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Bearings are the most basic and important mechanical parts. The stable

and safe operation of the equipment requires bearing fault diagnosis in

advance. So, bearing fault diagnosis is an important technology. However,

the feature extraction quality of the traditional convolutional neural network

bearing fault diagnosis is not high and the recognition accuracy will decline

under different working conditions. In response to these questions, a bearing

fault model based on particle swarm optimization (PSO) fusion convolution

neural network is proposed in this paper. The model first adaptively adjusts

the hyperparameters of the model through PSO, then introduces residual

connections to prevent the gradient from disappearing, uses global average

pooling to replace the fully connected layer to reduce the training parameters

of the model, and finally adds a dropout layer to prevent network overfitting.

The experimental results show that the model is under four conditions, two of

which can achieve 100% recognition, and the other two can also achieve more

than 98% accuracy. And compared with the traditional diagnosis method, the

model has higher accuracy under variable working conditions. This research

has important research significance and economic value in the field of the

intelligent machinery industry.
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Introduction

In the operation of machinery, bearings are often one of the most easily damaged
parts due to the high frequency of use. And because the bearing generally plays the role of
supporting the main shaft and transmitting the torque, it plays a decisive role in whether
the equipment can work normally. Once the equipment fails, it may lead to catastrophic
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consequences, so it is particularly important for bearing fault
diagnosis (Liu, 2017; Du et al., 2020; Li et al., 2020; Yu et al.,
2020). When the bearing fails, the vibration signal generated
has certain characteristics. The fault diagnosis of the bearing
is to classify the collected vibration signal. The traditional
diagnosis process is to extract relevant features from the
collected vibration signals, and then use a specific classifier to
classify and identify. For example, In 2020, researchers such
as Yang et al. (2020) used wavelet packets to extract bearing
fault features and input the obtained feature information into
an improved Bayesian classification model for classification.
The experimental results show that compared with the model
before optimization, the modeling time is shorter and the
fault diagnosis accuracy is higher. In 2020, researchers such as
Wang et al. (2020) proposed a rolling bearing fault diagnosis
method based on minimum entropy deconvolution (MED) and
Autogram. This method removes noise through MED, and
can effectively highlight fault features while obtaining the best
frequency band. Compared with the existing methods at that
time, it can detect the demodulation frequency band and fault
frequency more accurately, highlight the fault characteristics
and improve the fault detection effect. In 2021, researchers such
as Zhen et al. (2021) proposed a bearing fault signal feature
extraction method based on the combination of wavelet packet
energy and kurtosis spectrum. This method can clearly obtain
the fault characteristic frequency and its higher harmonics.

It can be seen from the existing research results that this
kind of bearing fault diagnosis method can effectively extract
features and classify them. However, it is necessary to manually
extract features, which requires a large workload and subjective
factors. Therefore, it is limited in practical application. In order
to solve these problems, the study of deep learning in bearing
fault diagnosis has attracted extensive attention of researchers.
Deep learning is an end-to-end recognition method, which
can extract features adaptively, and better solve the defects of
manual feature extraction. In 2018, researchers such as Qu
et al. (2018) proposed a fault diagnosis algorithm based on
an adaptive one-dimensional convolutional neural network.
Features are extracted through the convolution and pooling
layers of the convolutional neural network, and classified
through the Softmax layer. In 2020, researchers such as Gu et al.
(2020) proposed an adaptive one-dimensional convolutional
neural network and long short-term memory network fusion
bearing fault diagnosis method. This method improves the
accuracy as well as the validity and stability of the model. In
2021, researchers such as Liu et al. (2021) proposed a fault
diagnosis method for rolling bearings based on parallel 1DCNN.
Improve the ability of fault diagnosis by fusing time domain
and frequency domain features, This method can make full use
of the extracted time domain and frequency domain feature
information, and has better fault diagnosis ability.

Judging from the existing research progress, the research
on bearing fault diagnosis based on deep learning has

achieved good results, which can achieve accurate identification
of bearing fault diagnosis. However, the generalization and
robustness of the existing diagnostic models still need to be
improved. In view of these research problems, this paper
designs a convolutional neural network model based on
particle swarm optimization fusion. Optimizing the network’s
hyperparameter learning rate through PSO (Particle Swarm
Optimization) enables the network to achieve a better gradient
global minimum in the gradient descent process, And introduce
residual connections to alleviate gradient disappearance, Then
use global average pooling to replace part of the fully connected
layer to reduce the amount of parameters and improve
generalization, Finally, a Dropout layer is added to prevent the
network from overfitting.

Analysis of particle swarm
optimization fusion convolutional
neural network algorithm

Convolutional neural networks have the characteristics of
end-to-end, local perception and parameter sharing. Feature
extraction is performed on the input data through multiple
filters. When the network is deepened, the extracted features are
also more advanced, and robust features with shift invariance
are obtained in the original data. Compared with models that
extract features manually, convolutional neural networks have
stronger discriminative and generalization capabilities. It can
effectively obtain the local features of the data to be tested,
and is widely used in classification problems such as image
processing, speech recognition, and natural language processing
(Maite et al., 2020; Tian, 2020; Wang et al., 2021; Chen et al.,
2022; Sultana et al., 2022).

Convolutional neural networks are composed of
convolutional layers, pooling layers, fully connected layers
and output layers. The convolutional layer and the pooling layer
perform feature extraction on the input data. The mathematical
model of the convolution operation of the convolution layer
can be expressed as:

yij = f (
∑
i=1

∑
j=1

xij wij + b) (1)

Among them, yij is the output, xij is the input, wij is the
weight value, b is the bias, and f () is the activation function.
The purpose of the activation function is to make the input
not a linear function so that it can approximate any function
and make the network generalization ability stronger. The
activation function generally adopts the Relu function and its
mathematical expression is:

f (x) = max(0,Y) (2)

Among them, f (x) is the output, and Y is the activation
value that the convolutional addition will add the bias value.
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The pooling layer is mainly divided into maximum pooling
and minimum pooling, and its mathematical models can be
described as:

ymax = max
(
x11, . . . xij

)
(3)

ymean = mean
(
x11, . . . xij

)
(4)

Among them, ymax and ymean is the pooling output.xij is
the output value at position (i, j) that take the maximum value
or average value in the pooling area for output. After multiple
convolution and pooling layers, the input fully connected
layer fuses the learned features and maps them to the label
space. Finally, the classification results are output through the
Softmax function in the output layer. Since the bearing fault
data is one-dimensional amplitude data, this paper will use
the backbone of the convolutional neural network as a one-
dimensional convolutional neural network. The convolution
kernel is a one-dimensional structure, and the output of each
convolutional layer and pooling layer will be a one-dimensional
feature vector. The first layer of the convolutional layer uses
large convolution kernels and large steps to increase the field
of view of this layer, which can effectively extract the overall
timing features. Then, a small convolution kernel is used to
deepen the network. In order to avoid the risk of gradient
disappearance as the network deepens, this paper will introduce
a residual structure. Then replace some of the fully connected
layers with global average pooling. Compared with the fully
connected layer, the global draw pooling can greatly reduce
the training parameters and speed up the training speed, while

enhancing the generalization of the network and preventing
overfitting. A BN operation is added to each convolutional layer.
It can play the function of controlling the gradient explosion
or gradient disappearance. Finally, a Dropout layer is added to
prevent the network from overfitting. Its network structure is
shown in Figure 1, Table 1. Conv represents the convolution
layer, Pool represents the pooled layer, Dense represents the
fully connected layer, BN represents the batch normalization
layer, and GAP represents the global average pooled layer. The
following numbers represent the convolution core size and x1
represents the one-dimension.

In order to improve the performance, when training the
convolutional neural network, it is necessary to set certain
hyperparameters for the network. If the hyperparameters are
manually set, it will take a long time and lack generalization to
different scenarios. Due to its advantages of easy convergence
and strong global search ability, particle swarm optimization
method is very suitable for hyperparameter optimization of
machine learning algorithms (Shao et al., 2020; Li et al., 2022).
The training of the convolutional neural network model is the
process of finding the lowest point of the gradient. In order
to better obtain the lowest point of the global gradient, the
setting of the learning rate is particularly important. When the
learning rate is set too large, it will miss the global optimal
solution or fail to converge at all, and a better training structure
cannot be obtained. When the learning rate is set too small, the
convergence of the model will be very slow, and the model may
be unable to jump out of the local optimal solution. The artificial
setting of the learning rate will be objective, and it is impossible
to give a good value in different model use cases. Therefore, this

FIGURE 1

Network structure diagram.
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TABLE 1 Model structure parameters.

Layers Layers size Quantity Output size

Input – – 2048× 1

Conv_first 64 16 128× 16

Pool1 2 16 64× 16

Conv2 3 32 64× 32

Pool2 2 32 32× 32

Conv3 3 64 32× 64

Pool3 3 64 16× 64

Conv4 3 64 16× 64

Pool4 2 64 8× 64

Conv5 3 64 8× 64

Conv6 3 64 8× 64

Dense 1 200 8× 200

Dropout 1 200 8× 200

GAP – 200 1× 200

Dense10 – 10 1× 10

softmax – – 1× 10

paper introduces the PSO particle swarm algorithm to set an
adaptive setting for the hyperparameter learning rate.

Particle swarm optimization is to generate a group of
particles in the space that needs to be solved, and each particle
has two attributes of velocity and position. Among them, the

speed represents the speed of the movement, and the position
represents the direction of the movement. Each particle searches
for the optimal solution individually in space, and records
it as the current individual best solution to obtain the local
optimal solution Pbest , and then shares all individual extreme
values with other particles in the entire particle swarm. A global
optimal solution Gbest is selected from the individual optimal
solutions of the particle swarm, and all particles adjust their
speed and position according to the individual optimal solution
Pbest and the global optimal solution Gbest . Its process is shown
in Figure 2.

The update formula of particle position and velocity of
particle swarm is:

Vid = wVid + C1random (0, 1) (Pid − Xid)

+C2random (0, 1) (Pgd − Xid)

Xid = Xid + Vid

(5)

Among them, w is the inertia factor, C1 and C2 are
acceleration constants, generally C1 and C2 are numbers
between 0 and 4, and random (0, 1) is a random number
between 0 and 1. Pid represents the d-th dimension of the
individual extreme value of the i-th variable, Pgd represents
the d-th dimension of the global optimal solution, and Xid is
the current position. The concrete implementation process is
shown in Figure 3. Before adding particle swarm optimization,

FIGURE 2

Particle swarm optimization flowchart.
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FIGURE 3

Overall model flowchart.

TABLE 2 Dataset summary.

Fault type Size/In Number of train Number of value Number of test Logogram

Normal 0 700 200 100 Normal

Rolling element 0.007 700 200 100 B007

0.014 700 200 100 B014

0.021 700 200 100 B021

Inner ring 0.007 700 200 100 OR007

0.014 700 200 100 OR014

0.021 700 200 100 OR021

Outer ring 0.007 700 200 100 IR007

0.014 700 200 100 IR014

0.021 700 200 100 IR021

complete construction of the improved network is carried out
first. Then, the parameters of particle swarm optimization were
set. In this paper, when using particle swarm optimization to

optimize the learning rate, the parameters set as the number
of particles is five, the number of iterations of the optimization
algorithm is 20, the range of the optimized parameters is (0.001,
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TABLE 3 Comparison of bearing fault diagnosis results between
different models.

Models Accuracy (×100%)

0HP 1HP 2HP 3HP

SVM 70.79 72.8 73.6 72.2

1DCNN 98.9 97.5 98.8 99.3

PSO-1DCNN 99.2 98.2 99.4 99.5

Model of this paper 99.9 98.8 100 100

0.00001), and the maximum moving speed each time is 0.0005.
In the process of algorithm operation, the optimal solution of
particle swarm optimization is constantly updated according to
a verification accuracy rate of the current network, and finally
an optimal value will be output at the end of the iteration times
of the particle swarm optimization algorithm. After receiving
the optimal value, the network will train the network with the
optimal value of learning rate to obtain the network model
of particle swarm optimization fusion convolutional neural
network.

Compared with the traditional convolutional neural
network algorithm, the particle swarm optimization fusion
convolutional neural network algorithm can train the model
more effectively, and the trained model has higher accuracy
and generalization. It is mainly through particle swarm
optimization to adaptively select the hyperparameter of the
learning rate, because particle swarm optimization is a random
evolution method to obtain the optimal value. Therefore,
the selected hyperparameters can be more suitable for the
current network model, so that the model can obtain a
better solution during gradient descent. Compared with the
ordinary convolutional neural network in terms of network
structure, large-scale and large-step convolution kernels are
used in the first layer to improve the overall characteristics
of the network data. Secondly, while deepening the network,
residual connections are used to prevent the gradient of the
network from disappearing. Then, in the fully connected part
of the ordinary network, the global average pooling is used to
replace part of the fully connected layer, which improves the
generalization of the model and reduces the amount of some
parameters. Finally, a Dropout layer is used to prevent the
network from overfitting.

Experiment and result analysis

Dataset

The dataset used in this paper is the public bearing dataset
of Case Western Reserve University. The data with the sampling
frequency of 12 kHz in the data set is selected, and it is the
vibration acceleration signal data of the bearing SKF620 under

different working conditions and different faults. Among them,
the working conditions are that the different bearing speeds
are 0 horsepower (HP) (1,797 r/min), 1HP (1,772 r/min), 2HP
(1,750 r/min), and 3HP (1,730 r/min). The dataset can be
divided into nine fault types and one normal type in total. The
fault types are rolling element fault, outer ring fault, inner ring
fault, etc. Each fault type contains three fault sizes of 0.007,
0.014, and 0.021 in, plus the sampling data of the normal state.
Each sample is a continuous 2,048 data points, and there are
10,000 samples in each working condition. This paper divides
10,000 samples with a ratio of 0.7, 0.2, and 0.1, which are
training set, validation set, and test set, respectively. The specific
experimental samples are shown in Table 2.

Experimental platform and model
parameters

The experiment was implemented in the Tensorflow2.0-
GPU environment, the programming language was Python,
and the computer was configured with a windows10 system,
Intel Core i5-9300H processor, 32G memory, and NVIDIA
GTX1660Ti graphics card. The ratio of training set, validation
set, and test set is 7:2:1. PSO particle swarm optimization is
used to optimize the learning rate. Adam optimizer is used
for training. The number of particles in the PSO particle
swarm optimization operation is five. The number of algorithm
iterations is 20, the maximum value of the optimized parameters
is 0.001, the minimum value is 0.00001, and the maximum
moving speed of the particles is 0.005 each time. After obtaining
the optimized learning rate, the network is trained for 20
iterations, each batch size is eight, and the loss function adopts
the cross-entropy loss function.

Analysis of experimental results

The working conditions of the bearing fault data set are
0HP (1,797 r/min), 1HP (1,772 r/min), 2HP (1,750 r/min), and
3HP (1,730 r/min) for different bearing speeds, respectively. The
datasets under four working conditions are divided into training
set, validation set, and test set with a ratio of 7:2:1. The improved
adaptive one-dimensional convolutional neural network model
is trained through training set and validation set to obtain
network models under different working conditions. Then use
the test set to test the network model to obtain the recognition
accuracy of the model under each working condition. Then the
one-dimensional convolutional neural network model 1DCNN
(Li et al., 2020) and the adaptive one-dimensional convolutional
neural network PSO-1DCNN are trained and tested in the same
way, and the traditional method SVM (Shun et al., 2021) is
introduced for experimental comparison. PSO-1DCNN adds
the PSO optimization proposed in this paper on the basis of
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FIGURE 4

0HP Test results confusion matrix.

FIGURE 5

1HP Test results confusion matrix.
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FIGURE 6

Partial layer classification result visualization. (A) Input layer. (B) First convolutional layer. (C) Intermediate convolutional layer. (D) Output layer.

FIGURE 7

The accuracy of each model under variable working conditions.

1DCNN. However, the network structure is not optimized. The
results are shown in Table 3.

As can be seen from Table 3, compared with 1DCNN,
PSO-1DCNN, and SVM, the model proposed in this paper can
better identify faults. Moreover, the recognition degree reached
100% under the working conditions of 2HP and 3HP, and at
the same time, the recognition degree under the 0HP working

condition was also close to 100% and reached 99.9%. In order
to better analyze the experimental results, a confusion matrix is
introduced to analyze the experimental results under 0HP and
1HP in detail. The confusion matrix of 0HP and 1HP test results
is shown in Figures 4, 5, in which the vertical axis is the real
label, and the horizontal axis is the predicted result. The label
name corresponds to the fault type as shown in Table 1. It can
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be seen from the figure that the model has misidentified the fault
identification of B007 and B021, and the model under the 0HP
condition incorrectly identified 1% of the B021 type faults in
the test set as B007 faults. The model under the 1HP condition
incorrectly identifies 7% of the B007-type faults and 8% of the
B021-type faults in the test set as B021-type faults and B007-type
faults, respectively, while the remaining nine state types can be
100% identified. It shows that the model in this paper has a high
fault identification degree.

T-distributed stochastic neighbor embedding
visualization

In order to further check the classification ability of each
layer, the t-SNE (t-distributed stochastic neighbor embedding)
dimension reduction algorithm in manifold learning is
introduced (Caio et al., 2021). To visualize the first and middle
layers of the input vector of the 3HP model and the final fully
connected layer in 2D. The experimental results are shown
in Figure 6. Among them, a small dot of each color indicates
a type of failure. As can be seen from the figure, the initial
input vector is a disorganized vector distributed in the vector
space. After passing through the first convolutional layer, the
small dots of the same color begin to gather. After passing
through the intermediate layer classification, most of the
samples have been clustered in the form of the same fault.
However, there are still two types of faulty samples that are
misclassified. The samples represented by green and light blue
cannot be aggregated, and there are inclusions and dispersions.
After passing through other layers of the model and the fully
connected layer, each sample is completely separated from the
same type of aggregation. It can be shown that the model in
this paper can better extract the characteristic information of
one-dimensional vibration signal.

Bearing fault diagnosis under variable working
conditions

In order to verify the generalization ability of the model.
In this paper, the models trained under the working conditions
1HP and 2HP are predicted and classified with the test sets of the
other three working conditions. Then the 1DCNN model and
the PSO-1DCNN model are subjected to the same verification
test, and the obtained accuracy is shown in Figure 7. The six
variable conditions are 1-0HP, 1-2HP, 1-3HP, 2-0HP, 2-1HP,
and 2-3HP. Among them, 1-0HP, 1-2HP, and 1-3HP indicate
that the model trained at 1HP is tested at 0HP, 2HP, and 3HP,
respectively. 2-0HP, 2-1HP, and 2-3HP indicate that the model
trained at 2HP is tested at 0HP, 1HP, and 3HP, respectively. As
can be seen from the figure, in the case of six variable working
conditions, the model in this paper has improved generalization
ability compared with 1DCNN and PSO-1DCNN. The model
still retains good accuracy under various working conditions,
indicating that the model can solve the problem that the

traditional signal processing method cannot maintain the
diagnostic accuracy under complex working conditions.

Conclusion

This paper proposes an improved self-adaptive one-
dimensional convolutional neural network for bearing
fault diagnosis. Firstly, PSO particle swarm optimization is
introduced to adjust the hyperparameters of the network
adaptively. Then use the form of long-step large convolution
in the first layer to enable the network to generalize to identify
temporal features. Furthermore, the network is improved
by adding residual connection and global average pooling,
so that the model can enhance the generalization ability of
the network while maintaining the accuracy. It can be seen
from the experimental results that the model can accurately
identify bearing faults under different working conditions
and the accuracy rate is close to or equal to 100%. At the
same time, it can also maintain a good recognition accuracy
under variable load conditions. Compared with the traditional
1DCNN and PSO-1DCNN, this model has to achieve better
results under different working conditions and variable
load conditions.
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