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Finger-vein biometrics has been extensively investigated for personal

verification. Single sample per person (SSPP) finger-vein recognition is one

of the open issues in finger-vein recognition. Despite recent advances in

deep neural networks for finger-vein recognition, current approaches depend

on a large number of training data. However, they lack the robustness of

extracting robust and discriminative finger-vein features from a single training

image sample. A deep ensemble learning method is proposed to solve the

SSPP finger-vein recognition in this article. In the proposed method, multiple

feature maps were generated from an input finger-vein image, based on

various independent deep learning-based classifiers. A shared learning scheme

is investigated among classifiers to improve their feature representation

captivity. The learning speed of weak classifiers is also adjusted to achieve the

simultaneously best performance. A deep learning model is proposed by an

ensemble of all these adjusted classifiers. The proposed method is tested with

two public finger vein databases. The result shows that the proposed approach

has a distinct advantage over all the other tested popular solutions for the

SSPP problem.

KEYWORDS

finger-vein recognition, single sample per person, deep learning, ensemble learning,

pattern recognition

1. Introduction

With the wide application of the internet, information security has become

increasingly critical. Traditional personal identification technique, such as key and

password, is difficult to meet people’s needs. For example, the key is easily copied

and missed, and the password is usually forgotten, especially for older people.

Biometric technique as a solution has been widely investigated in recent years.

Compared to the traditional identification approach, physiological characteristics

to identify or verify a person has the following advantages (Albrecht et al.,

2009): (1) Difficult to be missed; (2) Difficult to be forged; (3) Easy to use; (4)

Easy to carry. Various traits, such as the face iris, fingerprint, and vein, have

been employed for the recognition of a person and are broadly split into two

categories (Vodinh, 2012; Kuzu et al., 2020): (1) Extrinsic characteristics, e.g.,

face, iris, and fingerprint. (2) Intrinsic characteristics, e.g., finger-vein, hand-vein,
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and palm-vein. Extrinsic characteristics are suspected to be

copied and forged, and their fake version has been proven

to be successfully employed to attack the recognition system

(Khan et al., 2015), and improve the quality of service (Wu

et al., 2022). On the contrary, the intrinsic characteristics are

concealed in our bodies and are very difficult to be copied

without the user’s willingness. In addition, only the vein in a

living body can be captured effectively and further used for

identification. Thus, intrinsic traits provide high privacy and

security in practical applications.

1.1. Related work

Despite the recent advances in finger-vein biometric

recognition, it is still a challenging task in practical application

since vein-capturing results are easily affected by many

factors, such as illumination, environment temperature, and

the behavior of the user. These factors cannot avoid during

the capturing process, in this case, the training dataset may

contain a large number of low-quality finger-vein images,

which may decrease the recognition accuracy. To achieve

robust recognition, various approaches are proposed for vein

recognition in recent years and are broadly categorized into the

following categories (Hou et al., 2022; Shaheed et al., 2022b).

(1) Local descriptor-based approaches: Local descriptor-

based approaches mainly consist of local statistical information-

based methods and local invariant-based methods. Local

statistical information-based methods include local binary

pattern (LBP) (Lee et al., 2010, 2011; Yang et al., 2014; Kang et al.,

2015), local line binary pattern (LLBP) (Rosdi et al., 2011; Yang

et al., 2013), efficient local binary pattern (ELBP) (Liu and Kim,

2016), discriminative binary codes (DBC) (Xi et al., 2016), and

fuzzy images (Qin et al., 2022). A typical representation of local

invariant-based methods is the scale-invariant feature transform

(SIFT) (Qin et al., 2013; Wang et al., 2015).

(2) Superpixel-based feature extraction approach: The

representative approaches in this category are the superpixel-

based feature (Liu et al., 2014), vein textons map (Dong

et al., 2014), hyper information feature (Xi et al., 2014), and

personalized feature (Xi et al., 2013). Superpixel-based feature

extraction methods have achieved a high recognition rate in

some public databases (Kirchgasser et al., 2020).

(3) Subspace-learning-based approaches: Subspace learning

as a powerful technique have been widely used in pattern

recognition task such as vein identification. A projection

matrix computed from training data is employed to map the

finger-vein images into subspace, and the resulting features

are further used for recognition. The typical methods include

principal component analysis (PCA) (Wu and Liu, 2011a),

two dimensional principal component analysis (2DPCA) (Qiu

et al., 2016), two-directional and two-dimensional principal

component analysis ((2D)2PCA) (Yang et al., 2012; Li et al.,

2017; Zhang et al., 2021; Ban et al., 2022; She et al., 2022),

linear discriminant analysis (LDA) (Wu and Liu, 2011b), high-

dimensional state space (Zhang et al., 2022), self-feature-based

method (Xie et al., 2022), and latent factor model (Wu et al.,

2022).

(4) Deep learning-based approaches: The deep learning-

based approaches have been directly used to learn robust

features from original images and successfully applied for

computation vision tasks. Some researchers brought them into

finger-vein recognition. For example, deep learning approaches

are employed for vein image segmentation (Liskowski and

Krawiec, 2016; Qin et al., 2019; Yang et al., 2019; Shaheed et al.,

2022a), quality assessment of vein image (Qin and Yacoubi, 2015;

Qin and El-Yacoubi, 2018), fuzzy networks (Liu H. et al., 2022;

Lu et al., 2022; Muthusamy and Rakkimuthu, 2022), and finger-

vein recognition (Wang et al., 2017; Avci et al., 2019; Gumusbas

et al., 2019; Zhang J. et al., 2019).

1.2. Motivation

As discussed in the related works, the handcrafted-

based approaches are proposed based on prior human

knowledge, some vein features related to recognition may

be missed during the feature extraction process. On the

contrary, the deep learning-based extraction approaches without

any prior assumption can automatically extract high-level

features by representation learning that are objectively related

to vein recognition. The deep learning-based extraction

approach takes the original image pixels as input and iterative

uncovers hierarchical features. In this way, the decision

errors on recognition are minimized. The need for voids is

explicitly extracting some image processing-based features that

might discard relevant information about image classification.

Therefore, the deep learning-based approaches are capable

of extracting more complete vein features for recognition,

compared to handcrafted approaches. Currently, deep learning-

based methods, such as deep neural networks, show high

recognition performance because they harness rich prior

knowledge acquired by training them on a huge training dataset.

However, in finger-vein recognition, it is impossible to capture

a lot of vein samples from the same finger, so the training

sample of each class is generally limited. For example, the

samples from each finger are <12 in existing databases (Miura

et al., 2004, 2007; Das et al., 2019). Especially, there is only

one single sample per finger for single sample per person

(SSPP) problem when considering their limited storage and

privacy policy. Therefore, it becomes particularly intractable

for such an identification system with SSPP when within-class

information is not available to predict the unknown variations

in query samples. Currently, various approaches have been

proposed for biometrics identification with SSPP such as face

(Wu and Deng, 2016; Wang et al., 2018), palmprint (Shao
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and Zhong, 2021), and fingerprint (Chatterjee et al., 2017).

Similarly, the corresponding finger-vein recognition systems

still suffer from the SSPP problem due to the following facts:

1) There is only one enrollment sample in some recognition

systems, such as credit card and large-scale recognition, because

of the limitation of storage capability. 2) To achieve online

identification, the recognition systems usually store one sample

per subject to improve processing speed and time. 3) Some

users are not willing to cooperatively capture sufficient samples

for their personal privacy. Providing one enrollment sample is

convenient, simple, and acceptable for users.

As described in previous works, deep learning techniques

show a powerful capacity for feature representation, but they

generally require sufficient training samples to train a large

number of network parameters. Therefore, their learning

capacity may have not been well exploited for finger-vein SSPP

due to the limited training data of each class (a person or subject)

for SSPP. Besides, the deep learning model is easy to suffer

from over-fitting on a small amount of dataset. As a result, deep

learning-based vein identification approaches may not achieve

high performance for finger-vein SSPP.

Ensemble learning aims at combining multiple learners

to obtain a more robust representation of the object and is

successfully applied for vision tasks such as SAR image category

(Zhao et al., 2016), fault diagnosis (Liu et al., 2021), image

cluster (Tsai et al., 2014), and human activity recognition

(Jethanandani et al., 2020). In addition, some researchers applied

it to biometrics, e.g., classification tasks such as fingerprint

classification (Zhang et al., 2011b), palm-vein recognition

(Joardar et al., 2017), and face recognition (Bhatt et al., 2014;

Ding and Tao, 2018). As the features from different learners can

achieve a complementary representation for the input image,

their combination performs well for identification. To extract

enough features from a single finger-vein training sample, in

this article, we further research our work on Liu C. et al.

(2022) and proposed a deep ensemble learning approach for

finger-vein identification.

The rest of the paper is organized as follows. The

methodology and significant contributions are listed in Section

2. In Section 3, the proposed method is described in detail. The

contract experiment and the results are reported in Section 4. In

Section 5, the full research work is concluded for easy reading.

2. Proposed method system and our
contributions

Motivated by the success of ensemble learning and driven

by the SSPP finger-vein recognition, we propose an ensemble

deep neural network to learn robust representation from a single

sample for SSPP finger-vein recognition. In our work, multiple

deep learning classifiers are employed to extract robust features

from different feature maps generated from an original input

image, and then a robust deep ensemble learning approach is

generated by combining all weak classifiers. To further improve

the performance of our approach, a shared learning approach is

investigated during the training process. Besides, we proposed a

learning speed adjustment approach so that all weak classifiers

can achieve the best performance at the same time. As each

classifier can capture robust features, our ensemble learning

approach produces a more complete representation of a finger-

vein image for identification. The main contributions of this

article are summarized as follows:

(1) This work makes the first attempt at SSPP finger-vein

identification. In this work, a deep ensemble learning model

is proposed for identification with a single finger-vein training

sample. First, we employ three baselines to generate multiple

feature maps from an original finger-vein image. With these

maps, we train multiple convolutional neural networks (CNNs)

in parallel to obtain weak classifiers. Second, all classifiers are

combined to obtain an ensemble classifier for vein identification.

The experimental results imply that the proposed system

achieves state-of-the-art recognition results.

(2) We proposed a shared learning scheme to share

representations from multiple feature maps. Generally, the

classifier of CNN is easily overfitting for the SSPP problem,

so a shared learning scheme is employed to improve their

performance. We employ a feature map to train a classifier. In

this way, multiple classifiers are obtained to extract features.

To improve the performance of classifiers, the knowledge is

transferred among classifiers if their input maps are similar.

Specifically, for a given classifier, we stop to train it at a fixed

number of iterative steps and fine-tune it by relative feature

maps. As the knowledge of input maps is exploited by multiple

classifiers, combining them can achieve a robust representation

of a finger-vein image. The experimental results show that the

shared learning scheme can improve the performance of the

deep ensemble learning model.

(3) We develop a dynamic speed adjustment scheme to

automatically control the learning speed of each classifier. The

learning speeds of all classifiers are generally different, so it is

difficult for them to achieve the best performance at the same

time, which results in poor performance for ensemble classifiers.

To solve this problem, a learning speed adjustment approach

is proposed to improve the performance of our deep assemble

learning approach. For example, we divide the whole training

process into several phases. After training a classifier in the

current phase, the number of training steps in the next phase

is computed by the proposed speed adjustment scheme. In this

way, the learning speed of each classifier is adjusted dynamically

so that they achieve optimal results at the same time, which

enables the ensemble classifier to achieve the best performance

for vein identification.

The framework of our work is shown in Figure 1. First, we

generate feature maps from an input image based on several

baselines. With the resulting map and input image, we train
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FIGURE 1

Framework.

several weak classifiers separately. We use CNN models as weak

classifiers. Second, we ensemble all classifiers to obtain one

ensemble classifier for identification. After training, an input

image is subject to prepossessing base on baselines and the

resulting maps are taken as the input of our deep learning

ensemble mode to compute its probability of being to a class.

The testing process is shown in the red line in Figure 1.

3. Ensemble learning for SSPP
finger-vein recognition

3.1. Feature extraction

To achieve robust performance in the SSPP problem, it is

necessary to generate multiple feature maps from the single

training sample of each class. The feature maps represent

different aspects of the object (Felzenszwalb et al., 2010), so

their combination can achieve better performance (Li et al.,

2018). Here, three baselines (e.g., CNN Das et al., 2019, Gabor

filters Zhang et al., 2019a, and LBP Kang et al., 2015) have

achieved promising performance for finger-vein recognition, so

we employ them to produce feature maps, which are taken as the

input of ensemble model for classification.

3.1.1. Finger-vein images

Generally, the vein vessel is difficult to be observed in visible

light, but it is captured by near-infrared light with 760 nm

wavelength. The vein pattern appears darker than the other

regions of the finger because only the blood vessels absorb the

infrared rays. Some studies (Kumar and Zhou, 2012) have shown

that using extracting vein patterns from vein images achieves

promising performance for identification. The finger-vein image

sample is shown in Figure 2.

FIGURE 2

Finger-vein image.

3.1.2. Segmentation

As shown in Figure 2, the contrast of the vein pattern

in the original finger-vein image is poor, which results in

low recognition accuracy. Previous studies showed that image

segmentation as a solution has been employed for feature

extraction and shows good performance (Miura et al., 2007;

Song et al., 2011; Qin and El-Yacoubi, 2017). In recent years,

deep learning-based methods have shown a more robust

capacity for feature representation compared to handcrafted

approaches. So, some researchers bring deep learning-based

methods to vein segmentation (Liskowski and Krawiec, 2016;

Qin and El-Yacoubi, 2017; Qin et al., 2019; Yang et al., 2019).

To train a good weak classifier, the CNN-based model is used

to extract robust vein texture patterns, which are input into

the weak classifier. First, a CNN-based approach is developed

to predict the probability of pixels belonging to veins or

backgrounds by learning a deep feature representation. As the

finger-vein consists of clear regions and ambiguous regions,

several baselines are employed to automatically label pixels as

veins or backgrounds in the image’s clear regions, thus avoiding

the tedious and prone-to-error manual labeling. Then, a CNN

is trained to extract the vein patterns from any image region.

Second, to improve the performance, an original method based

on an FCN was to recover missing finger-vein patterns in the

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1065099
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.1065099

FIGURE 3

Segmentation of finger-vein image.

FIGURE 4

Both original image and segmented image transform by LBP.

binary image. Figure 3 illustrates the segmentation image from a

gray-scale image.

3.1.3. Local binary pattern

The Local binary pattern describes the relationship between

the neighborhood points and the corresponding center point,

with the features of constant rotation and grayscale. It is widely

used to extract finger vein features and shows good performance

(Lee et al., 2010, 2011; Rosdi et al., 2011; Yang et al., 2013,

2014; Kang et al., 2015). Therefore, we employ LBP to local

information of finger-vein images. The LBP is computed by

LBPP,R =

P−1
∑

P=0

s(gp − gc)2
p

s(x) =







1, x >= 0

0, x < 0.

(1)

Where gc is the gray value of the central pixel, gp is the value

of its neighbors, P is the number of neighbors, and R is the radius

of the neighborhood.

In Kocher et al. (2016), the author empirically evaluates

different features obtained by using these more recent LBP-

related feature extraction techniques for finger-vein spoofing

detection. The LBP feature map provides a local representation

of a finger-vein image. LBP patterns are extracted from the

original image, and segmented image are shown in Figure 4.

3.1.4. Gabor

The Gabor filter is a type of wavelet, it has good time-

domain and frequency-domain transform characteristics. Gabor

functions are used to construct filters with different scaling

directions caused by different parameters (e.g., spatial position,

FIGURE 5

Both the original image and segmented image transform by the

Gabor filter.

frequency, phase, and direction). Furthermore, the Gabor filter

is widely used to capture texture information, and it adapts

to extract features from a finger-vein image. In finger vein

recognition, there have been more studies using Gabor as a

feature, such as Yang et al. (2009), Cho et al. (2012), and Zhang

et al. (2019b). The Gabor filter is defined as follows:

G = exp(−
x2 + γ 2y2

2δ2
)exp(i(2π

x′

λ
+ ψ)) (2)

where

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ
(3)

In the Gabor function, λ is the wavelength of the cosine

factor; θ is the orientation of the normal to the parallel stripes,ψ

is the phase offset of the cosine factor, δ is the standard deviation

of the Gaussian envelope, and γ is the spatial aspect ratio.

For the practical application of finger-vein recognition, the

real part of the Gabor filter is used. In Zhang et al. (2019a)’s

study, the Garbo filter is used to extract texture information of

a finger-vein image, and a CNN network is employed to finish

the recognition work. The original image and Gabor feature are

shown in Figure 5.

We employ the three baselines to extract five different

features from the original images. Including the original finger-

vein images, there are a total of six feature maps, as shown in

Table 1. The six different feature maps are shown in Figure 6.
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TABLE 1 Feature maps.

Input Preprocessing1 Preprocessing2 Feature map

Original image Null Null 1st feature map

Original image Segmentation Null 2nd feature map

Original image Null LBP 3rd feature map

Original image Segmentation LBP 4th feature map

Original image Null Gabor 5th feature map

Original image Segmentation Gabor 6th feature map

FIGURE 6

Samples of 6 di�erent feature maps. (A) 1st feature map, (B) 2nd

feature map, (C) 3rd feature map, (D) 4th feature map, (E) 5th

feature map, and (F) 6th feature map.

3.2. Convolutional neural networks

The ensemble learning model is constructed from the

combination of weak classifiers (Sagi and Rokach, 2018). The

choice of a weak classifier affects the performance of the

ensemble model. In previous work, CNNs were widely used

in finger vein recognition and achieved good recognition

performance, such as Wang et al. (2017), Gumusbas et al.

(2019), Avci et al. (2019), Gumusbas et al. (2019), and Zhang J.

et al. (2019). In this article, we choose the CNN model as the

independent weak classifier, and each CNN is trained by one

feature map, as shown in Figure 1. Each trained CNN model

describes one aspect of the finger vein.

Convolutional neural network is a multi-layer perception

network with hidden layers. A traditional recognition model for

a classifier can be formulated by minimizing the error function.

During training a deep network, the gradient descent method is

used to update network parameters. The details of the network

structure are shown in Tables 2, 3.

In each CNN, the parameters, such as the number of

layers and size of the kernel, are different for the different

classifiers. In general, the closer relative classifiers have more

same parameters. The first feature map and the second feature

map are basic features to generate the third feature map, the

fourth feature map, the fifth feature map, and the sixth feature

map, and a convolutional neural network (CNN) with five layers

are employed to extract their feature. As listed in Table 2, the

CNN consists of three convolutional layers of 64 kernels with

the size of 2 × 2, a convolutional layer of 128 kernels with the

size of 2 × 2, and a convolutional layer of 256 kernels with the

size of 5×5. For the remaining four classifiers, we employ a CNN

with six convolutional layers for feature extraction, as shown in

Table 3. Specifically, there are 64 kernels with the size of 2 × 2

in the first three convolutional layers and 128 kernels with the

size of 2 × 2 in the fourth convolutional layer. The last two

convolutional layers include 128 kernels with the size of 5 × 5

and 256 kernels with the size of 5 × 5, respectively. Combing

all classifiers, we built an ensemble learning model to identify a

subject with a single training sample.

3.3. Shared learning

If the feature maps are correlative, we can utilize the

knowledge from other weak classifiers to improve the current

classifier (Lou et al., 2017). In general, features with higher

correlation provides more positive knowledge, which results

in the improvement of the weak classifier. So, to achieve the

best-shared representations, we compute the similarity among

feature maps, which determines the result of shared learning.

3.3.1. Similarity of feature maps

In Zhang et al. (2011a)’s study, a feature similarity index

(FSIM) is proposed for the similarity of feature maps.

We compute the FSIM of feature1(image) and

feature2(image) to express the correlation of feature 1 and

feature 2 of the current image. The FSIM measurement between

feature1(image) and feature2(image) are separated into two

components, each for PC or GM. The PC value of images can

be considered as a dimensionless measure for the significance of

a local structure, which is defined in Morrone et al. (1986) and
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TABLE 2 CNN parameters for the first and the second feature maps.

Layer type Number of filters Size of Kernel Number of strides Number of padding Dropout

CL1 (Convolutional layer-1) 64 2× 2 1× 1 0× 0 −

M1 (Max-Pooling Layer-1) 1 2× 2 2× 2 0× 0 −

CL2 (Convolutional layer-2) 64 2× 2 1× 1 0× 0 −

M2 (Max-Pooling Layer-2) 1 2× 2 2× 2 0× 0 −

CL3 (Convolutional layer-3) 64 2× 2 1× 1 0× 0 −

M3 (Max-Pooling Layer-3) 1 2× 2 2× 2 0× 0 −

CL4 (Convolutional layer-4) 128 2× 2 1× 1 0× 0 −

M4 (Max-Pooling Layer-4) 1 2× 2 2× 2 0× 0 −

CL5 (Convolutional layer-5) 256 2× 2 1× 1 0× 0 −

M5 (Max-Pooling Layer-5) 1 2× 2 2× 2 0× 0 −

R1 (ReLu Layer-1) − − − − 0.5

Softmax layer − − − − −

TABLE 3 CNN parameters for the third, the fourth, the fifth, and the sixth feature maps.

Layer type Number of filters Size of Kernel Number of strides Number of padding Dropout

CL1 (Convolutional layer-1) 64 2× 2 1× 1 0× 0 −

M1 (Max-Pooling Layer-1) 1 2× 2 2× 2 0× 0 −

CL2 (Convolutional layer-2) 64 2× 2 1× 1 0× 0 −

M2 (Max-Pooling Layer-2) 1 2× 2 2× 2 0× 0 −

CL3 (Convolutional layer-3) 64 2× 2 1× 1 0× 0 −

M3 (Max-Pooling Layer-3) 1 2× 2 2× 2 0× 0 −

CL4 (Convolutional layer-4) 128 2× 2 1× 1 0× 0 −

M4 (Max-Pooling Layer-4) 1 2× 2 2× 2 0× 0 −

CL5 (Convolutional layer-5) 128 2× 2 1× 1 0× 0 −

M5 (Max-Pooling Layer-5) 1 2× 2 2× 2 0× 0 −

CL6 (Convolutional layer-6) 256 2× 2 1× 1 0× 0 −

M6 (Max-Pooling Layer-6) 1 2× 2 2× 2 0× 0 −

R1 (ReLu Layer-1) − − − − 0.5

Softmax Layer − − − − −

Kovesi (1999). We define 2 features PC and GM to compute the

similarity. The PC features PC(image) is computed as follows:

PC(image) =
E(image)

ǫ +
∑

n An(image)
(4)

Where E(image) =
√

F2(image)+H2(image) and ǫ is a

small positive constant, An(image) =

√

e2n(image)+ o2n(image),

F(image) =
∑

n en(image), and H(image) =
∑

n on(image),

where en(image) and on(image) the even- and odd-symmetric

filters on scale n of the image.

The GM feature G(image) is compute as follows:

G(image) =
√

G2
h
(image)+ G2

v(image) (5)

Where Gh(image) and Gv(image) describe the horizontal and

vertical directions gradient operators on the image, respectively.

We use I1 and I2 to express image1 and image2, the FSIM is

computed as follows:

FSIM(I1, I2) =

∑

x∈� SL(I1, I2) · PCm(I1, I2)
∑

x∈� PCm(I1, I2)
(6)

Where�means the whole image spatial domain.
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The SL similarity combines the similarity SPC of PC and the

similarity SG of G:

SL(I1, I2) =
[

SPC(I1, I2)
]α

·
[

SG(I1, I2)
]β

(7)

where α and β are parameters used to adjust the relative

importance of PC and G features, which is computed as follows:

SPC(I1, I2) =
2PC(I1) · PC(I2)+ T1

PC2(I1)+ PC2(I2)+ T1

SG(I1, I2) =
2G(I1) · G(I2)+ T2

G2(I1)+ G2(I2)+ T2

(8)

where T1 is a positive constant to increase the stability of SPC ,

T2 is a positive constant depending on the dynamic range of

GM values.

The PCm means the maximum value of PC(I1) and PC(I2),

which is PCm(I1, I2) = max(PC(I1), PC(I2)).

After the similarity of different features of a single image is

computed, we summarize the similarity of feature maps by the

average similarity of all images. We use Fj St(Fi, Fj) to express

the feature map similarity of feature map i(Fi) and feature map

j(Fj), which is computed as follows:

St(Fi, Fj) =

∑

FSIM(Ii, Ij)

n
(9)

where n is the number of training samples, and Ii and Ij are

feature maps in Fi and Fj, respectively, but generate from the

same finger-vein image.

3.3.2. Shared learning scheme

We divide the training process of the weak classifier into K

steps, and each step contains P epochs. After training the current

classifier in each step, the training samples from other feature

maps are used to adjust the parameter by shared learning. In this

work, we use the feature map similarity St(Fi, Fj) to compute the

number of epochs used in shared learning EcFi,Fj . The EcFi,Fj is

set as follows:

EcFi,Fj = 2
⌊
P

4
×St(Fi,Fj)⌋−1

(10)

where Fi is the feature maps used to train the current classifier

and Fj expresses other feature maps.

The performance can be improved by sharing knowledge

when high feature correlation (Misra et al., 2016). In the training

process, train step u is divided into two parts: training the

current classifier and shared learning of other classifiers. The

shared learning process is followed by the train current classifier

process. The network structure is shown in Figure 7. In one train

step of CNNi, the data of featurei are used to train CNNi by

P epochs, and then the data of featurej are used to train CNNi

by EcFi,Fj epochs. After the data of all high correlative features

are used to train CNNi by shared learning, CNNi enters the next

training step.

3.4. Learning speed adjustment

During training weak classifiers, the learning speeds of

classifiers are different, because the input data are different.

When all weak classifiers achieve their best performance, the

ensemblemodel is best.We propose a learning speed adjustment

method to control the learning speeds of weak classifiers. The

parameter α is used to adjust the learning speed of each classifier.

The whole training process is divided into K steps and P epochs

in each step. The total number of epochs R is as follows:

R = K ∗ P (11)

The parameter αi,u is used to adjust the number of epochs

dynamically for classifieri of train step u. When the classifier had

achieved well performance, the number of epochs will decrease

in the next step. The αi,u is computed as follows:

αi,u =
1

1+ e−Li,u−1
(12)

Where the Li,u−1 is the loss function value after train step

u − 1. To ensure the program runs smoothly, a round down

is used to ensure the epoch time is an integer and more than

0. So, the number of epochs pi,u for train step u of classifieri is

as follows:

pi,u =







1, ⌊αi,u · P⌋ < 1

⌊αi,u · P⌋, other.
(13)

3.5. Ensemble classifier

There are two problems during ensemble weak classifiers:

(1) How to enhance good weak classifiers while weakening poor

weak classifiers; (2) How to make all weak classifiers perform

best at the same time. The second problem has been discussed

in the previous subsection, in this subsection, we discuss the first

problem. To tackle the first problem, an access weight can be set

to increase the weight of a good classifier and decrease the weight

of the pool classifier. The E+ is computed as

E+i,u =

1

1+ exp(−Scorei,u)

∑K
i=1

1

1+ exp(−Scorei,u)

(14)
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FIGURE 7

Shared learning by high correlative feature maps.

where Scorei,u is the close test accuracy of each classifieri after

train step u.

The E− is computed as

E−i,u =

1

1+ exp(−Li,u)

∑K
i=1

1

1+ exp(−Li,u)

(15)

where Li,u is the loss function value after train step u.

The ensemble weightW after train step u is updated as follows:

W∗
i,u =















|E+i,u − E−i,u|
∑K

i=1 |E
+
i,u − E−i,u|

, E+i,u ≥ 0.5

0, E+i,u < 0.5

(16)

where K is the number of classifiers. The ensemble weight W

is updated after each training step. Considering the efficiency of

the ensemble model, if the classifier plays poor performance, this

classifier could not join the ensemble step. In our model, we use

the close test of classifiers to measure their efficiency; if the close

test scores more than 0.5, this classifier will join the ensemble

step and vice versa.

3.6. Structure of training process

Three different approaches are proposed in this article.

3.6.1. Basic approach

The training process of the basic approach is divided into

three stages, which are shown as the training part in Figure 1.

We extract feature maps as described in Section 3.1, then we

train a weak classifier (CNN) as described in Section 3.2, finally,

we ensemble all classifiers by vote as described in Section 3.5.

Although this approach simply trains the classifier separately,

when the ensemble of all classifiers by vote weight during

training, both positive contribution and negative effect are

considered by employing Equations (14)–(16). To avoid the

poor weak classifier play gadfly in the ensemble model, we set

a threshold to accept the classifiers and the vote weight by

employing Equation (16) in the ensemble model. This structure

is shown in Figure 8. The weak classifiers can be trained

in parallel.

3.6.2. The shared learning method

The shared learning method inherits the basic approach.

During training classifiers, other feature maps are used to

train classifiers in different ‘levels’ in each training step. These
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TABLE 4 Finger-vein databases.

Database Subject Number
of fingers

Details of
fingers

Images per finger Sessions Image size Total images

HKPU 156 2 Left hand index

middle finger

12 2 513*256 3,132

FV-USM 123 4 Left and right hand

index middle finger

12 2 640*480 5,904

FIGURE 8

Training structure of basic approach.

‘levels’ correlate by employing Equation (9). The train network

structure of shared learning is shown in Figure 9.

3.6.3. Shared learning with adjust learning
speed method

The third method inherits the second one which is shared

learning high relative feature maps, in addition, we add the

parameter of adjusting learning speed. In this method, the

performance of each classifier maintains well after 35 train steps,

so the ensemble classifier plays better performance than the

other 2 methods proposed before. The parameter of learning

speed adjustment by employing Equation (12) to determine

the number of epochs of the next train step by employing

Equation (13). This parameter is updated at the end of each

training step and feedback to train classifiers before the next

training step. The train network structure of the shared learning

and adjusted learning speed method is shown in Figure 10.

4. Experiments

To estimate the performance of our approach, we carry out

experiments on two public finger-vein databases, namely the

Hong Kong Polytechnic University (HKPU) (Kumar and Zhou,

2012) and the University SainsMalaysia (FV-USM) (Asaari et al.,

2014). In experiments, we show the experimental results of each

classifier and objective task, respectively. Also, some existing
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FIGURE 9

Training structure of the shared learning method.

approaches, such as Das et al. (2019), have been employed for

finger-vein identification in comparable experiments. All the

experiments have been performed in Python 3.7, with a system

configuration of 128Gb RAM, Tesla P40 graphics card, and two

processors both with Intel(R) Xeon(R) Gold 5118 @ 2.30GHz

and Linux version 5.3.0 operating system.

4.1. Finger-vein database

In this article, we conduct experiments on the HKPU

database and FV-USM database.

HKPU database: The HKPU finger-vein image database

(Kumar and Zhou, 2012) consists of images from 156 male and

female volunteers. It has been acquired between April 2009 and

March 2010 using a contactless imaging device at the HKPU

campus. It is composed of 3,132 images from 156 subjects, all

of them in a BMP format with a resolution of 513 × 256 pixels.

In this dataset, about 93% of the subjects are younger than

30 years, and finger-vein images from 105 subjects have been

acquired in two separate sessions with a minimum interval of

1 month and a maximum of over 6 months, with an average of

66.8 days. In each session, every subject has provided 6 image

samples from the index and middle finger of the left hand. Other

51 subjects have one single session of acquired data. In the

experiment, 2,520 images (105 subjects × 2 fingers × 2 sessions

× 6 samples) from two separate sessions are employed to test

our approach.

FV-USM database: The FV-USM database (Asaari et al.,

2014) is from University Sains Malaysia. It consists of left and

right-hand index and middle fingers’ vein images from 123

subjects. Among them, 83 are male and 40 are female, with an

age range of 20 − 52 years. All images have been acquired in

two different sessions with six images per finger in every session.

There are 2,952 images (123 subjects × 2 fingers × 2 sessions

× 6 samples) All images are in gray level BMP format with a

resolution of 640× 480 pixels.

The details of both datasets are described in Table 4.

4.2. Experiment setup

We aim at solving the finger-vein SSPP problem, so the

first image from the first session is selected for training
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FIGURE 10

Training structure of the shared learning with adjust learning speed method.

and the three images from the second session are employed

for testing. As a result, there are 210 samples in the

training set and 630 samples (1,260 fingers × 6 samples)

in the test set for the HKPU database. Similarly, there

are 246 training samples and 1,476 samples (246 fingers

× 6 samples) for the FV-USM database. We train our

model on the training set and compute the identification

accuracy on the test set to estimate the performance of the

proposed method.

In our article, the six feature maps are generated by three

baselines (e.g., LBP, Gabor, and CNN), as shown in Table 1, and

their parameters are determined based on setting in existing

works (Kang et al., 2015; Qin and El-Yacoubi, 2017; Zhang et al.,

2019a). For LBP descriptors, the radius is set to 1 which implies

that only the one layer around the center pixel and eight pixels

around the center pixel are taken into account for the feature’s

next action. The second baseline e.g., Gabor filter has six scales,

namely 7, 9, 11, 13, 15, and 17, the wavelength λ is determined

by π/2, and the directions θ are set to 0o, 45o, 90o, and 135o.

For CNN, the network structures and parameters are presented

in Tables 2, 3.

4.3. Performance impacted by shared
learning

In this section, we carry out experiments to verify whether

the shared learning scheme improves identification accuracy. As

described in Section 3, we proposed a shared learning scheme

to learn the knowledge among different feature maps, as shown

in Figure 6. Generally, if two feature maps are more relative,

the performances of both feature maps are improved by the

shared learning scheme. In our article, the similarity/relativity

between two feature maps is computed by Equation (9) and

further taken as an input of Equation (10) to compute the

iteration number of shared learning. As shown in Table 5, the

first feature map is highly related to the second feature map, the

third feature map, and the fourth feature map on both datasets

based on Equation (9). Then, the numbers of interaction steps

for there relative shared learning are determined to 4, 1, and 2

by Equation (10), respectively. To achieve shared learning, we

employ the second feature map to fine-tune the CNN trained

by the first feature map at in four steps, and the resulting

CNN model is further trained based on the third feature map,
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TABLE 5 Performance comparisons of shared learning.

Feature map Shared
feature map

Feature
similarity

Epochs Performance Performance without
shared learning

Database

1st feature map 67.32% 67.32% HKPU

1st feature map 2nd feature map 0.64 4 69.91% 67.32% HKPU

1st feature map 3rd feature map 0.30 4 67.76% 67.32% HKPU

1st feature map 4th feature map 0.59 4 67.85% 67.32% HKPU

1st feature map 88.01% 88.01% FV-USM

1st feature map 2nd feature map 0.68 4 90.06% 88.01% FV-USM

1st feature map 3rd feature map 0.32 4 87.66% 88.01% FV-USM

1st feature map 4th feature map 0.55 4 88.28% 88.01% FV-USM

TABLE 6 Performance comparisons of shared learning in di�erent

CNNs.

Method Database

HKPU FV-USM

CNN1 67.32% 88.01%

CNN1+ shared learning 70.12% 90.11%

CNN2 64.68% 87.96%

CNN2+ shared learning 68.97% 91.25%

CNN3 54.01% 83.15%

CNN3+ shared learning 56.36% 85.37%

CNN4 60.43% 80.02%

CNN4+ shared learning 62.02% 84.86%

CNN5 59.31% 85.87%

CNN5+ shared learning 61.71% 88.07%

CNN6 76.17% 86.26%

CNN6+ shared learning 78.42% 89.91%

Basic approach 78.73% 91.03%

Basic approach + shared

learning

85.63% 92.31%

followed by the fourth feature map. In this way, the remaining

classifiers are trained for identification. In experiments, we

test the six classifiers on both databases mentioned in Section

4.2. For example, there are 210 samples from 210 fingers in

the training set and 1,260 samples in the testing set for the

HKPU database, and 492 training samples and 2,952 testing

samples for the FV-USM database. The identification accuracies

of six classifiers with shared learning are listed in Table 6. Also,

the performance of each classifier without shared learning is

reported in Table 6 for comparison. From the experimental

results, we observe that the performance of all classifiers is

significantly improved after shared learning. Specifically, the

identification accuracy increases by an average of 2% for all

weak classifiers, which implies that learning knowledge from

other relative feature maps by our shared learning approach

can improve the performance of the current classifier. This may

be explained by the following facts. Using different features to

train weak classifiers can transfer to form amore complementary

representation of the original finger-vein image.

The experiment also shows the relation between relativity

and performance, as shown in Table 5. The experimental results

show that the higher relativity between the two classifiers brings

more improvement in identification accuracy. For example,

the first feature map achieves the largest improvement in

identification performance by transferring the knowledge of the

second feature map which has the highest relativity with the

first feature map. On the contrary, less improvement is achieved

based on the shared learning between the first feature map

and the third feature map because the third feature map shows

less similarity to the first feature map. The good performance

attributes to the fact that the knowledge is easier to be transferred

if multiple feature maps have good relativity.

4.4. Performance impacted by learning
speed

As described in the subsection, our approach is proposed

by combining six weak classifiers. In general, the learning

speed of each classifier is different. Therefore, the object task

can achieve the highest identification accuracy only if each

classifier achieves optimal performance at the same time.

In this section, the experiments are carried out to evaluate

how to impact the performance of object tasks by employing

Equation (12) and Equation (13) to adjust the learning speed of

each classifier. Figures 11A, B show the identification accuracy

of six classifiers and our approach to the HKPU database

before and after adjusting the learning speed. In Figure 11A,

the performance of all approaches is improved when the

number of iteration steps is <30. However, two classifiers
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FIGURE 11

Performance of various classifiers with learning speed adjustment. (A) The performance of all our approaches on the HKPU database without

adjusting learning speed. (B) The performance of all our approaches+adjust learning speed on the HKPU database. (C) The performance of all

our approaches on the FV-USM database without adjusting learning speed. (D) The performance of all our approaches+adjust learning speed on

the FV-USM database.

achieve significant degradation in identification accuracy after

35 iterations. The reason is that the two classifiers have higher

speed than the remaining classifiers so they cannot achieve

optimal performance at the same time. Therefore, it is difficult

for object tasks to achieve good performance. In contrast, the

learning speed of all weak classifiers is adjusted dynamically, they

show the best performance after about 50 iterations (as shown

in Figure 11B), which brings the improvement of the objection

classifier. Therefore, our approach achieves higher identification

accuracy after employing Equation (12) and Equation (13) for

learning speed adjustment. The experiments on FV-USM (as

shown in Figures 11C, D) show consistent trends that all weak

classifiers can achieve optimal performance at the same time

(about 40 iterations). In addition, observed training curves

(Figures 11A–D), we see that all approaches show good stability

after employing the learning speed adjustment scheme.

Table 7 lists the identification accuracy of the basic model,

basic approach + shared learning, basic approach + speed

adjustment, and basic approach + shared learning + speed

adjustment on the HKPU database and FV-USM database. The

experimental results have shown that the basic model and basic

approach + shared learning achieve a significant improvement

in identification accuracy after adjusting learning speed by

Equation (13). For example, the basic approach + shared

learning and basic approach + shared learning + learning speed

adjustment achieve 82.60% and 92.10% identification accuracy

on HKPU database and FV-USM database, respectively, and

improves identification accuracy by about 7% and 1% compared

to basic approach + shared learning. The experimental results

in Table 7 imply that our learning speed adjustment scheme

is effective to improve the performance of object tasks for an

ensemble learning problem.

4.5. Performance comparisons

In this section, we compare our approach with existing

approaches to evaluate the performance of our method in

terms of improving identification accuracy. In experiments,

state-of-art methods, such as Das et al. (2019), Kumar and

Zhou (2012), and Song et al. (2011), are employed for finger-

vein identification with a single training sample per finger. As

described in the section, we select the first image for training and

six images collected in the second session for testing. As a result,

there are 210 training samples and 1,260 testing samples for the

FV-USM database and 496 training samples and 2,952 testing

sample for the FV-USM database. The identification accuracies

of various approaches have been listed in Table 8 for comparison.
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From the experimental results, we can observe that the proposed

approach (basic approach + shared learning + learning speed

adjustment) outperforms the existing approaches and achieves

the highest identification accuracy, e.g., 92.11 and 94.17% on

the HKPU database and FV-USM database, respectively. Also,

we observed that the hand-crafted approaches (Song et al., 2011;

Kumar and Zhou, 2012; Qin et al., 2013), considered our work

achieve <91.00% identification accuracy on both databases.

Such a poor performance may be attributed following facts:

(1) The handcrafted segmentation-based approaches assume

that the cross-sectional profile of a vein pattern shows a valley

(Miura et al., 2007) or line-like texture (Miura et al., 2004) and

proposed various mathematical models to extract vein patterns.

However, the vein pixels create more complex distributions

instead of the valley or straight lines and the pixels in the

non-vein region also show valley or line-like attributes, so

their performance is limited. (2) The handcrafted segmentation-

based approaches usually match vein networks stored in

testing samples and enrolment samples for identification.

Therefore, it is difficult for such a matching scheme to

achieve good performance when there are larger variations

such as rotation, scaling, and translation between two images.

Compared to handcrafted segmentation-based approaches, the

deep learning-based approach (Qin and El-Yacoubi, 2017) is

capable of extracting robust vein networks from a law image

because it harnesses rich prior knowledge from huge training

samples without any assumption. Therefore, the deep learning-

based approach (Qin and El-Yacoubi, 2017) achieves better

performance, e.g., 91.75 and 92.29%, identification accuracies

on both databases. Similarly, its matching scheme is not robust

for image samples with large rotation and translation variations.

As a solution, a convolutional neural network (Das et al., 2019)

is proposed to extract high-level features instead of a vein

network by representation learning that is objectively related

to vein identification and achieves promising performance.

However, it does not perform well for the SSPP problem.

This is explained by the following facts. Deep learning-based

approaches generally require a large number of training samples

to estimate a usually huge number of deep network parameters.

In the SSPP configuration, there is only one training sample for

each class, so the learning capacity becomes weak and subject to

string overfitting, which leads to low identification performance.

Ensemble learning is a solution to the SSPP problem because

it can exploit the knowledge from different feature maps to

improve identification accuracy. Therefore, our basic approach

+ shared learning achieves 85.63 and 92.31% accuracies on both

datasets, which are further improved to 92.11 and 94.17% by

adjusting the learning speed of all weak classifiers. Such a good

performance may be attributed to these facts. Each classifier

includes different discriminate features. As shown in Table 5,

the relative feature maps can make a positive contribution

to classification, so the knowledge related to classification is

transferred among feature maps by shared learning, which

TABLE 7 Performance comparisons of the adjust learning speed

method.

Method Database

HKPU FV-USM

Basic approach 78.73% 91.03%

Basic approach + shared learning 85.63% 92.31%

Basic approach + learning speed adjustment 82.6% 92.1%

Basic approach + shared learning 92.11% 94.17%

+ learning speed adjustment

TABLE 8 Performance comparisons with state-of-art methods.

Method Database

HKPU FV-USM

Rig (Das et al., 2019) 82.19% 91.75%

MC (Miura et al., 2007) 90.34%

RLT (Miura et al., 2004) 78.28%

Qin (Qin and El-Yacoubi, 2017) 91.75% 92.29%

Gabor filters (Kumar and Zhou, 2012) 77.78% 86.96%

Difference-curvature (Qin et al., 2013) 73.97% 83.91%

Mean-curvature (Song et al., 2011) 88.89% 87.01%

Region-growth (Qin et al., 2011) 82.29% 86.62%

Basic approach + shared learning 85.63% 92.31%

Basic approach + shared learning 92.11% 94.17%

+ learning speed adjustment

effectively improves the feature representation capacity of object

tasks. Meanwhile, the learning speed adjustment ensures each

classifier achieves the best performance at the same time

so that the object task performs the best representation for

vein identification.

5. Conclusion

In this article, the authors proposed a new deep ensemble

learning approach for SSPP finger-vein recognition. Multiple

improvements have been made in this work. A schema of

generating multiple feature maps from a single training image

is proposed to enhance the performance of the training section.

A shared learning schema is applied to the classifier training

section. A new learning speed adjustment approach is proposed

to improve the performance of the weak classifiers. With a

solid comparative experiment, it is very convincing that the

proposed method is an outstanding solution for the SSPP finger-

vein recognition problem. First, we generate feature maps from

training images. Second, we propose a shared learning scheme

during the training of weak classifiers. Third, an approach is
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proposed to adjust the learning speed of weak classifiers. In the

experimental part, we compare the performance of our method

with the state-of-art method. The final result of the whole model

can achieve state-of-the-art recognition results.
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