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In recent years, learning-based hashing techniques have proven to be efficient for

large-scale image retrieval. However, since most of the hash codes learned by

deep hashing methods contain repetitive and correlated information, there are some

limitations. In this paper, we propose a Dual Attention Triplet Hashing Network (DATH).

DATH is implemented with two-stream ConvNet architecture. Specifically, the first

neural network focuses on the spatial semantic relevance, and the second neural

network focuses on the channel semantic correlation. These two neural networks are

incorporated to create an end-to-end trainable framework. At the same time, in order

to make better use of label information, DATH combines triplet likelihood loss and

classification loss to optimize the network. Experimental results show that DATH has

achieved the state-of-the-art performance on benchmark datasets.

Keywords: supervised deep hashing, dual network, attention mechanism, image retrieval, loss function

INTRODUCTION

Image retrieval is a popular problem of image matching, where the similar images are retrieved
from a database with respect to a given query image. Basically, the similarity between the query
image and the database images is used to rank the database images in decreasing order of similarity
(Dubey, 2021). The traditional content-based image retrieval technology uses the nearest neighbor
retrieval to achieve better results when facing small data sets. However, in the context of large-scale
image data, considering the data storage space, query speed and other retrieval problems, content-
based image retrieval technology can no longer meet the requirements. Because of its small storage
space and fast query speed, hashing method is quickly applied to image retrieval. Traditional hash
methods, such as KSH (Liu et al., 2012), ITQ (Gong and Lazebnik, 2011), and DSH (Jin et al., 2014),
use manually extracted features and separate the feature extraction step from the learning step of
hash function. Not only is the process cumbersome, but also the retrieval accuracy of the obtained
hash code is generally low.

As deep learning has shown its superior performance in computer vision applications,
researchers try to introduce the technique into image retrieval tasks (Oquab et al., 2014; You et al.,
2016; Chen et al., 2017). Deep hashing methods are gradually proposed, such as DHN (Zhu et al.,
2016), HashNet, ADSH (Jiang and Li, 2018), GAH (Huang et al., 2019), DAGH (Chen et al., 2019),
and SCADH (Cui et al., 2020), which have been proved to significantly improve the retrieval speed
and accuracy for large-scale multimedia retrieval.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.728161
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.728161&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lzcts@163.com
https://doi.org/10.3389/fnbot.2021.728161
https://www.frontiersin.org/articles/10.3389/fnbot.2021.728161/full


Jiang et al. Dual Attention Hash Image Retrieval

Although deep hashing methods have made great progress,
these methods have some limitations on generating short
hash codes. Similar images may contain completely different
background images, and different images may contain the same
image background. Thus, the learned hash codes may not contain
important information used to describe the key features of
the image.

In the training process of supervised deep hashing algorithm,
supervised information is given in the form of pairwise labels
or triplet labels, a special case of ranking labels. In recent years,
researchers think that triplet labels inherently contain richer
information than pairwise labels (Wang et al., 2017). Therefore,
current supervised methods are mostly trained using a triplet
loss function made up of three images as: (i) an anchor image;
(ii) a positive image that is similar to the anchor; and (iii) a
negative image that is dissimilar to the anchor, such as Zhou
et al. (2019), Fang et al. (2021), and (Zhu et al., 2021). Each
triplet label can be naturally decomposed into two pairwise labels.
A triplet label ensures that in the learned hash code space,
the query image is close to the positive image and far from
the negative image simultaneously. However, a pairwise label
can only ensure that one constraint is observed. Triplet labels
explicitly provide a notion of relative similarities between images
while pairwise labels can only encode that implicitly (Wang
et al., 2017). At the same time, the classification information only
plays a role in deep neural network image representation, and
seldom directly classifies the hash code. Therefore, in order to
make full use of the label information to learn the hash code,
combining the triplet label loss and classification loss is worthy
of attention.

In addition, attentional mechanisms have been widely used
in natural language processing and some aspects of computer
vision, such as semantic segmentation. Attention mechanism
can focus on the main information of the object and restrain
the useless information of the object. In the field of deep hash
retrieval, we also need attention mechanism to enhance the
feature representation ability of deep networks, so as to reduce
the interference of image useless information on generating
hash code.

In order to solve the above problems, this paper proposes a
Dual Attention Triplet Hashing Network (DATH), and extensive
experimental results on benchmark datasets show that DATH
outperforms the state-of-the-art supervised hashing methods.
The contributions of this work are summarized as follows:

1. We propose a novel Dual Attention Triplet Hashing Network
(DATH). The two neural networks focus on spatial semantic
relevance and channel semantic relevance respectively, and
then combine the two neural networks to create a unified
framework for end-to-end training. To the best of our
knowledge, this is the first deep hashing method that utilizes
dual attention mechanism to learn the hash codes.

2. In order to guarantee the quality of the final hash codes
and fully utilize the supervised information, DATH combines
the classification loss function with the triplet likelihood loss
function to optimize the generation of hash codes.

3. Extensive experiments on widely-used benchmark datasets
have been conducted. The results demonstrate that our

method outperforms current state-of-the-art methods for
image retrieval, which indicates the effectiveness of the
proposed method.

RELATED WORK

Existing hashing methods can be divided into two categories:
data-independent (Andoni and Indyk, 2006) and data-
dependent methods (Xie et al., 2017). Locality Sensitive
Hashing (LSH) (Gionis et al., 1999) is one of the most
representative data-independent hashing methods. LSH is
unstable and needs longer hash codes to achieve better
performance. Due to the limitations of the data-independent
methods, current researchers focus on data-dependent methods,
which enable the learned hash function to maintain the
semantic relationship between images based on a given
data set.

Data-dependent methods can be further divided into
unsupervised and supervised methods. Unsupervised hashing
methods train unlabeled data to learn hash functions that
encode data into binary codes. Spectral Hashing (SH)
(Weiss et al., 2009), Iterative Quantization (ITQ) (Gong
and Lazebnik, 2011) and Principle Component Analysis Hashing
(PCAH) (Wang et al., 2012) are traditional unsupervised
linear methods. Supervised hashing methods make full
use of label information to obtain better performance
than unsupervised hashing methods. Canonical Correlation
Analysis with Iterative Quantization (CCA-ITQ) (Gong and
Lazebnik, 2011) is a supervised version of ITQ, which uses
CCA to reduce the dimension of data and map the data to
the vertex of binary hypercube to reduce the quantization
error. Supervised Discrete Hashing (SDH) (Shen et al.,
2015) introduces an auxiliary variable to reformulate the
objective function so that it can be solved effectively by
regularization algorithm.

Recently, deep convolutional neural networks have yielded
remarkable results on many computer vision tasks, and hashing
methods based CNN have made great progress. Deep Hashing
Network (DHN) (Zhu et al., 2016) uses AlexNet (Krizhevsky
et al., 2017) to learn the image representation of hash codes, and
uses pairwise cross entropy loss function to maintain similarity
learning and pairwise quantization loss function to control the
quality of hash codes. Deep Triplet Supervised Hashing (DTSH)
(Wang et al., 2017) uses triplet likelihood loss to learn image
features and hash codes. DHCNN (Song et al., 2019) and Deep
Uniqueness-Aware Hashing (DUAH) (Wu et al., 2018) combine
contrastive loss and classification loss to solve the problem
of large-scale remote sensing image retrieval and fine-grained
multi-label image retrieval, respectively. Deep learning to hash
by continuation (HashNet) (Cao et al., 2017) can effectively learn
binary hash codes from unbalanced similarity data. Gradient
Attention Hashing (GAH) (Huang et al., 2019) proposes a
gradient attention mechanism, which is integrated in a deep
hashing architecture to address the aforementioned learning
issue, and thus accelerate the learning process. Asymmetric
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Deep Supervised Hashing (ADSH) (Jiang and Li, 2018) treats
the query points and database points in an asymmetric way,
learns a deep hash function only for query points while the
hash codes for database points are directly learned. Although
the above methods achieve good retrieval performance, they
do not deal with irrelevant features in the image. Deep
Ordinal Hashing with Spatial Attention (DOH) (Jin et al.,
2019) designs a subnetwork to build rank structure by jointly
exploring the local spatial information from FCN and the global
semantic information from CNN. Here the spatial attention
model is designed to capture the local spatial information
by selectively learning well-specified locations closely related
to target objects. In terms of practical application, Scalable
Deep Hashing (SCADH) (Cui et al., 2020) formulate a unified

scalable deep hash learning framework which explores the
weak but free supervision of discriminative user tags that are
commonly accompanied with social images. As an important
branch of hashing methods, Deep Collaborative Multi-view
Hashing (DCMVH) (Zhu et al., 2020) associates different layers
with instances and paired semantic tags to solve the multi-view
hashing problem.

APPROACH

Network Architecture
To address the limitations of previous learning-based hashing
methods, we propose a novel deep hashing method. For fair
comparison with other deep hashing methods, we use AlexNet

FIGURE 1 | The network architecture of DATH.

FIGURE 2 | Spatial attention module.
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FIGURE 3 | Channel attention module.

FIGURE 4 | Feature fusion process.

FIGURE 5 | The training process of triplets.

network as the basic architecture of our algorithm. Figure 1
shows the proposed DATH model. Our method includes two-
stream ConvNet architecture. The first stream is embedded
with spatial attention module. The second stream is embedded
with channel attention module. For hash function learning,
we replace the fc8 layer of the softmax classifier in the

original AlexNet with a new h layer of k hidden units, which
transforms the fc7 representation to k-dimensional hash codes
by bi = sgn(hi), sgn(x) is the sign function. hi is the hidden
representation of the h layer, and we squash its output to be
within [−1,1] by utilizing the tanh activation. And c is the
classification layer.
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TABLE 1 | Data set allocation.

Data set NUS-WIDE MS-COCO

Train set 10000 10000

Test set 5000 5000

Retrieval set 168692 112218

Number of labels 81 80

The role of the attention module is to find salient regions in
the original image that need to get attention. Inspired by the
attentionmechanism in the field of image semantic segmentation
(Fu et al., 2019), which is different from the purpose of
classification. It combines spatial attention and channel attention
to classify each pixel. The spatial attention mechanism mainly
sum the features of all pixel positions with different weights. If
the features are similar, they will be related to each other. Channel
attention mechanism is related to the features in the channel
graph selectively and acts on the interdependent channel features.
Dual attentionmodules are fused to capture important features of
objects. Figures 2, 3 show spatial attention module and channel
attention module, respectively.

The sum between fc7 and fc7′ of the fully connected layer is
the sum of elements. It is assumed that fc is the fully connected
layer after the final fusion. The simple feature fusion process is
shown in Figure 4.

Triplet Input
As shown in Figure 5, it is the training process of triplets, which
uses common network parameters for different images. If two
images share one same label, we think they are similar, otherwise
they are not similar they are dissimilar.With the above definition,
an image as the anchor xa, a positive image xp that is similar
to the anchor and a negative image xn that is dissimilar to the
anchor are used as a triplet input

{

xa, xp, xn
}

of the network.
For the entire data set, we can define the image triplets set as

TX = {xai , x
p
i , x

n
i }

M

i=1, M is the total number of triplets. Our goal

is to learn their compact binary codes TB = {bai , b
p
i , b

n
i }

M

i=1, and

dist(bai , b
p
i ) should be much less than dist(bai , b

n
i ). dist() represents

the hamming distance between two hash codes.
However, in a large data set, the workload of constructing

triplets is huge. For example, in the NUS-WIDE data set, 10,000
training images are selected before training. The construction of
triplets for these 10,000 training images is about (10000)3 = 1012,
the number of groups is too large to train. Therefore, we adopt
the method of generating triplets online. In a training batch, the
image set is denoted as X =

{

x1, x2, . . . , xb_s
}

and the label set
is denoted as L =

{

l1, l2, . . . , lb_s
}

, b_s means batch size. Every
image in a batch will participate in the training and get hash code
set B =

{

b1, b2, . . . , bb_s
}

. Then use the images that have a similar
image and a dissimilar image as the anchor to generate a set of

triplets T=
{

xai , x
p
i , x

n
i

}m

i=1
(x∗i ∈ X,∗ ∈ {a, p, n}), which greatly

reduces the training time.

Loss Function
DTSH proposes the triplet likelihood function for hashing
coding. Given the likelihood function is:

p (T|B) =

m
∏

i=1

p
(

xai , x
p
i , x

n
i |B

)

(1)

with

p
(

xai , x
p
i , x

n
i |B

)

= M
(

Rbai ,b
p
i
− Rbai ,b

n
i
− θ

)

(2)

Where m is the number of triplets, R∗ ,∗ is half of the inner
product of two hash codes, such as Rbai ,b

p
i
= 1

2b
a
i
Tb

p
i . M(x) is the

sigmoid function M(x) = 1
1+e−x , θ is the margin representing

the threshold of the similarity difference between a pair of
similar images and a pair of dissimilar images (in the subsequent
experiments, θ is set to 5) and B is the set of all hash codes. And
when the value of Rbai ,b

p
i
is larger and the value of Rbai ,b

n
i
is smaller,

triplet likelihood function is larger.
We define triplet loss function as the negative log triplet

likelihood as follows:

J1 = − log p (T|B) = −

m
∑

i=1

log p
(

xai , x
p
i , x

n
i |B

)

(3)

Where m is the number of triplets which generated from a batch.
By taking Equation (2) into Equation (3), we can have:

J1 = −

m
∑

i=1

(

Rbai ,b
p
i
− Rbai ,b

n
i
− 5− log

(

1+ e
R
bai ,b

p
i
−Rbai ,b

n
i
−5

))

(4)

In order to fully utilize the label information, we use the joint
classification layer to further optimize the hash code. We use
the following classification loss function, which can represent
the relationship between the learned hash code B and label
information L:

J2 =

b_s
∑

i=1

G
(

li, yi
)

(5)

Where y is the output of the classification layer and l is the true
label. For single label datasets, G

(

li, yi
)

is formulated as:

G1

(

li, yi
)

= −

c
∑

j=1

li[j] log
eyi[j]

∑c
t=1 e

yi[t]
(6)

Where c is the number of classes and y [i] represents the i-th
element of the vector y. If an image contains multiple labels, we
refer to this problem as multi-label classification. Cross entropy
loss is employed in this case. G

(

li, yi
)

can be calculated as:

G2

(

li, yi
)

= −

c
∑

j=1

{

li[j] log
eyi[j]

∑c
t=1 e

yi[t]
+

(1− li[j]) log(1−
eyi[j]

∑c
t=1 e

yi[t]
)
}

(7)
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TABLE 2 | MAP of different methods on NUS-WIDE and MS-COCO.

Methods NUS-WIDE MS-COCO

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

LSH 0.335 0.348 0.354 0.352 0.382 0.405 0.417 0.417

ITQ-CCA 0.592 0.595 0.590 0.582 0.559 0.590 0.589 0.585

ITQ 0.600 0.622 0.639 0.643 0.566 0.602 0.618 0.627

SDH 0.663 0.710 0.708 0.722 0.618 0.658 0.690 0.693

DHN 0.674 0.703 0.710 0.720 0.643 0.663 0.671 0.672

HashNet 0.681 0.728 0.760 0.767 0.687 0.681 0.706 0.718

ADSH 0.716 0.712 0.682 0.645 0.591 0.550 0.428 0.454

GAH 0.724 0.758 0.766 0.773 0.647 0.689 0.710 0.712

DATH 0.742 0.764 0.774 0.780 0.703 0.741 0.749 0.753

Bold indicates the best MAP result.

FIGURE 6 | Curves on NUS-WIDE.

In order to get more accurate binary codes, we add the
quantization loss function. The loss function is adopted as:

J3 =

b_s
∑

i=1

k
∑

j=1

|| |hi[j]| − 1 ||1 (8)

Where h is the output of hash layer and k is the lengths of hash
code. The overall loss function can be written as follows, where
β , γ are the hyper-parameters.

J = J1 + βJ2 + γJ3 (9)
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FIGURE 7 | Curves on MS-COCO.

EXPERIMENTS

We compare our method DATH with some classical hashing
methods including LSH, ITQ-CCA, ITQ, SDH, DHN, HashNet,
ADSH, and GAH. For traditional hashingmethods, we feed them
DeCAF7 features (Donahue et al., 2014), i.e., the fc7 output
of pre-trained AlexNet, as input. For deep hashing methods,
we use the same settings in their original papers and re-run
their source code with our divided data set. Our two-stream
ConvNet architecture use the pre-trained model on ImageNet.
The DATH is implemented with Pytorch (Paszke et al., 2019). In
the training process, the batch size is 128, the epoch is set to 200,
the initial learning rate is set to 1e-5, the optimization algorithm
uses RMSProp and weight decay parameter is set to 1e-5. The
parameter β and γ are set to 1 and 0.01, respectively.

Datasets and Evaluation Metrics
We evaluate the proposed method on two benchmark datasets:
NUS-WIDE (Chua et al., 2009) includes 269,648 images assigned

with one or multiple labels under totally 81 concepts. We follow
similar experimental protocols as DHN and randomly sample
5,000 images as queries, with the remaining images used as
the database, and we randomly sample 10,000 images from
the database as training points. MS-COCO (Lin et al., 2014)
is an image recognition, segmentation and captioning dataset.
The current release contains 82,783 training images and 40,504
validation images, where each image is labeled by some of the 80
categories. After pruning images with no category information,
we obtain 122,218 images by combining the training and
validation images. We randomly sample 5,000 images as queries,
with the rest images used as the database, and we randomly
sample 10,000 images from the database as training images.

Table 1 shows the settings of the training set, test set, retrieval
set and label number of two data sets. During the training, the
size of all images is uniformly changed to 224×224.

We calculate the Mean Average Precision (MAP) values
within the top 5000 returned neighbors (MAP@5000) for two
datasets, and we draw Precision curves as well as Recall curves
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FIGURE 8 | The network architecture of DATH-1.

with respect to different numbers of top returned samples (P@N
and R@N).MAP is ameasure of the overall performance of image
retrieval, which is the mean of Average Precision (AP) for all
queries. The definition of AP is as follows:

AP =
1

N

M
∑

i=1

i

Ri
× reli (10)

Where N is the number of related images in the database in one
query, M is the number of returned images, Ri is the rank of the
i-th returned image, and reli = 1 means the image ranked in the
i-th position is similar to the query image, otherwise it is 0. For
the NUS-WIDE data set andMS-COCO data set, M is set to 5,000
in the experiments.

Results and Discussion
Mutual Comparison Experiment
Table 2 shows the MAP results for our method DATH. All
baseline methods on two datasets with hash code lengths to be
16, 32, 48, 64 bits respectively and bold indicates the best MAP
result. From the table, we can observe that DATH outperforms
all comparison methods. Specifically, compared to the best
traditional hashing method using deep feature as input, we
achieve absolute increases of 7.9, 5.4, 6.6, and 5.8% in average
MAP for different bits on NUS-WIDE. Compared to deep
hashing method GAH, we achieve absolute boosts of 5.6, 5.2,
3.9, and 4.1% in average MAP for different bits on MS-COCO.
What needs to be noted is that the original ADSH code uses
all the data as the training set. In order to be consistent with
other experiments, my ADSH experiment also selects 10,000
images as the training set, and all the data is used during
the test. It is noticed that three deep hashing algorithms learn

hash codes through pairwise loss function and AlexNet, so the
advantage of DATH lies in the use of attention mechanism and
the combination of classification loss and triplet loss.

Figure 6 shows the accuracy and recall curves of different
retrieved samples on the NUS-WIDE data set. It can be found
that the accuracy of the proposed DATH method is higher than
other methods on 32 bits, and is closer to the HashNet method on
64 bits. However, it can be seen that the accuracy of DATH can be
higher than that of HashNet when there are fewer search samples.
For the recall curve, the DATH curve is very close to HashNet.

Figure 7 shows the accuracy and recall curves of different
search samples on the MS-COCO data set. It can be clearly seen
from the P@N curve that the results of DATH on 32-bit and
64-bit are higher than other curves, especially in retrieval when
the number of images is 2×10∧4, the gap is more obvious. From
the R@N curve, it can be seen that after the number of retrieved
images is>4×10∧4, DATH can begin to obtain a clear advantage.

Based on Figures 6, 7, we can find most of the traditional
methods cannot achieve better results. The use of attention
mechanism and the full use of label information have a significant
improvement in the deep hashing method.

Self-Contrast Experiment
We investigate several variants of DATH: DATH-S is the DATH
variant without channel attentionmodule. DATH-C is the DATH
variant without spatial attention module. DATH-N is the DATH
variant without any attentionmodule, only one AlexNet network.
DATH-1 changes the network structure mainly in the feature
extraction part as shown in Figure 8. We compare the results of
DATH variants in Table 3, bold indicates the best MAP result.

Comparing DATH-N, DATH-S and DATH-C, we can find
that adding spatial attention module improves the model more
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TABLE 3 | MAP results of DATH and its variants on NUS-WIDE and MS-COCO.

Methods NUS-WIDE MS-COCO

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

DATH-S 0.735 0.759 0.769 0.775 0.697 0.725 0.744 0.750

DATH-C 0.724 0.757 0.767 0.767 0.691 0.732 0.741 0.746

DATH-N 0.722 0.758 0.763 0.768 0.691 0.726 0.740 0.746

DATH-1 0.737 0.763 0.777 0.778 0.692 0.737 0.751 0.748

DATH 0.742 0.764 0.774 0.780 0.703 0.741 0.749 0.753

Bold indicates the best MAP result.

FIGURE 9 | Triplet loss declining curve.

significantly, and spatial attention can indeed focus on important
areas to make the hash code more effective. Compared with
DATH again, we can find that adding two attention modules
will greatly improve the model effect, which shows that the
fusion of two attention modules can best extract key features.
At the same time, as the length of the hash code increases,
the improvement of the model by adding the attention module
will decrease. The reason may be that the long hash code itself
already contains a lot of useful or useless information, and the
attention mechanism is more able to help the short hash code to
select critical features from a large amount of image information.
Finally, compared with DATH-1, we can find DATH can almost
achieve better results, but it is obvious that DATH uses more
different convolutional layers and fully connected layers, which
will lead to an increase in the amount of network parameters.

Convergence Degree of Triplet Loss
Figure 9 is the trend chart of the triplet loss function with Epoch
on the NUS-WIDE data set. We save the loss every 10 Epoch. At
different hash code bits, the triplet loss shows a rapid downward
trend at the beginning, and gradually tend to a stable value in
the later stage. This shows that the triplet loss function plays an
important role in the entire training process.

TABLE 4 | MAP results of different hyper-parameter.

NUS-WIDE MS-COCO

β

γ

0 0.1 0.01 0 0.1 0.01

0 0.728 0.719 0.729 0.674 0.664 0.688

1 0.726 0.705 0.742 0.688 0.667 0.703

0.1 0.733 0.723 0.740 0.691 0.672 0.696

0.01 0.732 0.717 0.747 0.693 0.664 0.698

0.001 0.729 0.723 0.741 0.691 0.672 0.696

Bold indicates the best MAP result.

Hyper-Parameter Analysis
In order to further reveal the impact of classification loss function
on the results, we conduct experiments with a 16-bit hash code
on two data sets. Except for the values of hyper-parameters,
the other experimental parameters remain unchanged. For the
classification loss hyper-parameter β, we select five values of 0, 1,
0.1, 0.01, and 0.01, and the quantitative control function hyper-
parameter γ we chose 0, 0.1, and 0.01, as shown in Table 4, bold
indicates the best MAP result.

In the case without the classification loss, that is β = 0,
comparing the best MAP of the two data sets, we can find that not
combining the classification loss will cause a significant decrease
in retrieval accuracy, which proves the rationality of the joint
classification loss. In the cases of weighted quantization loss, we
can find that combining different proportions of quantization
loss will have different effects on retrieval accuracy. When γ =

0.01, the retrieval accuracy will be slightly improved. In general,
combining classification loss to the network improves retrieval
accuracy more obviously.

Efficiency Analysis
In the actual retrieval system, the time efficiency of generating
hash codes for new images is also an important part. In order to
calculate the encoding time of the DATH network, this section
compares the encoding time of the DATH method and other
baseline deep hashingmethods and all experiments calculate time
by NVIDIA GTX1080Ti. Table 5 shows the average encoding
time of images on the MS-COCO dataset with different 16-bit
hashingmethods. Eachmethod removes the image preprocessing
part and only calculates the time for the image to pass the
model calculation.

It can be seen from the Table 5 that our method is close to
twice that of other methods. This is mainly because our network
structure is more complex and we add the attention module.
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TABLE 5 | Encoding time of different methods.

Method DHN HashNet GAH DATH DATH-S DATH-C DATH-1

Time (ms) 1.995 1.995 1.996 4.015 3.789 3.786 4.013

TABLE 6 | Training time of DATH and DATH-1.

Method Time (s)

16 bits 32 bits 48 bits 64 bits

DATH 40.569 40.634 40.623 40.635

DATH-1 39.954 40.302 40.378 40.377

Table 6 shows the average training time of one epoch on
the MS-COCO dataset with two hashing methods DATH and
DATH-1.

Although the training time of DATH is longer than DATH-1,
the encoding time is the close and the retrieval result of DATH is
better. Finally, we choose DATH as the final network.

Summarizing all the above experiments, the retrieval accuracy
of DATH is better than other hash methods. However, the
image encoding time of DATH is longer and DATH needs time
consuming hyperparameter tuning. In practical applications,
we may do retrieval on large data sets. DATH-S or DATH-C,
which has slightly lower retrieval accuracy but faster speed, is
a good choice. As for the selection of parameters, I suggest to
make adjustments on part of the data with reference to our
experimental results.

CONCLUSION

In this paper, we propose a Dual Attention Triplet Hashing
Network. The proposed DATH uses the spatial attention

mechanism and the channel attention mechanism to extract
the key features of images, and combines the classification loss
function with the triplet likelihood loss function to make full use
of label information. DATH applies the dual attention structure
to image retrieval for the first time, and introduces how to
combine classification loss and quantification loss on the basis of
triple loss in a batch. Quantitative experiments show our model’s
successful target-oriented designs. Compared with the highest
value of the other methods, we respectively achieve absolute
boosts of 3.55% and 0.95% in average MAP for different bits
on MS-COCO and NUS-WIDE. In the future, we are looking
forward to applying this kind of dual attention network to more
Image Retrieval tasks such as Fine-Grained Image Retrieval, and
reducing network complexity is also our future goal.
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