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With the advancement of artificial intelligence, robotics education has been

a significant way to enhance students’ digital competency. In turn, the

willingness of teachers to embrace robotics education is related to the

e�ectiveness of robotics education implementation and the sustainability of

robotics education. Two hundred and sixty-nine teachers who participated in

the “virtual human education in primary and secondary schools in Guangdong

and Henan” and the questionnaire were used as the subjects of study.

UTAUT model and its corresponding scale were modified by deep learning

algorithms to investigate and analyze teachers’ acceptance of robotics

education in four dimensions: performance expectations, e�ort expectations,

community influence and enabling conditions. Findings show that 53.68%

of the teachers were progressively exposed to robotics education in the

last three years, which is related to the context of the rise of robotics

education in schooling in recent years, where contributing conditions have a

direct and significant impact on teachers’ acceptance of robotics education.

The correlation coe�cients between teacher performance expectations,

e�ort expectations, community influence, and enabling conditions and

acceptance were 0.290 (p = 0.000<0.001), −0.144 (p = 0.048<0.05), 0.396

(p = 0.000<0.001), and 0.422 (p = 0.000<0.001) respectively, indicating that

these four core dimensions both had a significant e�ect on acceptance.

Optimization comparison results of deep learningmodels show thatmDAE and

AmDAE provide a substantial reduction in training time compared to existing

noise-reducing autoencoder models. It is shown that time-complexity of the

deep neural network algorithm is positively related to the number of layers of

the model.
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Introduction

The beginning of worldwide research on artificial

intelligence (AI) traces back to the Dartmouth Symposium

held in 1956, in which the American scholar McCarthy defined

the concept of AI from an engineering perspective, and AI

has accumulated enormous potential over the past 60 years.

Education, as one of the important fields of AI applications,

is moving toward a new ecology of AI education. In other

words, AI is leading the transformation of education and

becoming an essential factor in promoting the development of

education information technology integration and innovation

(Wenge, 2021; Kim and Shim, 2022). As the most revolutionary

technology nowadays, it will be of great benefits in optimizing

the teaching environment, intelligent assessment, personalized

tutoring, identifying classroom deficiencies and enhancing

the learning experience to facilitate accurate teaching. There

is no doubt that this will shock the traditional education

objectives, contents and processes. Therefore, along with the

rapid development of the intelligent era, the education field

will be facing greater challenges and should make full use of AI

technology to deepen education reform comprehensively and

build an intelligent, lifelong and personalized talent training

system so that education can better serve and develop people

(Woolf et al., 2013; Aoun, 2017; Ahmad et al., 2021).

With the new wave of AI development, practice and

application of avatar education in the basic education stage

is becoming increasingly popular and gradually becoming

an important vehicle for the development of AI (Benitti,

2012). As a concrete manifestation of the change in the basic

approach and methodology of teaching, it not only plays

an important role in promoting students’ innovative spirit,

computational thinking, practical skills and social skills, but

also facilitates the development of interesting learning courses

and the construction of personalized (student-specific) learning

environments. This is a key element in the effective practice and

promotion of robotics education, with virtual teachers playing a

pivotal role in delivering robotics courses and guiding students

in robotics competitions. Currently, China’s education and

teaching model has transformed from the “teacher-centered”

and then “student-centered” unilateral teaching to the current

“dominant-subject” model. The dual-focused education and

teaching model has evolved into the current “lead-subject”

model. Only when teachers play their “leading role” well can

students effectively play their “main effect.” The starting point

for effective practice and application of robotics education

in primary and secondary schools is the teacher, which

requires not only careful planning of teaching activities and

selection of appropriate media and technologies, but also the

embedding of new concepts and ideas to compensate for the

limitations of traditional teaching models and to expand the

advantages of robotics education for teachers and students, thus

effectively enhancing teaching effectiveness. Takuya Hashimoto,

a Japanese scholar, introduced a self-developed robot teacher

into elementary school science classroom teaching, where

participating students could discuss relevant issues with the

robot teacher, showing that robots have greater potential in

elementary school science classroom teaching, not only to

enhance learners’ knowledge acquisition, but also to improve

students’ creativity and questions (Hashimoto et al., 2013).

Russian academic Elena Ospennikova used a quasi-experimental

approach to examine the possibilities of robotics education

in science and mathematics curricula. The study selected 186

students from grades 7 to 9 as target subjects and over three

years of experimental observation concluded that robotics is a

key element in the multidisciplinary orientation of the teaching

and learning process in schools (Ospennikova et al., 2015).

Andri Ioannou introduced Nao, a humanoid robot developed by

Aldebaran Robotics in France, to the education of children with

autism (ASD), based on an in-depth analysis of the advantages

of combining humanoid robot education with the development

of social communication skills in children with autism. After a

four-session intervention with a boy with ASD, the robot was

found to be an effective way to promote independence and

emotional expression in the education of children with ASD

(Ioannou et al., 2015). Deep neural networks are an extremely

popular research direction in artificial intelligence since 2012, as

well as artificial intelligence algorithms for effective analysis and

processing of big data (Wang et al., 2021). Its advantages include

overcoming the disadvantages of time-consuming and labor-

intensive manual feature design, more effective (exponential)

distributed data learning by pre-training layer-by-layer data

to obtain the primary features of each layer. Compared with

shallow modeling approaches, deep modeling enables more

detailed and efficient representation of actual complex nonlinear

problems. This technique shows potential to efficiently solve

quantitative recognition techniques (Foad et al., 2022; Wang

et al., 2022).

Objectively, research on robotics education in China has

accelerated in the early twenty-first century, however, the key

to making robotics education truly effective lies in the ability of

teachers to accept and use robotics-supported teaching models.

Since teachers’ understanding of the concept of informational

teaching and learning of the implementation content are

internal factors that limit the development of their informational

teaching skills (Smith and Sivo, 2012). As a result, studying

the acceptance of virtual (robot) education by primary and

secondary school teachers as well as grasping its influencing

factors are beneficial to the development of robotics education

in primary and secondary schools. For this reason, based

on the teachers’ own perspective, this study draws on the

integrated information technology acceptance model (UTAUT

model) and the technology acceptance theory model, optimizes

the construction of the teachers’ acceptance model of robotics
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FIGURE 1

UTAUT model.

education based on deep learning algorithms, analyzes the

influencing factors of primary and secondary school teachers’

acceptance of virtual human education using the questionnaire

method, as well as proposes corresponding countermeasures to

provide reference for the effective implementation of robotics

education at all levels of teaching.

Models and research methods

Deep learning-based construction of
UTAUT model

UTAUT model

From the domestic and international studies on teacher

IT acceptance models, it is found that UTAUT model is

widespread in the field of IT acceptance research. However,

by combing through the studies related to robotics education

and teacher acceptance, finding that there are fewer studies

exploring its effective promotion and implementation from the

influence of teachers in the main body of robotics education.

Therefore, based on the theoretical basis of the UTAUT model

and characteristics of robotics teaching, this study explores the

factors influencing teachers’ acceptance of robotics education

from the teachers’ perspective.

The UTAUT model was first proposed by Venkatesh

et al. (2003). The model contains four core determinants

of performance expectations, effort expectations, community

influence and enabling conditions and fourmoderating variables

of age, gender, experience, and voluntariness. As shown in

Figure 1. This model explains 70% of technology adoption and

usage behavior, outperforms previous technology acceptance

models, which is now extensively applied to explore user

acceptance behavior.

To investigate the factors influencing teachers in carrying

out robotics education, this study remained using the four core

determinants in the UTAUT model. Since the development

of robotics education in China is oriented to competition or

club activities, both teachers and students have little access to

robotics. Most teachers had little experience in using robotics

FIGURE 2

Theoretical model of factors influencing teachers’ acceptance

of robotics education.

and were not highly motivated to do so autonomously. As a

result, two moderating variables, experience and voluntariness,

were removed, while teaching experience and IT proficiency

were added as moderating variables in conjunction with

the technical characteristics of robotics education in primary

and secondary schools and expert interviews. In addition,

considering that acceptance includes both individual’s own

behavior and individual’s attitude toward the object, both usage

intention and behavior in the original model are collectively

referred to as acceptance level, A theoretical model of factors

influencing the acceptance of teacher robotics education is

proposed, as shown in Figure 2.

Improvising approach based on deep learning

Deep learning networkmodel involves inputting the original

input data into a neural network containing multiple implicit

layers, through nonlinear operations in the middle multiple

implicit layers, where final output of the implicit layers is the

deeper, abstract depth features learned from the input data

through this deep network model (Guan et al., 2020). However,

certain datasets without initial labels to whether the initial labels

are involved in the whole network training process will be

divided into three categories of deep feature learning, namely

supervised feature learning, semi-supervised feature learning

and unsupervised feature learning, where supervised feature

learning of which can also be referred to as classification, semi-

supervised feature learning between the two, which refers to

the presence of both labeled and unlabeled data in the trained

data, unsupervised supervised feature learning is also known as

clustering (Gu et al., 2014).

The Expectation Maximization (EM) algorithm was first

proposed by Dempster et al. The EM algorithm has a wide

range of applications. The EM algorithm is utilized in numerous

algorithms in machine learning (Intisar and Watanobe, 2018;

Goulden et al., 2019). Such as the K-means, Support Vector

Machine (SVM) (Ukil, 2007), GMM, Hidden Markov Mode

(HMM) (Arica and Vural, 2000), Topic Generation Model LDA
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(Latent Dirichlet Allocation) (Hoffman et al., 2010), as well

as various other models in which parameter estimation EM

algorithm is used. It refers to solving some target parameters

from the entire data set including hidden variables by iterative

iterations employing a strategy of great likelihood estimation.

Iteration of the EM algorithm is done by two main steps,

E-step (Expectation Step) and M-step (Maximization Step).

The expectation of each step of the expectation maximization

algorithm is to calculate expectation of the model based on the

hidden state of the model, after which Gaussian distribution

of the conjectured hidden data is calculated, then fixed model

parameters using maximum likelihood estimation to calculate

the complete result containing both observed and hidden data,

followed by the execution of M-step to finally obtain the

parameters of the Gaussian mixture model. The E- and M-step

are iterated until the parameters of solved Gaussian mixture

model are approximately unchanged. Algorithm convergence

is achieved and optimal expectation, covariance matrix and

weights of each Gaussian distribution are obtained for the

Gaussian mixture model. Expectation of the log-likelihood

function of the mixture model is illustrated by the initial values

of model parameters that have been selected, as defined in

Equation (1):

EQ

[

log p(θ |Y ,Q)|θ (i),Y
]

=

∫

log[p(θ |Y ,Q)]p
(

Q|θ (i),Y
)

dQ

(1)

where, Q denotes implicit data that fail to be observed, θ (i)

denotes posterior standard deviation after the i+1st iteration.

Conditional expectation probabilities of the joint distribution of

the hybrid model can be expressed by Equation (2) as follows:

L (θ , θi) =

m
∑∑

P
(

zi|xi, θj
)

log P (xi, zi|θ) (2)

Extreme values of the parameters of the log-likelihood

function with conditional probabilities can be bounded by

Equation (3) as follows:

θ j+1 = argmaxθL
(

θ , θ j
)

(3)

The above E- and M-step are iterated continuously,

terminating the iteration when θ (i) and θ (i+1) are infinitely close

to each other.

Theoretical model optimization of
technology acceptance based on Elman
neural network

Elman neural network model

Compared with the ordinary neural network structure, a

new takeover layer is incorporated in the Elman network, where

the implicit layer transmits processed data to the takeover layer,

which memorizes incoming information from the implicit layer

and uses received data together with the input layer input at

the next moment as the input to the implicit layer at the next

moment (Cheng et al., 2002). By storing it through the takeover

layer and outputting it to the hidden layer at the next moment,

it makes neural network have dynamic memory recognition of

historical input data and enhances its ability to treat dynamic

information. Its specific mathematical model is:











h(k) = g
(

w3 · q(k)
)

q(k) = f
[

w1 · qc(k)+ w2(u · (k− 1))
]

qc(k) = q(k− 1)

(4)

where, h represents output of the output layer, g() represents

transfer function of the output layer, w3 represents weight of

data received by the output layer that is processed by the implicit

layer, q represents state of the implicit layer, and k represents

currentmoment. In the second equation, f represents processing

function of the implicit layer, Sigmoid is chosen in most cases,

w1 represents weight of data processed by the implicit layer in

the total received data of the takeover layer,w2 represents weight

of the information received by the input layer transmitted to

the implicit layer, u represents input of the input layer; qc in

the second and third equations refers to the state output for the

takeover layer, and k-1 in q indicates the previous moment.

Di�usion of innovation theory

Diffusion of Innovation Theory (DIT) was first introduced

in 1962 by Everett M. Rogers, an American scholar, who used

certain channels to make members of a social group more

open to adopting new concepts and things. It emphasizes

that an innovation is a thought or concept that can be

perceived as novel by an individual or a social community.

Diffusion of innovation is the process by which a new product

spreads through a social system over a period of time through

appropriate communication channels. DIT is divided into five

groups of adopters based on the sequence of adoption and

usage of innovations: (1) Innovation pioneers: first to adopt

and use innovations with a spirit of discovery, accounting for

2.5% of the total; (2) Early adopters: highly visible, adopting and

using innovations after the innovation pioneers, accounting for

13.5% of the total; (3) Early adopters: those who take longer

to adopt and use innovations with more deliberation than

innovation pioneers and early adopters, 34% of the total; (4)

Late adopters: those who accept decisions only when they are

clearly guided by the norms in the social system, 34% of the total;

(5) Conservatives: those who are the last in the social network

system to adopt and use innovations, 16 % of the total.
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FIGURE 3

TRA model.

Theory of rational behavior

Theory of Rational Behavior (TRA) was co-proposed by

American scholars Fishbein and Ajzen in the 1970s to explore

the correlation between an individual’s internal attitude toward

a behavior and the actual performance of that behavior. TRA

model has its origins in psychology and covers three basic

assumptions: first, social groups are rational and able to accept

and utilize knowledge and experience they acquire based on a

systemic and holistic view; second, unconscious latent variables

do not influence actual behaviors of social groups; and third,

individuals themselves entirely determine their own conscious

behaviors. The TRA model is given in Figure 3, from which it

can be noticed that behavioral intentions in the TRA model

can effectively infer actual behaviors used by individuals; while

individual attitude and subjective norm that an individual

displays when performing a certain behavior can effectively infer

one’s behavioral intention.

Theory of planned behavior

Theory of Planned Behavior (TPB) was first proposed by

American psychologist Ajzen in 1985 to compensate for the

limitations of the TRA model (Mahlaole, 2021). TPB model

is considered as an extension and improvement of the TRA

model, which can make fuller predictions and more convincing

explanations of human behavior, as presented in Figure 4. The

discrepancy between TPB and TRA lies in the predictors of

individual behavioral intentions. In addition to subjective norms

and attitudes, which are included in the TRA model, TPB

also adds potential variable of perceived behavioral control

(PBC). It refers to the perceived ease of performing a behavior.

When individuals perceive that they have more opportunities

and resources, their internal expectation of behavioral control

increases, while the perceived constraints are reduced.

PSD learning algorithm

By analogy with the Widrow-Hoff (WH) learning rule the

following equation can be obtained (Hinton and Nowlan, 1990):

1wi = αxi
(

yd − yo
)

(5)

FIGURE 4

TPB model.

where, wi denotes weight of the ith input counterpart, α denotes

learning rate, yd denotes desired sequence, y0 denotes the actual

output sequence, and xi denotes sequence of inputs. Since

the actual output is a sequence containing pulse spikes, it is

challenging for derivation, and a derivable continuous value is

obtained by convolving a sharp pulse with a convolution kernel

when the PSD rule, defining as:

K
(

t − tj
)

= V0 ·

(

exp

(

−
(

t − tj
)

τs

)

− exp

(

−
(

t − tj
)

τf

))

(6)

Research methodology

Questionnaire design

In this study, based on the relevant mature scales from

existing studies, we designed independently measurement items

for each variable in the context of the real situation of robotics

education in less developed regions. In order to ensure the

reliability and validity of questionnaires, author conducted two

rounds of research. In the first round, 35 robotics teachers were

randomly selected, followed by a revision of the questionnaire

based on the initial research results to better match the real

situation of robotics teachers in less developed regions. Final

developed formal questionnaire consisted of the following

two components with 33 question items. The first part is a

survey of basic information of primary and secondary school

teachers, with 15 question items, including gender, teaching age,

title, school nature, school location, proficiency in information

technology, frequency and barriers to robotics education, etc.

The second part is a survey of factors affecting teachers’

acceptance of robotics education, including five dimensions,

namely, performance expectancy (PE), effort expectancy (EE),

community influence (SI), enabling conditions (FC), and

acceptance (AD), with a total of 18 questions. To ensure

robotics teachers’ recognition of the questionnaire answers,

these measurement questions were in the form of a five-point

Likert scale, with 1–5 indicating strongly disagree, disagree,

neutral, agree, and strongly agree, respectively.
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Questionnaire reliability and validity analysis

Reliability (reliability) focuses on the accuracy, consistency

and stability of the recovered sample data. That is, themagnitude

of the variability of the measurement results by the random

errors generated during the measurement process. Before the

formal questionnaire is distributed, reliability testing is normally

conducted to purify the content of the questionnaire. The

value indicating reliability index is called reliability coefficient,

which is correlation coefficient between the results obtained

by two or more tests, mostly distributed in the range of 0–1.

Reliability tests mainly include test-retest reliability and internal

reliability, in which a scale is repeatedly tested on the same

target object at different times and the degree of similarity of the

test results is then determined. However, repeated tests possibly

have the following problems: first, there will be variability in

the measurement subject’s own cognitive level after having

one subject experience; second, the measurement subject may

change somewhat when a subject is measured twice or more.

Therefore, most experts and scholars use internal reliability to

calculate reliability size. Metrics for detecting internal reliability

are generally θ coefficient, Ω coefficient, Cronbach Alpha

confidence coefficient (Cronbach’s α), and total correlation

coefficient of calibration items (CITC). Among them, CITC

and Cronbach’s α are the more commonly used methods for

reliability evaluation.

• Cronbach’s α reliability analysis

Cronbach’s alpha captures both degrees of internal

consistency and correlation among test items and is defined in

Equation (7).

α =
K

K− 1

(

1−

∑

S2i
S2

)

(7)

where, α represents Cronbach’s alpha coefficient, K represents

total number of questionnaire items, S2i represents variance

corresponding to the ith measurement item, and S2 represents

variance of the whole questionnaire item scores.

When a measurement questionnaire involves several

unrelated contents (i.e., different dimensions), it is required to

test the internal reliability corresponding to each dimension

separately, and on this basis to calculate the internal reliability

of the whole questionnaire, instead of directly calculating the

alpha coefficient 1 of the whole questionnaire. the reason for

this is primarily because questions under the same dimension

all reflect the characteristics of a certain aspect and have a high

correlation, while the whole questionnaire needs to examine

the comprehensive consideration of a certain “coverage,”

thus there are differences between the one and the other.

Larger Cronbach’s alpha values indicate better correlation

among the items. In general, Cronbach’s alpha values >0.9

indicate excellent reliability, as well as Cronbach’s alpha values

TABLE 1 Cronbach alpha test criteria.

Cronbach’s alpha value Credibility

Cronbachα≥0.9 Extremely credible

0.7≤Cronbachα <0.9 Credible (more common)

0.5≤Cronbachα <0.7 Credible (most common)

0.4≤Cronbachα <0.5 Credible

0.3≤Cronbachα <0.4 Less credible

Cronbachα <0.3 Not credible, should be deleted

between 0.7 and 0.9 indicate good reliability, meaning that the

questionnaire scale is still acceptable. However, if Cronbach’s

alpha value of each measurement dimension (subscale) is

<0.6 and Cronbach’s alpha value of the total scale is <0.7, it is

determined that internal consistency of the scale is inferior and

questionnaire needs to be redesigned. Based on the summary of

several researchers’ views on Cronbach’s alpha value, Ming-Lung

Wu divided reliability value testing criteria in detail, as shown

in Table 1.

• Total item statistics analysis

CITC is designed to measure correlation coefficients

between each item and its dimension, in order to remove “junk”

items from the questionnaire and clean up the content. There

is no unanimous opinion on the evaluation criteria of CITC.

Foreign scholar Cronbach considered that questions with CITC

<0.5 should be discarded, while domestic scholar Lu Zhendai

considered that questions with CITC >0.3 should be retained.

The criteria for eliminating items in this study were based on two

principles proposed by Cronbach: first, CITC is <0.5; second,

alpha coefficient of the deleted item exceeds alpha coefficient of

the variable to which it belongs, i.e., the reliability of the potential

variable corresponding to the item has improved significantly.

Results are shown in Table 2, and items were removed when

they met both of these principles. To ensure the scientific

validity of the study, two rounds of research were conducted

with teachers participating in the “Virtual Human Education

in Guangdong and Henan Primary and Secondary Schools” as

the research subjects. Thirty-five teachers were selected for the

first round of research, formal research was conducted by online

questionnaire, 203 questionnaires were collected, of which 190

were valid. The survey results showed that 64.21% of the teachers

who participated in robotics education training were male

teachers; 78.42% of the teachers were aged between 26 and 45;

96.84% of the teachers’ education was concentrated in college

and undergraduate level, and only 2.11% of the teachers were

graduate and above; 72.11% of the teachers’ teaching experience

was concentrated in 6–15 years, 15 years or above; 68.42% of

the teachers’ titles were concentrated in secondary school level 2

and secondary school level 1. In terms of the surveyed teachers’

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1009093
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang and Chen 10.3389/fnbot.2022.1009093

proficiency in IT, 61.58% were competent; teachers from public

schools accounted for 98.95%, while teachers from private

schools accounted for only 1.05%; rural teachers accounted for

38.95%, while urban teachers accounted for 61.05%. In addition,

in terms of the school year in which the teachers serve the

students, due to the shortage of teachers in robotics education

in Henan Province, there is still a phenomenon that the same

teacher teaches students in different grades; therefore, total

number of teaching grades involved in the surveyed teachers is

>190, covering 67.89, 34.21, and 11.05% of elementary, middle,

and high schools, respectively.

Research results and analysis

Relationship analysis of teachers’
acceptance of robotics education and
influencing factors

Based on the results obtained from the sample data

processing analysis to validate initial model and research

hypotheses, this study revealed that effort expectation,

perceived enjoyment, and performance expectation were

factors that directly influenced teachers’ acceptance of robotics

education, while enabling conditions, community influence, and

innovation expectation significantly and indirectly influenced

acceptance, and perceived enjoyment could also indirectly

influence acceptance through community influence, which will

be analyzed and discussed in detail next.

E�ect of performance expectations and e�ort
expectations on acceptance

Performance expectations and effort expectations in robotics

education positively and directly affect teachers’ acceptance

(Hl, H2), i.e., the higher performance expectations (PE)

or effort expectations (EE) that teachers place on robotics

education, the stronger their acceptance of robotics education.

This conclusion is not only consistent with the original

UTAUT model, but also with earlier research findings (Almaiah

et al., 2019; Raffaghelli et al., 2022). Analysis of the paths

revealed that performance expectations (path coefficient of

0.117) had a slightly stronger effect on acceptance than effort

expectations (path coefficient of 0.101), generally speaking,

teachers’ willingness to attempt to introduce a new teaching

model into their actual classrooms will heavily consider whether

the model contributes to their performance levels. For virtual

human teachers, if the implementation of robotics education

causes them to feel a shift in their role and facilitates their salary,

title, or promotion opportunities, which truly leads to more

professional development, then this will undoubtedly strengthen

their belief in practicing and applying robotics education.

Descriptive statistical analysis of the core variables showed that

teachers scored higher on the performance expectation level

for questions PE-1 and PE-4, with scores of 3.73 and 3.68,

respectively, indicating that most teachers perceived robotics

education as both a key component in transforming their

teaching role and an ideal platform for their professional

growth, which facilitated their acceptance of robotics education.

However, scores for PE-2 and PE-3 were low, at 3.38 and

3.10, respectively, which indicates that teachers in the current

regional basic education level basically do not receive additional

rewards for carrying out robotics education, and to some extent,

it may also weaken teachers’ enthusiasm to carry out robotics

education. Therefore, in the process of promoting the practical

application of robotics education, teachers’ awareness of the

concept of robotics education needs to be strengthened. In

the process of actively organizing training in robotics project

instruction and teaching skills, attention needs to be paid to the

role of robotics education in teachers’ professional development

and to improving relevant assessment and reward mechanisms.

E�ects of innovation expectations and
facilitating conditions on e�ort expectations

Enabling conditions and innovation expectations in robotics

education positively influenced virtual teachers’ own effort

expectations (H7, H8), i.e., more innovative teachers or

more adequate accommodations already in place, the greater

teachers’ effort expectations, which enhanced their acceptance

of robotics education. This is consistent with earlier research

findings as well. The path analysis indicated that innovation

expectations (path coefficient of 0.329) acted slightly more on

effort expectations than enabling conditions (path coefficient

of 0.294). Innovation expectations refer to the degree of

teachers’ innovativeness and problem-solving intentions when

confronted with a new technology or a new pedagogical

paradigm, which contributes to teachers’ beliefs about the

acceptance of a new technology or a new pedagogical paradigm

(Rosenbusch et al., 2019). In general, if teachers frequently

follow the latest developments of emerging technologies and

are particularly willing to experiment with the introduction of

new educational ideas into the actual classroom when they are

exposed to them, they may not deplete excessive time to pay

attention to whether such teaching ideas will affect the teaching

order and their own emotions, but whether they are able to

understand it or apply it or encounter obstacles to overcome it

better as soon as possible, and such teachers are relatively more

confident in accepting new teachers are relatively confident in

accepting new technologies or teaching ideas, their willingness

to try new teaching models is largely to satisfy their curiosity.

Conversely, if teachers are reluctant to introduce new teaching

models into the classroom, they may subconsciously believe that

implementing models will make the classroom disorderly and

stressful in guiding students in the process of project practice,

which in turn will increase their teaching tasks. Therefore,
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TABLE 2 Results of exploratory factor analysis.

Sample Ingredients

1 2 3 4 5

EE1 −0.145 0.654 0.073 −0.012 0.032

EE2 −0.022 0.779 −0.038 0.123 −0.024

EE3 −0.081 0.678 −0.125 −0.042 0.386

EE4 −0.076 0.687 0.168 0.028 −0.298

EE5 0.089 0.668 0.036 −0.125 −0.325

PE1 0.037 0.038 0.134 0.884 0.039

PE2 0.020 −0.006 0.084 0.788 0.062

PE3 0.373 −0.002 −0.025 0.587 0.042

FC1 0.168 −0.098 0.305 0.101 0.808

FC2 0.312 −0.081 0.202 0.045 0.798

S11 0.219 0.068 0.827 0.085 0.152

S12 0.102 0.018 0.878 0.067 0.152

S13 0.219 0.041 0.698 0.192 0.119

AD1 0.702 −0.205 0.258 0.021 0.142

AD2 0.788 −0.198 0.231 0.078 0.143

AD3 0.888 −0.087 0.064 0.010 0.095

AD4 0.878 0.015 0.119 0.052 0.087

AD5 0.787 0.095 0.079 0.118 0.058

TABLE 3 Descriptive statistical analysis of model variables.

Variant Average value Standard deviation Cronbach’s α Sum of Cronbach’s α

Performance Expectations 3.26 0.78 0.785 0.782

Effort Expectations 2.92 0.59 0.760

Community Impact 3.39 0.85 0.808

Enabling conditions 3.08 0.94 0.842

Acceptance level 3.87 0.58 0.889

teachers should be trained to be creative and innovative at the

level of their subjectivity and practical activities in receiving

robotics education.

E�ects of perceived pleasantness and
innovation expectations

There is a positive direct effect of teachers’ perceived

pleasantness on robotics education on their level of acceptance

(H6), i.e., the stronger teachers’ perceived pleasantness

on robotics education, the stronger their internal level of

acceptance, which is consistent with earlier findings (Adieze,

2016). By comparing path coefficient values for each factor,

it is observed that the direct effect of perceived pleasantness

on acceptance is as high as 0.852 (p = 0.000<0.05), which is

significantly higher than the effect of each other variable. One

possible reason for this is that virtual teachers have a strong

interest in novelty or new teaching models, they want to be

more enjoyable and stimulate their curiosity and exploration,

rather than teaching in the traditional test-based education

model for a long time, whereas robotics education as an

existing new teaching concept can largely lead them to explore

new knowledge and stimulate their curiosity, which makes

it prone to feel enjoyable and enhance their motivation and

interest in teaching, which in turn significantly enhances their

belief that they tend to accept the model. As indicated by the
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TABLE 4 Correlation coe�cients of teachers’ acceptance of robotics education and its various influencing factors.

Dimension Performance

expectation

Effort

expectations

Community

impact

Enabling

conditions

Acceptance

level

Performance expectations 1

Effort expectations 0.003 1

Community impact 0.308*** 0.045 1

Enabling conditions 0.232*** −0.169 0.418*** 1

Acceptance level 0.287*** −0.142* 0.397*** 0.412*** 1

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 Compound regression analysis of acceptance and coe�cients.

Model R Square R Adjusted R Square Std. Error of the Estimate

1 0.432 0.196 0.191 2.689

2 0.506 0.254 0.250 2.587

3 0.530 0.281 0.270 2.655

descriptive statistical analysis of core variables, teachers’ scores

on the question items PP-1, PP-2, and PP-3 in the perceived

pleasantness dimension were roughly comparable, with scores

of 3.80, 3.82, and 3.75 respectively, indicating that most teachers

have favorable perceived pleasantness of robotics education

and are willing to actively attempt robotics education, however,

they are still between neutral and agree (mean value of 3.79

between 3 and 4). Therefore, in the process of promoting

practical applications of robotics education, teachers’ perceived

enjoyment of robotics education can be further enhanced by

training practical activities.

Analysis of teacher acceptance of
robotics education

Descriptive statistical analysis of questionnaires

Results of the study demonstrated that the scores for each

variable ranged from 2.92 to 3.87, with the highest score for

acceptance (3.87) and the lowest score for effort expectancy

(2.92). The standard deviation of the variables is <1.0, which

indicates that scores of the variables are densely distributed

around mean values, and mean values are well-represented, as

shown in Table 3.

Variance and regression analysis of teachers’
acceptance of robotics education

Taking into account the different background characteristics

of elementary and secondary school teachers, one-way ANOVA

with independent samples t-test was employed in this study

to explore the variability in the factors exhibited by teachers

from different backgrounds. Results indicated that there were no

significant differences in performance expectations, community

influence, enabling conditions, and acceptance among teachers

of different ages and titles, with significant differences only

in effort expectations, suggesting that teachers with older ages

and higher titles would perceive robotics instruction as more

complex. There were significant differences in effort expectation

and acceptance among teachers of different teaching ages,

while teachers with more than 15 years of teaching experience

showed a phenomenon of “low effort expectation and high

acceptance,” indicating that teachers of higher teaching ages

may perceive many barriers to robotics education, however,

it is possible that they want to break through the limitations

of the old teaching methods and are more receptive to new

things. Teachers with different levels of IT acceptance reached

significant differences in terms of effort expectations, enabling

conditions, and acceptance levels. There were no significant

differences between public and private teachers, urban and rural

teachers on these five variables.

Relevance between variables was measured in this study

by applying Pearson’s product-difference correlation coefficient,

and correlations basically existed between all dimensions (Um

and Crompton, 1986). Among them, acceptance was positively

correlated with performance expectancy, community influence

and enabling conditions; since the questions about effort

expectancy designed in this study were biased toward the reverse

questions, as in the case of conducting robotics education

that tends to create uncontrolled, stressful and time-consuming

classrooms, results of negative correlation between effort

expectancy and acceptance coincided with the design of this

experiment; moreover, correlations between effort expectancy

and acceptance were weak, results of which are shown in Table 4.

To further validate the hypothesized model, multiple

regression analysis was utilized in this study in an attempt
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FIGURE 5

The path of influencing factors of virtual human teacher

education acceptance.

to examine the causal relationships among the influencing

factors. As seen in Table 4, the correlation coefficients

between teacher performance expectations, effort expectations,

community influence, enabling conditions, and acceptance

were 0.290 (p = 0.000<0.001), −0.144 (p = 0.048<0.05),

0.396 (p = 0.000<0.001), and 0.422 (p= 0.000<0.001),

respectively, indicating that that all four core dimensions

had a significant effect on acceptance. In addition, previous

one-way ANOVAs showed that moderating variables such

as teachers’ teaching experience and IT proficiency also

had significant effects on acceptance, therefore, multiple

regression analysis was attempted in this study to explore

the specific effects of these variables on teachers’ acceptance,

and regression results are presented in Table 5. As seen

in this, model 3 explained 28.2% of the results, while the

adjusted R2 was finally chosen to explain 27.1% of the results,

considering the sample size and the number of independent

variables. In particular, enabling conditions had a significant

correlation with acceptance; teaching age moderated effects

of performance expectations on acceptance; community

influence on acceptance was moderated by IT acceptance;

effort expectations did not have a direct effect on acceptance

of teacher robotics education. Through multiple regression

analysis, a path diagram of factors influencing the acceptance

of teacher robotics education can be obtained, as shown in

Figure 5.

E�ect analysis of neural network
optimization

To verify effectiveness of the proposed algorithms in this

study. Existing deep neural networks composed of noise-

reducing autoencoding (DAE), marginalized depth autoencoder

(mDAE) and marginalized depth autoencoder with adaptive

noise (AmDAE) were compared in experiments under the

same conditions. Experiments were conducted to compare the

algorithmic performance of the three algorithms, with statistics

on the average time required to train the three deep neural

network models once. Different implied layer building numbers

of deep neural networks with different methods of model

training time are shown in Figure 6.

As shown in Figure 6, mDAE and AmDAE have a

substantial reduction in training time compared to the existing

noise-reducing autoencoder model, reflecting the lower time

complexity of the marginalization method, while the improved

AmDAE and mDAE models take little difference in training

time; model training time basically increases approximately

linearly with the number of layers as the number of training

layers increases for different standard MNIST variant datasets,

indicating that the time complexity of the deep neural network

algorithm is positively correlated with the number of layers of

the model.

Conclusion

Based on the UTAUT model, this study focuses on the main

factors influencing the acceptance of virtual human education by

teachers in order to promote application of robotics education

in educational teaching activities, by taking some colleges and

universities in Guangdong and Henan provinces as examples

and draws the following basic conclusions.

• Robotics education is mostly taught by IT teachers, and

there is a paradox of “low knowledge and high frequency.”

Results of study showed that 53.68% of teachers were

gradually introduced to robotics education in the last three

years, which is related to the background of the rise of

robotics education in school education in recent years.

• Descriptive statistical analysis, analysis of variance and

reliability tests were conducted on the formal sample data

using the appropriate software, while AMOS 22.0 software

was used to test the correctness and rationality of the

theoretical model and the 15 research hypotheses to obtain

the final model that established the factors influencing the

acceptance of robotics education by the virtual human

teachers. Effects of influencing factors were in descending

order: community influence< enabling conditions< effort

expectations < performance expectations < innovation

expectations < perceived pleasantness.

• Multiple regression analysis of model optimization based

on neural networks showed that model 3 explained

28.2% of the results. Meanwhile, its explanatory

ratio for the outcome reached 27.1%. In this case,

enabling conditions have a significant correlation with

acceptance; teaching age moderates effects of performance

expectations on acceptance; community influence on

acceptance is moderated by IT acceptance; and effort

expectations do not directly affect acceptance of teacher

robotics education.
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FIGURE 6

Time required for model training. (A) basic model, (B) rotating model, (C) background image, and (D) o�set model.
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