle model is given by

f (x, u) =

















vx cos(ϕ)− vy sin(ϕ)
vx sin(ϕ)+ vy cos(ϕ)

ω
1
M

(

Fr,x + Ff ,x cos(δ)− Ff ,y sin(δ)+Mωvy
)

1
M

(

Fr,y + Ff ,x sin(δ)+ Ff ,y cos(δ)−Mωvx
)

1
Iz

(

Ff ,yLf cos(δ)+ Ff ,xLf sin(δ)− Fr,yLr
)

















(1)

where x = [X;Y;ϕ; vx; vy;ω] are the states of the system, while
the input vector u = [δ;T] to the system are the steering angle δ

and the acceleration/brake pedal T (T ∈ [−1, 1]). The vehicle’s
velocity is controlled increasing or decreasing by the throttle,
when it is set to T > 0 or T < 0.

The longitudinal wheel forces Ff /r,x in vehicle coordinates are
modeled simply as proportional to the acceleration/brake pedal
T and the torque distribution ζ by

FW = T
(

(T > 0)Fa + (T < 0)Fbsign (Vx)
)

Ff ,x = (1− ζ )FW

Fr,x = ζFW

(2)

where Fa and Fb are acceleration force and brake
force, respectively.

According to Pacejka and Bakker (1992), the lateral forces Ff ,y
and Fr,y are given by the full MAGIC formulas.

Ff ,y = Df sin
[

Cf arctan
(

Bf αf − Ef
(

Bf αf − arctan
(

Bf αf

)))]

Fr,y = Drsin [Crarctan (Brαr − Er (Brαr − arctan (Brαr)))]
(3)

where B∗ is stiffness factor, D∗ is peak factor, C∗ and E∗ are shape
factors, α∗ represents the front wheel slip angle and rear wheel
slip angle, respectively.

However, the full MAGIC formulas are too complicated in
practical applications. In order to ease the computational burden,
the following simplified Pacejka Tire Model (Elbanhawi et al.,
2018) is used, which is a linear approximation of (3).

Ff ,y = Cl,f αf

Fr,y = Cl,rαr
(4)

where Cl,f and Cl,r are the front and rear cornering stiffness. For
both equations, the wheel slip angle α∗ is defined as the angle
between the orientation of the tire and the orientation of the
velocity vector of the wheel (Rajamani, 2011)

αf = arctan
(

vy+Lf ϕ̇

vx

)

− δ

αr = arctan
(

vy−Lr ϕ̇

vx

) (5)

In this paper, the model with full MAGIC formulas serves as the
true vehicle model, the model with simplified Pacejka Tire Model
serves as the nominal model.

3. GAUSSIAN PROCESS REGRESSION

3.1. Preliminaries of Gaussian Process
Regression
As defined in Rasmussen (2003), a Gaussian process is a
collection of random variables, any finite number of which has a
joint Gaussian distribution. For easy identification, the notation
of the training data set of the GP is defined as

D = {Z = [z1, . . . , zN] ∈ R
nz×N

Y =
[

y1, . . . , yN
]

∈ R
1×N

}

where nz stands for the dimension of the input vector z, N is
the number of the input and output pairs (zk, yk). With input
vector zk, each output yk can be represented by yk = d (zk) + εk,
where d :Rnz → R and εk ∼ N

(

0, σ 2
ε

)

denotes Gaussian
measurement noise.

Just like a Gaussian distribution is specified by its mean and
variance, a Gaussian process is completely defined by mean
functionm(z) and a covariance function k(z, z′).

m(z) = E[d(z)]

k
(

z, z′
)

= E
[

(d(z)−m(z))
(

d
(

z′
)

−m
(

z′
))] (6)

Thus Gaussian process is written as

d(z) ∼ GP
(

m(z), k
(

z, z′
))

(7)

The covariance function k(z, z′) is also known as kernel function.
A squared exponential kernel is adopted in this paper.

k(z, z′) = σ 2
f exp(−

1

2
(z − z′)TM−1(z − z′)) (8)

where σ 2
f

and M are the signal variance and the diagonal

matrix of squared characteristic length-scales, respectively. M =

diag
([

ℓ1, . . . , ℓnz
])

. Moreover, the noise variance σ 2
n is usually

to be considered, which can be added directly behind (8). These
three parameters are called hyper-parameters, which are collected
by parameter vector θ = [ℓ1, ..., ℓnz , σ

2
f
, σ 2

n ]. With predefined

kernel function, we can get the prior distribution of samples.
Hyper-parameters have a great influence on the performance of
GP. In this paper, the Maximum Likelihood approach is adopted
to obtain the optimal hyper-parameters (Rasmussen, 2003).

The posterior distribution at the test point z∗ is also a Gaussian
distribution with mean and variance (Williams and Rasmussen,
2006).

µd(z∗) = K⊤
∗

[

K+ σ 2
n I

]−1
Y (9)

6d(z∗) = K∗,∗ − K⊤
∗

[

K+ σ 2
n I

]−1
K∗ (10)

where d denotes the d-th dimension of the output. K, K∗ and
K∗,∗ are short for K(Z,Z), K (Z, z∗) and K (z∗, z∗), respectively.
And we have [K(Z,Z)]ij = k

(

zi, zj
)

, [K(Z, z∗)]j = k
(

zj, z∗
)

and
K(z∗, z∗) = k (z∗, z∗).
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As discussed above, a GP regression for one dimensional
output has been presented. In our paper, the output vector has
nd dimensions. The multivariate GP approximation is given by

d(z∗) ∼ N

(

µd(z∗),6
d(z∗)

)

(11)

where

µd(z∗) =
[

µ1(z∗); . . . ;µ
nd (z∗)

]

6d(z∗) = diag(
[

61(z∗); . . . ;6
nd (z∗)

]

)

3.2. Training Data Acquisition for GP
The true vehicle model is presented as follows:

xk+1 = f n (xk, uk) + Bd(d (xk, uk) + wk) (12)

where f n (xk, uk) is a nominal function, which is the discrete
model of (1). xk ∈ R

n denotes the state variables and uk ∈ R
m

is the control inputs. The matrix Bd picks the states of system
which are affected by the model error. d is the GP to capture
the model mismatch and unmodeled dynamics. In our paper, we
assume that the model mismatch and unmodeled dynamics, as
well as the process noise wk only affect the longitudinal velocity
vx, the lateral velocity vy and the yaw rate w, i.e., Bd = [0; I3]. wk

is i.i.d normally distributed process noise with wk ∼ N (0,6w),

6w = diag
[

σ 2
vx
, σ 2

vy
, σ 2

ω

]

.

Since Gaussian process is a non-parametric method, the
measurement data of states and inputs should be collected to
infer the GP model. For a specific input data point zk = [xk; uk],
we have the training output as follows:

yk = d (xk, uk) + wk = B
†
d

(

xk+1 − f n (xk, uk)
)

(13)

where B†
d
is the Moore-Penrose pseudo-inverse.

Then the training input and output pairs (zk, yk) will be used
to train GP. The performance of GP relies on the training data
which adds to the system. Themore data we add to themodel, the
more precise result we can obtain. However, the increase of the
size of training data will be a heavy burden to the solver, resulting
in computational infeasibility over time. In order to make more
use of the information of the data and take into account the
computational burden, a novel matrix factorization model (Song
et al., 2019) and a deep latent factor model (Wu et al., 2019b) are
proposed and are proved to improve the estimation accuracy for
themissing data at a little expense of the computation and storage
burden. The deterministic training conditional approximation
and the fully independent training conditional approximation
are also applied for Gaussian process regression to overcome
the computational limitations. To keep the training data size at
an acceptable level, we restrict the number of actively used data
points to Nmax in our paper. Once the training data size reaches
the maximum size Nmax, some data need to be replaced. The
data selection method is based on a distance measure 2∗ which
has been introduced in Kabzan et al. (2019). It is defined as the

posterior variance at the data point location z∗, given all other
data points currently in the dictionary Z\∗, which is shown as:

2∗ = Kz∗ ,z∗ − Kz∗ ,Z\∗
(KZ\∗ ,Z\∗

+ σ I)−1KZ\∗ ,z∗ (14)

where σ is a tuning parameter. The data with the lowest distance
measure should be dropped.

3.3. Approximate Uncertainty Propagation
The states and GP disturbances are approximated as jointly
Gaussian distribution at each time step.

[

xT
k
(dk + wk)

T
]T

∼ N
(

µk,6k

)

= N

([

µx
k

µd
k

]

,

[

6x
k

(6dx
k
)T

6dx
k

6d
k
+ 6w

]) (15)

where dk represents model mismatch and unmodeled dynamics
learned by GP, 6dx

k
denotes the covariances between states and

GP. To approximate the distribution of predicted states over the
prediction horizon, linearization techniques related to extended
Kalman filter are then derived, which allows simple update for
the state mean and variance.

µx
k+1 = f n

(

µx
k, uk

)

+ Bdµ
d
k (16)

6x
k+1 =

[

∇xf n
(

µx
k, uk

)

Bd

]

6k

[

∇xf n
(

µx
k, uk

)

Bd

]T
(17)

In real scenario, the input will not always be deterministic,
e.g., in the context of multi-step-ahead prediction, the last
time’s prediction is the input for the next iteration, which has
a probability distribution. The challenge is how to propagate
the resulting stochastic state distributions over the prediction
horizon (Hewing et al., 2020). Assume the input itself is Gaussian,
zk ∼ N(µz

k
,6z

k
), the predictive distribution is stated as

p
(

d (zk) | µz
k,6

z
k

)

=

∫

p (d (zk) | zk) p
(

zk | µz
k,6

z
k

)

dzk (18)

In general, (18) is not Gaussian since a Gaussian distributions
mapped through a non-linear function leads to a non-Gaussian
predictive distribution (Deisenroth, 2010). Therefore, it can
not be computed analytically. This issue is typically solved by
approximation: Approximate (18) as a Gaussian distribution
which has the same mean and variance function. Based on the
criteria of computationally cheap and practical, a first order
Taylor approximation method is adopted in this paper (Girard
et al., 2003).

µd
k = ud

(

µz
k

)

,6d
k = 6d

(

µz
k

)

,6dx
k = ∇xµ

d
(

µz
k

)

6x
k (19)

4. GPMPC FOR VEHICLE OBSTACLE
AVOIDANCE AND OVERTAKING
MANEUVERS

4.1. Obstacle Avoidance and Overtaking
Problems
Obstacle avoidance is one of the most difficult maneuvers for an
autonomous vehicle. It combines lateral and longitudinal motion
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of vehicles while avoiding collisions with obstacles. In addition,
other types of maneuvers such as lane-changing, lane-keeping
and merging in a sequential manner should be considered
(Dixit et al., 2018). Overtaking can be treated as a moving-
obstacle avoidance problem. The overtaking vehicle with faster
speed is called ego vehicle while the vehicle to be overtaken
with lower speed called lead vehicle. Figures 2A,B illustrate the
typical scenario of overtaking a static object and a dynamic
object, respectively.

The essence of obstacle avoidance or overtaking problems

are trajectory planning and trajectory tracking. The definitions
of two terms have subtle differences that trajectory planning

concerns more about how to generate a state trajectory, while

tracking focuses on how to follow a planned trajectory. Basically,
these two aspects are often studied together. In the literature, a
variety of approaches have been developed for collision avoidance
and planning safe trajectories to overtake the obstacles. These
methods can be grouped in four categories: graph-search based
methods like rapidly exploring random trees (Kuwata et al.,
2008), artificial potential field based methods (Tang et al.,
2010), meta-heuristic based methods (Hussein et al., 2012)
and mathematical optimization based methods (Gao et al.,
2010). Potential field based techniques are commonly used
approaches since they have shown success in generating collision-
free trajectories for overtaking (Kitazawa and Kaneko, 2016).
However, they do not take the vehicle dynamics into account and
hence can not ensure the reliability of the trajectories especially
when the vehicle operates at high speed. Dixit et al. (2018)
proposed a method that combines the potential field with MPC
to overcome the absence of the vehicle model. This will turn
the trajectory planning to several constraints that require to
be satisfied. A new problem arises because collision avoidance
constraints are typically non-convex which will lead to the local
minimum instead of global minimum of optimal problems.
Bengtsson (2020) introduces learning model predictive control
to approximate the issue but the new approach suffers from high
computational complexity.

Another method proposed by Franco and Santos (2019) is
verified to be feasible to cope with obstacles avoidance. It also
combines the adaptive MPC with collision avoidance methods.
However, the bicycle model is only concerned with kinematics,
the lateral control with regard to tire model is simplified.
The proposed method of this paper is based on Franco and
Santos (2019) and extended to the more accurate vehicle models
combined with data-driven control strategy, making it closer to
the real scenarios.

4.2. Overtaking Scenario and Overtaking
Constraints
First and foremost, we need to build scenarios for overtaking
problems. In this paper, we consider the case of double lane
change where overtaking maneuvers are involved in it and it is
also the most common cases in daily life, as shown in Figure 2.
The road width is set to 7.5 m according to general highway
standard. The solid black lines on both sides represent the road
boundaries, the dashed line is the center line of the road. The ego
vehicle drives from the left side to the right side and stays in the
same lane all the time, unless there is an obstacle ahead that needs
to overtake. There are a few lead vehicles or obstacles setting in
front of the ego vehicle with constant velocity. On the contrary,
the ego vehicle is given a greater degree of freedom and can adjust
its speed in time according to the situation, such as accelerating
when overtaking or braking when it needs to maintain a safe
distance from the lead vehicles.

The objective of overtaking problems is to maximize progress
on the center line of the track and avoid collisions at the same
time, which is quite suitable for MPC controller. MPC controller
can incorporate tracking constraints and overtaking constraints
in a systematic way and make the controlled vehicle react in
advance due to its long prediction horizon.

In order to avoid collisions, there are some approaches
relying on a higher-level path planner (Frazzoli et al., 2005;
Gray et al., 2012). However, this will lead to a rapid increase in
computational complexity, which is not well-suited for real-time

FIGURE 2 | Typical scenario of overtaking. (A) Overtaking a static object; (B) Overtaking a dynamic object.
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overtaking. In our paper, we incorporate the path planning into
the tracking controller by using additional constraints formed
by the geometric relationship between the ego vehicle and other
obstacle vehicles.

For safety overtakingmaneuvers, we define an area called “safe
zone” of the lead vehicle, which is a rectangle area around the
lead vehicle. The safety zone is twice the length and width of the
vehicle in length and width, respectively. The ego vehicle should
not enter this area during the overtaking. At the next control
interval the area is refreshed based on the new position of the lead
vehicle. To avoid entering the area, the following state constraints
are used:

Ax ≤ B

where x = [X;Y;8; vx; vy;ω] is the state vector, while A

and B are the constraint matrices that can be updated when
the controller is in operation. Since the overtaking maneuvers
are mainly related to the longitudinal and lateral motion, the
constraints have effect on the position of the ego vehicle (X,Y).
The matrices A and B are defined as:

A =





0 1 0 0 0 0
0 −1 0 0 0 0
k −1 0 0 0 0



 , B =





L1
L2
−b



 (20)

where k is the slope of the line formed from the c.g. of the ego
vehicle to safe zone corner. Obviously, b is the intercept. L1,2
represent the upper bound and lower bound on the Y coordinate.
The coordinate system of the entire road is established with the
origin point at the middle point of the left side of the road.
Figure 3 takes the left overtaking as an example, two vehicles are
on the lower lane and the ego vehicle will detect the lead vehicle
when the distance is less than 20 m. The dashed orange area is the
accessible area when overtaking happens, while the dashed red
rectangle boundary is the safe zone of the lead vehicle. To ensure
safety, an extra safe lateral distance is added, which is set to half
the width of the vehicle in this paper, as shown in Figure 3.

Remark: When the ego vehicle needs to overtake, the choice
of left overtaking or right overtaking can be determined simply
according to the position of the front vehicle in the coordinate
system of the ego vehicle. If the Y coordinate of the front vehicle
is negative, then the ego vehicle will choose left overtaking,
otherwise choose right overtaking.

4.3. Contouring Control and Resulting Cost
Function
GPMPC controller takes advantage of a contouring control
framework, which follows a similar strategy as used in Lam
et al. (2010). We modify the specific formulation of the model
predictive contouring control to maximize the traveled length on
the reference path. Therefore, the center line of a certain lane is
chosen as the reference tracking path, but it is employed solely
as a measure of progress. The reference path is parameterized
by its arc length ξ using third order spline polynomials. Then
given an exemplary ξ , the centerline position [Xc(ξ ),Yc(ξ )] and
orientation 8c(ξ ) and the track radius Rc(ξ ) of vehicle can be
evaluated by interpolation. As a result, the cost function is defined
by the so-called lag error el, contour error ec, orientation error eo
and offset error eoff , as illustrated in Figure 4. The definition of

FIGURE 4 | Lag-, contour-, orientation-, and offset error. The vehicle model is

intentionally plotted outside the road boundary to show these errors clearly.

FIGURE 3 | Schematic of accessible driving area in the case of left overtaking.
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these parameters can refer to Liniger et al. (2015).

el
(

uxk, ξk
)

= cos (8 (ξk)) (Xc (ξk) − Xk)

+ sin (8 (ξk)) (Yc (ξk) − Yk)

ec
(

uxk, ξk
)

=− sin (8 (ξk)) (Xc (ξk) − Xk)

+ cos (8 (ξk)) (Yc (ξk) − Yk)

eo
(

uxk, ξk
)

= 1− |cos (8 (ξk)) cos (ϕ) + sin (8 (ξk)) sin (ϕ) |

eoff
(

uxk, ξk
)

=
1

Rc (ξk)

√

el
(

ux
k
, ξk

)2
+ ec

(

ux
k
, ξk

)2
− 1

(21)
The MPC formulation can be made more efficient by removing
constraints. However, to keep the vehicle staying inside the
boundary of road, there must be vehicle state constraint. In this
paper, we transform the traditional hard state constraint into
a soft constraint and incorporate it as relaxed barrier function
Rb(eoff ) into the cost function, which will improve the optimizer
performance. The relaxed barrier function is defined as:

Rb(eoff ) = β





√

(

c+ γ (λ − eoff )2
)

γ
− (λ − eoff )



 (22)

where β , γ , λ, and c are constant parameters. The stage cost
function is then written as:
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uxk, ξk
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=
∥

∥ec
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)∥

∥

2
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∥el
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)∥

∥

2
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+

∥

∥Rb(eoff
(

uxk, ξk)
)∥

∥

2

qoff

(23)

where qc, ql, qo and qoff are the corresponding weights.

4.4. Input Constraints and Resulting
Formulation
The input vector constraints U are limited as below:

[

−δmax

−Tmax

]

≤

[

δk
Tk

]

≤

[

δmax

Tmax

]

(24)

Based on this contouring formulation, we integrate a stochastic
GPMPC model which results in minimizing the cost function
(23) over a finite horizon of length Np. The corresponding
GPMPC formulation with tractable approximation is defined
as follows:

min
uk

J
(

µx
k, ξk

)

=

N−1
∑

k=0

l
(

µx
k, ξk

)

(25a)

s.t. uxk+1 = f n
(

uxk, uk
)

+ Bd(d
(

uxk, uk
)

+ wk) (25b)

Aµx
k+1 ≤ B (25c)

uk ∈ U (25d)

µx
0 = x(k),6x

0 = 0, ξ0 = ξ (k) (25e)

5. SIMULATION AND ANALYSIS

In order to verify the effectiveness of the proposed approach, two
overtaking scenarios on a two-lane road are constructed. In the
first scenario, we require the ego vehicle to drive in the right lane,
unless there is an obstacle ahead that needs to overtake. We call
this scenario as left overtaking. The initial position of the ego
vehicle is set to (0,−1.875) with an initial speed 20m/s. Lead
vehicle 1 (in red) starts from (25,−1.875) with a constant velocity
12m/s, while lead vehicle 2 (in blue) is at point (60,−1.875)
with a constant velocity 10m/s. In the second scenario, we
require the ego vehicle to drive in the left lane, unless there is
an obstacle ahead that needs to overtake. We call this scenario as
right overtaking. The initial position of the ego vehicle is set to
(2, 1.875) with an initial speed 20m/s. There are three vehicles in
front of the ego vehicle. The lead vehicle 1 brokes down at point
(25, 1.875) and stops here (in red). The lead vehicle 2 is driving
forward at (45, 1.875) at a constant velocity 10m/s (in green). The
lead vehicle 3 is driving forward at (75, 1.875) with a constant
velocity 8 m/s (in blue). Please note that during the experiment
time, lead vehicles will not collide.

The NMPC algorithm is used for comparison. The details of
NMPC algorithm can refer to Liniger et al. (2015). The GPMPC
problem in (25) is implemented with a prediction horizon of
Np = 10. The sampling time is Ts = 50ms, resulting in a 0.5 s
look-ahead. The maximum number of iterations is limited to
30 to ensure consistent maximum solve times. Considering the
reality, we limit the ego vehicle speed between 10 to 35m/s. The
vehicles and obstacles are abstracted to small blocks with 4m long
and 1.6m wide. For easy distinction, vehicles are colored. The
ego vehicle is black, the obstacles and lead vehicles are depicted
in red, green, or blue. The parameters of the ego vehicle is shown
in Table 1. For the full MAGIC formulas, Bf is 0.4, Cf is 8, Df is
4560.4, Ef is−0.5, Br is 0.45, Cr is 8, Dr is 4,000, Er is−0.5.

Nominal vehicle model f n (xk, uk) and true vehicle model
(12) are prepared for calculating the deviations to be learned
by GP model. At first, the ego vehicle starts at the initial
point with NMPC controller, meaning that all GP-dependent
variables are set to zero. The corresponding parameters are tuned
slightly to prevent crashes and driving off the road. Since the
nominal model does not consider the model mismatch and
unmodeled dynamics, it is allowed that its driving behavior
is somewhat erratic and there are small collisions with road
boundaries. Throughout the first run, the data are collected to
fill the training dictionary and train the GP error model d. In
the next run, GP is activated, using the knowledge from the
last run and also accumulating new data from the current run.
The GP model was first generated with fixed hyperparameters,
but we can infer the hyperparameters by using maximum
likelihood optimization according these collected data

TABLE 1 | Parameters of the ego vehicle.

M(kg) Iz(kg ·m2) Lf (m) Lr (m) Cl,f (N/rad) Cl,r (N/rad)

500 600 0.9 1.5 1,400 1,400
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(Rasmussen, 2003). After that we activate the GPMPC with
loaded data and optimized hyperparameters. The new training
data will be added into the GP model after each iteration. When
the maximal dictionary size is reached, some data points will be
discarded by using method mentioned in (14).

The parameters of the NPMC controller is shown in Table 2.
We manually adjust these parameters again and again based
on a large number of simulation experiments. For GPMPC
controller, its parameters in the MPC part are the same as
those of NPMC. The hyper-parameters of GPMPC controller are
shown in Table 3, where M1, σ 2

vx
= 7.1304e − 4 and σf 1 =

2.8052e − 11 are the hyper-parameters for vx dimension, M2,
σ 2
vy

= 1.0358e − 10, and σf 2 = 0.0236 are the hyper-parameters

for vy dimension, M3, σ
2
ω = 1.0059e − 10 and σf 3 = 0.0117 are

the hyper-parameters for ω dimension.
To quantify the performance of the GPMPC control scheme

and the improvement due to the learning, we compare the
predicted model error in vx, vy, and ω, calculated by nominal
model with NMPC controller and estimated model with GPMPC
controller, respectively.

TABLE 2 | Parameters of the NPMC controller.

qc ql qo qoff β c γ λ umax

20 50 20 180 5 4 1,000 −0.1 [0.3419 1]T

TABLE 3 | Hyper-parameters for GPMPC controller.

Parameter Value

M1 diag(0.0346,0.0151,0.0148,0.0153,0.0163,0.0156,0.0148,0.016)

M2 diag(9.9184e4,6.94995e4,731,1988,15,6.2355e4,0.12,1098)

M3 diag(9.9829e4,9.6999e4,1.199e4,2131,77,12,0.51,982)

Figures 5, 6 illustrate that GPMPC performsmuch better than
NMPC. In order to see the capability of GP learning model
clearly, the mean squared error (MSE) of the tracking error in
each dynamic state is shown in Tables 4, 5.

Where ‖eNMPC‖ =
∥

∥xk+1 − f (xk, uk)
∥

∥, ‖eGPMPC‖ =
∥

∥

∥
xk+1 −

(

f (xk, uk) + Bdµ
d (zk)

)∥

∥

∥
.

In addition, we investigate the controller performance by
plotting the predicted values in one iteration. In each time step,
both controllers will make predictions for 10 steps ahead as
shown in Figures 7–12 for left overtaking and in Figures 13–
18 for right overtaking. Please note that we did not give a
fixed reference trajectory for NMPC and GPMPC controller. The
optimized reference trajectory for each prediction is calculated
online. Therefore, GPMPC and NMPC have different reference
trajectories. We investigated the controller performance by
plotting the predicted values in one iteration at the same
starting time.

As evident in Figures 7–18, the NMPC controller performs
visually suboptimally and is unable to predict the future evolution
in some cases. On the contrary, we can see that the GPMPC
controller matches the real values quite well in most cases. The
uncertainty in form of a 2σ confidence interval is shown in light
gray. With uncertainty propagation, we observe that the majority
of predictive states during overtaking are still anticipated by the
GP-uncertainty.

Evolution of control inputs throughout the whole simulation
is another important index for controller performances.
Figures 19, 20 show applied control inputs to left overtaking
problem and right overtaking problem, respectively. The upper
figures represent the change of the first control variable: steering
angle δ. The green dashed line is GPMPC. During the time
interval 1.5 − 2 s and 3 − 3.5 s in Figure 19A, δ changed more
rapidly than in NMPC, which means GPMPC consumed a lot to
achieve a steady state. But after oscillation, δ stabilized quickly.
During the time interval 2.9 − 3.3 s in Figure 20A, δ changed

FIGURE 5 | Tracking error using NMPC and GPMPC in left overtaking. (A) Tracking error vx ; (B) Tracking error vy ; (C) Tracking error ω.
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FIGURE 6 | Tracking error using NMPC and GPMPC in right overtaking. (A) Tracking error vx ; (B) Tracking error vy ; (C) Tracking error ω.

TABLE 4 | MSE comparison in left overtaking.

Model
∥

∥evx
∥

∥

∥

∥evy
∥

∥ ‖eω‖ ‖e‖

NMPC 0.2700 0.7684 0.5693 0.9565

GPMPC 0.2025 0.6494 0.5659 0.8000

TABLE 5 | MSE comparison in right overtaking.

Model
∥

∥evx
∥

∥

∥

∥evy
∥

∥ ‖eω‖ ‖e‖

NMPC 0.3042 0.8792 0.6501 1.0936

GPMPC 0.2136 0.6622 0.5260 0.7755

more rapidly than in NMPC, which is related to the ego vehicle
to stay on the current lane and avoid overtaking early.

When it comes to the control variable T, GPMPC performs
much better than NMPC. Since T = 1 represents full accelerating
and T = −1 means full braking, Figures 19B, 20B show
that NMPC controller shifts extremely steep to avoid constraint
violation. This limitation is not present in the GPMPC approach,
where a more precisely prediction has made. Therefore, except
a few points where the vehicle first detect the obstacle, GPMPC
controls fairly smooth comparing to the NMPC controller, which
gives a speed benefit and consumes less power.

For autonomous overtaking scenario, taking driven
trajectories as a performance criterion is the most intuitive
way. Therefore, we investigate two controller performances by
comparing the overtaking maneuvers and the overall driven
trajectories. Figure 21 illustrates the cases in left overtaking
while Figure 22 is for right overtaking. Figures 21A,C are the
driven trajectories with velocity profile generated by NMPC and
GPMPC, respectively. The maneuvers where the ego vehicle
is overtaking the first vehicle are shown in Figures 21B,D. In

Figure 22, Figures 22a,c,e,g are for NMPC. Figures 22b,d,f,h
are for GPMPC. The maneuvers where the ego vehicle is
overtaking the first vehicle are shown in Figures 22a,b. The
maneuvers where the ego vehicle is overtaking the second vehicle
are shown in Figures 22c,d. The maneuvers where the ego
vehicle is overtaking the third vehicle are shown in Figures 22e,f.
Figures 22g,h are the driven trajectories with velocity profile
generated by NMPC and GPMPC, respectively. Both control
strategies are able to accomplish the overtaking mission without
collisions, which proves that the parameters of MPC controller
are valid. However, it is evident to see GPMPC outperforms
NMPC, especially with regard to constraint satisfaction. This
can be seen from the black dotted circle in Figure 21B and the
blue dotted circle in Figures 22c,e. The ego vehicle hits the “safe
zone.” Although the “safe zone,” depicted by dashed red lines, is
virtual in real world, driving too close to the overtaken vehicles
will indeed increase the risk of collision.

Furthermore, there is another phenomenon worth
mentioning. It can be seen from NMPC’s trajectories in left
overtaking that there is a wave crest after overtaking the second
vehicle, which is clearly visible from the blue dotted circle in
Figure 21A. And there are two more wave crests in NMPC
than in GPMPC for right overtaking, which is clearly visible
from Figure 22g. The extra displacement of trajectories are
generated due to the wrongly estimation of lateral force by
NMPC, which leads the vehicle return to the original track
prematurely when it not fully finishes overtaking. Then, since
the lead vehicle is moving, at the next time step, situation gets
not suitable for overtaking. The ego vehicle has to overtake
the obstacle vehicle again. Comparing to NMPC, the resulting
trajectories with GPMPC are displayed in Figures 21C, 22g,
generally showing a much more smooth and safe overtaking
behavior. In particular, almost all of the problems in the
trajectories of the nominal model and NMPC controller can
be alleviated.
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FIGURE 7 | Position X evolution in left overtaking. (A) NMPC; (B) GPMPC.

FIGURE 8 | Position Y evolution in left overtaking. (A) NMPC; (B) GPMPC.

FIGURE 9 | Yaw angle evolution in left overtaking. (A) NMPC; (B) GPMPC.
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FIGURE 10 | Velocity vx evolution in left overtaking. (A) NMPC; (B) GPMPC.

FIGURE 11 | Velocity vy evolution in left overtaking. (A) NMPC; (B) GPMPC.

FIGURE 12 | Yaw rate evolution in left overtaking. (A) NMPC; (B) GPMPC.
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FIGURE 13 | Position X evolution in right overtaking. (A) NMPC; (B) GPMPC.

FIGURE 14 | Position Y evolution in right overtaking. (A) NMPC; (B) GPMPC.

FIGURE 15 | Yaw angle evolution in right overtaking. (A) NMPC; (B) GPMPC.
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FIGURE 16 | Velocity vx evolution in right overtaking. (A) NMPC; (B) GPMPC.

FIGURE 17 | Velocity vy evolution in right overtaking. (A) NMPC; (B) GPMPC.

FIGURE 18 | Yaw rate evolution in right overtaking. (A) NMPC; (B) GPMPC.
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FIGURE 19 | Control inputs using NMPC and GPMPC for left overtaking. (A) Steering angle; (B) Pedal.

FIGURE 20 | Control inputs using NMPC and GPMPC for right overtaking. (A) Steering angle; (B) Pedal.

6. CONCLUSION

We have investigated overtaking problems in autonomous

driving and dedicate to build a GP-based control framework

which is able to complete vehicle control, trajectory tracking
and obstacles avoidance. Since the vehicle model is a extremely

complicated system and the road condition is time-varying, it is

intractable to derive a precise model. Thus, the learning based

method is introduced and the core concept of this method is only
using a nominal model to represent the vehicle while the rest

uncertainties, disturbances and mismatch can be learned by GP
model. However, one issue raised during the combination of GP

regression and traditional NMPC controller: the MPC became
a stochastic formulation because of the GP approximation.
By employing the Taylor approximation we can propagate the
uncertainties and evaluate the residual uncertainties, which
increases the accurateness and the controller. The implemented
Taylor approximation depends directly on the dimension of
training data. As the data points constantly adding into the
model, it becomes expensive to evaluate in high dimensional
spaces. We limit the upper bound of the number of data
points with a dictionary and set a selection mechanism, thus
the computational complexity will be sustained on a medium
level. In addition, we modify the constraints and cost function
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FIGURE 21 | Overtaking maneuvers and the overall driven trajectories for left overtaking. (A) Overall driven trajectories of NMPC; (B) Overtaking maneuver of NMPC;

(C) Overall driven trajectories of GPMPC; (D) Overtaking maneuver of GPMPC.

FIGURE 22 | Overtaking maneuvers and the overall driven trajectories. (a) Overtaking the first vehicle by NMPC; (b) Overtaking the first vehicle by GPMPC; (c)

Overtaking the second vehicle by NMPC; (d) Overtaking the second vehicle by GPMPC; (e) Overtaking the third vehicle by NMPC; (f) Overtaking the third vehicle by

GPMPC (g) Overall driven trajectories of NMPC; (h) Overall driven trajectories of GPMPC.

to reduce the computation need for optimization. Collectively,
simulation results demonstrate that both performance and safety
in overtaking can be improved by using GPMPC.

There are two suitable directions for future work on this topic.
Firstly, the GPmodel was trained online but the hyperparameters
were selected offline, which means the trained GP remains
constant throughout the prediction online progress. However,
the velocity of vehicle is constantly changing, making the

optimized parameters not suitable for the GP model. Train the
hyperparameters online and generalize the model to various
overtaking scenarios deserve further investigation. Secondly,
overtaking at a corner is a special case in autonomous driving
which deserves deep investigation. The proposed overtaking
method is able to handle nearly all situations on the straight
road but when it comes to the corner, things get beyond
its competence.
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