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Dance emotion recognition is an important research direction of automatic

speech recognition, especially in the robot environment. It is an important

research content of dance emotion recognition to extract the features that

best represent speech emotion and to construct an acoustic model with

strong robustness and generalization. The dance emotion data set is small

in size and high in dimension. The traditional recurrent neural network

(RNN) has the problem of long-range dependence disappearance, and due

to the focus on local information of convolutional neural network (CNN),

the mining of potential relationships between frames in the input sequence

is insufficient. To solve the above problems, this paper proposes a novel

linear predictive Meir frequency cepstrum coefficient and bidirectional long

short-term memory (LSTM) for dance emotion recognition. In this paper, the

linear prediction coefficient (LPC) and Meier frequency cepstrum coefficient

(MFCC) are combined to obtain a new feature, namely the linear prediction

Meier frequency cepstrum coefficient (LPMFCC). Then, the combined feature

obtained by combining LPMFCC with energy feature is used as the extracted

dance feature. The extracted features are input into the bidirectional LSTM

network for training. Finally, support vector machine (SVM) is used to classify

the obtained features through the full connection layer. Finally, we conduct

experiments on public data sets and obtain the better effectiveness compared

with the state-of-art dance motion recognition methods.

KEYWORDS
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Introduction

Dance emotion recognition is widely used in artificial
intelligence. For example, in aerospace, detecting negative
emotional changes in astronauts can provide timely
psychological counseling. In terms of humanized telephone
service, automatic customer service system and manual service
can be selected according to customer’s mood change (Yin
et al., 2021; Chen, 2022). In the aspect of quality teaching,
teachers adjust the course and difficulty of class appropriately
by observing students’ learning emotions. In terms of medical
treatment, by observing the mood of patients with mania or
depression, doctors can be informed in time to help eliminate
bad emotions.

Dance emotion recognition includes feature extraction,
feature dimension reduction, emotion classification and other
main parts (Luo et al., 2021). The system block diagram of the
recognition process is shown in Figure 1. (1) Feature extraction:
it refers to the preprocessing of the collected motion signal by
analog and digital processing technology and the application
of hardware or software technology. Then it extracts the
acoustic features that can represent the emotion through feature
extraction tools. (2) Feature dimension reduction: it refers
to the dimensionality transformation of extracted features to
remove redundant information and extract significant features
that can represent dance emotion. (3) Emotion classification:
it refers to the process of establishing the emotion recognition
model of dance, and matching the test set with the recognition
model to get the emotion type of dance. Feature extraction and
emotion classification are the key technologies in dance emotion
recognition. The quality of dance feature extraction directly
affects the recognition results, and a good corpus can also
improve the recognition performance (Guimond et al., 2022).

Features of dance emotion

Dance feature is an important factor in motion emotion
recognition, and feature extraction is a key step in dance
emotion recognition. Dance features can be divided into
continuous speech features, sound quality features, spectral-
based features and non-linear teager energy operator (TEO)-
based features. Common spectral features include Linear
Prediction Cepstral Coefficient (LPCC) (Krobba et al., 2020),
Mel Frequency Cepstral Coefficient (MFCC) (Albadr et al.,
2021), Log Frequency Power Coefficient (LFPC) (Gao, 2022).
LPCC linearly approximates speech at all frequencies, which is
inconsistent with human auditory characteristics. The MFCC
focuses on the auditory properties of the human ear because the
level of sound heard is not linearly proportional to frequency.
The MFCC first maps the linear spectrum to the Mel non-linear
spectrum based on the auditory properties and then converts
it to cepstrum. Relationship between Mel frequency and actual

frequency is:

Mel(f ) = 2595 lg
(

1+
f

700

)
(1)

where f is the actual frequency of the speech signal.
Wang et al. (2022), the multi-resolution idea of wavelet

analysis is combined with different forms of TEO and MFCC,
and five non-linear features are proposed for speech emotion
recognition. Qadri et al. (2022) proposed that Teager-energy
based MFCC (TEMFCCs) was classified on Berlin database
by Gaussian mixture model (GMM), and experimental results
showed that TEMFCCs had better performance than MFCC. In
order to facilitate the subsequent speech emotion recognition,
the speech processing tool OpenSMILE is used to extract the
speech features, and the extracted features are saved as .csv files.

Emotion feature dimension reduction

The classical dimension reduction methods can be divided
into linear dimension reduction methods and non-linear
dimension reduction methods. Linear dimensionality reduction
methods include principal component analysis (PCA) (Roland
et al., 2021), linear discriminant analysis (LDA) (Zhu et al.,
2022), locality preserving projections (LPP). Non-linear
dimensionality reduction methods can be divided into manifold
learning, neural network-based method and kernel based
method. The kernel based method has kernel PCA. There
are three methods based on manifold learning: isometric
feature mapping (ISOMAP) (Moradzadeh et al., 2020),
multidimensional dimension transformation (MDT) (Leprince
et al., 2021), local linear embedding (LLE), laplacian eigenmaps
(LE), etc. The neural network methods include autoencoder
networks (AN) (Jin et al., 2021) and self-organizing feature
mapping (SOM) (Ghahramani et al., 2021). Different principles
and structures of each dimension reduction algorithm will
bring different recognition effects. The comparison is shown in
Table 1.

Related emotion recognition
algorithms

At present, most dance emotion recognition algorithms
can be divided into two categories: single-based classifier
and hybrid-based classifier. Single-based classifier can be
divided into linear classifier and non-linear classifier. Linear
classifiers include naive Bayes classifier (NBC), neural networks
(NN), etc. Non-linear classifiers include hidden Markov model
(HMM), GMM, K-nearest neighbor (KNN), decision tree (DT)
and Softmax classifier. The most typical combination-based
classifiers are Boosting, Bagging, and Random Forest (RF). With
the development of research, the recognition effect of using
single classifier has certain limitations.
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FIGURE 1

Dance emotion recognition system block diagram.

TABLE 1 Advantages and disadvantages of various dimensionality reduction methods.

Method Advantage Disadvantage

PCA Simple concept, convenient calculation and optimal linear
reconstruction error

After dimensionality reduction, there is no definite rule for
dimensionality selection, which can not deal with non-linear data and
complicated calculation

LDA Supervise dimension reduction, which can be used to categorize tasks It is not suitable for dimensionality reduction of non-Gaussian
distribution samples, which may over-fit the data and reduce the
dimensionality to the k−1 dimension at most

LLE Less variable parameters, translation, rotation and other invariance,
retain the inherent structure of data, short loop is not sensitive to
ISOMAP

The data samples are required to be dense and locally linear, and the
excessive selection of parameters k and d will affect the effect of
dimension reduction and be sensitive to noise

ISOMAP It can extract the features with strong identification ability, and use the
manifold measuring line distance instead of Euclidean distance to better
retain the geometric structure of data

With topological instability, the influence of short loop requires the
manifold to be convex, otherwise deformation will occur, and the
problem of holes in the manifold cannot be solved

LE Local feature retention makes it less sensitive to isolated points and noise The classification information between samples will be ignored when
calculating the Euclidean distance of samples

T-SNE Define soft boundaries of local and global structures Large amount of calculation and long calculation time

MDS Better retention of differences between data High dimensional non-linear data cannot be processed, and there is no
unified standard to evaluate the quality of embedded dimension

KPCA PCA reconstruction in nuclear space is simple and can deal with
non-linear data outside PCA

The practical significance of extraction index is not clear, the calculation
amount is larger than PCA, and the projection of test sample on space
vector is complex

LPP The practical significance of extraction index is not clear, the calculation
amount is larger than PCA, and the projection of test sample on space
vector is complex

Susceptible to small sample size problems and failing to consider
available supervisory information

LTSA It is a good reflection of local geometry Unable to process large sample data, unable to effectively process new
data

NN Automatic learning of good features in data Many iterations are required, and the calculation is complex, so the
application will be limited

LTSA, local tangent space alignment; MDS, mulitiple dimensional scaling; KPCA, kernel PCA; T-SNE, t-distributed stochastic neighbor embedding.

At present, many researchers have devoted themselves
to the research of multi-classifier system for dance emotion
recognition. Bhosle and Deshmukh (2019) and Pan and Yang
(2021), the fusion of KNN, radial basis function (RBF), and
Bayesian network was proposed, and the accuracy reached
71.40%. Jacob and Mythili (2015) proposed to connect NBC
in layers to extract prosodic features such as pitch, energy,
duration, and zero crossing rate. In the case of two-layer
classifier connection, the recognition rate reached 83.5%, and in

the case of three-layer classifier connection, the recognition rate
reached 88.8%.

In addition, Li et al. (2022) proposed the concept
of ensemble learning, that is, training multiple classifiers
according to data samples to complete classification tasks.
These classifiers have certain complementary functions and
can improve the generalization ability of the system while
reducing errors. Albadr et al. (2021) extracted MFCC, line
spectral frequencies (LSF), polymeric ferroelectric liquid (PFL)
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and other features from linguistic data consortium (LDC)
emotion database, and integrated KNN classifier with Bagging
algorithm, thus improving the recognition rate. Lai et al.
(2020) extracted significant prosodic features from SAVEE
database and used RF algorithm to identify emotional labels,
with an average recognition rate of 66.28%. Under the same
experimental conditions, the average recognition rate was
improved by 13.78% compared with the linear discriminant
analysis algorithm. Compared with deep neural network, the
average recognition rate was improved by 6.58%. However, due
to the high computational complexity of the above methods, the
extraction efficiency of these methods does not improve much
when complex features are encountered.

To solve the above problems, we propose a novel dance
emotion recognition based on linear predictive Meir frequency
cepstrum coefficient and bidirectional long short-term memory
(LSTM). The new model can fully extract the dance emotion
feature. Meanwhile, it also reduces the amount of calculation.
Experimental results show that the proposed model achieves
93.45% recognition performance in public data sets.

This paper is organized as follows. In section “Related
works,” we give the related works for this paper. Section
“Proposed dance motion recognition method” detailed
introduces the proposed dance emotion recognition
model. Experiments and analysis are conducted in section
“Experiments and analysis.” There is a conclusion in section
“Conclusion.”

Related works

In recent years, emotion recognition, as an important
medium of human-computer interaction, has attracted more
and more attention from researchers. Human emotion has
always played an important role in human communication.
Emotion recognition refers to the analysis of the emotional
changes hidden in human conversation, which can identify
the possible emotional changes of speakers by extracting
the relevant features of speech and putting them into
neural network for classification (Jiang and Yin, 2021). In
reality, emotion recognition has a wide range of application
scenarios, such as customer service personnel in the process of
telephone communication with customers, through the emotion
recognition system to track the customer’s mood changes in
real time, so as to provide quality service more actively. Since
the expression of emotion depends on many factors, such
as the speaker’s gender, age, dialect, etc., a major challenge
for researchers is how to better extract distinguishing, robust,
and significantly influential features to improve the model’s
recognition ability.

At present, feature extraction methods are mainly divided
into two categories: one is to manually extract short-term
features from audio signals, such as Meir cepstrum coefficient,

pitch and energy, and then apply short-term features to
traditional classifiers, such as GMM, matrix decomposition and
HMM, etc. The other is automatic feature extraction using NN,
such as Convolutional Neural Network (CNN) (Feng, 2022),
auto-encoder, Recurrent Neural Network (RNN) (Ackerson
et al., 2021), LSTM (Liu et al., 2022), CNN + LSTM, etc. Gao
et al. (2021) and Mandić (2022) show that these methods have
achieved good results in speech classification tasks.

With the improvement of artificial intelligence and
hardware computing power, deep learning methods are widely
used in audio classification. Deep learning has excellent learning
and generalization abilities, and can extract task-related
hierarchical feature representation from a large number of
training samples. It has achieved great success in the research
work of automatic speech recognition and music information
retrieval. Huang et al. (2014), CNN was first used to learn the
salient features of dance emotion, and its excellent performance
was demonstrated in several benchmark data sets. Jiang et al.
(2020), one-dimensional CNN was used to preprocess the audio
samples in order to reduce noise and emphasize specific areas
of the audio file. Since audio signals could transmit contextual
information in the time domain, that is, the audio information
at the current moment was related to the information at
the previous moment, RNN and LSTM could be applied to
capture the time-dependent feature representation in emotion
recognition task. Alhagry et al. (2017) proposed a emotion
recognition method combining frame-level speech features
with attention and LSTM, which could extract frame-level
speech features from waveform to replace traditional statistical
features, so as to maintain the internal temporal relationship of
original speech through frame sequence. Cui et al. (2020), CNN
and LSTM were combined to mine the spatio-temporal features
of input sequences, which was also a common processing
method in speech emotion classification tasks. Jiang et al.
(2019), a convolutional RNN based on attention mechanism
was further proposed, and mel-spectrogram was used as the
input, which effectively improved the recognition ability of the
model. Li et al. (2020) used Bidirectional LSTM model and
attention-based CNN to build a network for learning features.
It combined with VGG16 for mel-spectrum pretreatment,
achieving a high recognition accuracy. But the model size
was relatively large, increasing the difficulty of training. These
models demonstrate the effectiveness of the combination of
attention mechanism and neural network. According to the
characteristics of dance emotion data set, linear prediction
Meier frequency cepstrum coefficient (LPMFCC) is used as
feature extractor. The extracted features are input into the
bidirectional LSTM network for training. Support vector
machine (SVM) is a task classifier, and the fusion of the above
approaches can improve the classification effect. This paper also
conduct a comparative experiment between SVM and other two
classifiers. The experimental results show that the end-to-end
model based on LPMFCC and SVM is very suitable for dealing
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with dance emotion recognition problem and can improve the
model recognition performance.

Proposed dance motion
recognition method

In this section, we detailed introduce the new dance motion
recognition method including LPMFCC and Bi-LSTM.

Linear prediction Meier frequency
cepstrum coefficient for feature
extraction

Linear prediction is a common method for motion analysis.
It can not only get the prediction waveform of dance signal,
but also provide a very good channel model. The main idea is
that in view of the correlation between the sampling points of
the dance signal, the sampled values of the speech signal at a
certain time can be approximated by the linear combination of
the sampled values at the previous time, so as to estimate and
predict the waveform of the dance signal. In order to determine
the LPC of dance samples, it is necessary to minimize the mean
square error between the linear prediction sample value and the
actual dance sample value. The LPC reflects the characteristics
of dance signal.

According to the above analysis, the LPC is calculated.
After preprocessing the dance signal, the p-order linear
prediction is to predict the sampling value s(n) at this
moment by using the linear combination of the sampling value
{s(n− 1), s(n− 2), · · · , s(n− p)} at the previous p times of the
dance signal. The obtained prediction signal ŝ(n) is:

ŝ(n) =
p∑

k=1

aks(n− k) (2)

where ak is the LPC, and its linear prediction error is:

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

aks(n− k) (3)

In order to optimize the prediction effect, it is necessary to
minimize the mean square value of the prediction error. The
mean square value of the prediction error is:

ε = E[e2(n)] (4)

In order to minimize the mean square value of the
prediction error, it is necessary to take the partial derivative of
the mean square value of the prediction error and make it zero,
as shown in Eq. 5.

∂[e2(n)]
∂ak

= 0, k = 1, 2, · · · , p (5)

We can obtain:

s(n− i)(n) =
p∑

k=1

aks(n− k)s(n− i) (6)

If we define:
φ(i, k) = s(n− i)s (7)

Then Eq. 6 can be changed into Eq. 8.

φ(i, 0) =
p∑

k=1

akφ(i, k) (8)

Obviously, the LPC ak can be obtained by solving the
equations obtained by Eq. 8. In this paper, the auto-correlation
method and Levinson-Durbin recursive method are used to
solve these equations.

Linear prediction Meier frequency cepstrum coefficient is
a new characteristic parameter combining LPC and MFCC.
LPC parameters reflect the linear characteristics of speech,
but have the disadvantage of being greatly disturbed by
environmental noise. The MFCC parameters reflect the non-
linear characteristics of dance, and transform the actual
frequency of dance to the Merle frequency that conforms to
the auditory characteristics of human ear. When the actual
frequency is less than 1 kHz, the relationship between Merle
frequency and actual frequency is approximately linear. When
the actual frequency is greater than 1 kHz, the relationship
between the Merle frequency and the actual frequency can be
approximated as a pairwise number. The general expression of
the relationship between Merle frequency and actual frequency
is:

fmel = 2595 · log10 ∗(1+ f /700) (9)

where fmel stands for Mel frequency and f stands for
actual frequency.

MFCC parameters are relatively sensitive to the low
frequency part of dance. However, ambient noise is in the
high frequency part of dance Therefore, MFCC parameters
have strong anti-interference ability and good robustness to
environmental noise. The LPMFCC parameter is actually the
LPC cepstrum parameter that converts the LPC parameter into
Meyer frequency.

The LPMFCC feature extraction first needs to extract the
LPC coefficient of dance. After preprocessing the dance signal
x(n) with pre-weighting, framing, and windowing, the LPC
coefficient xa(n) of each dance is calculated. The order of the
LPC coefficient must be equal to the number of voice samples
in a frame. Secondly, cepstrum calculation of LPC coefficients
on Mayer frequency is carried out. Fourier transform of LPC
coefficients is first carried out, then the corresponding discrete
spectrum Xa(k) of LPC coefficients is obtained through discrete
fourier transformation (DFT), that is,

Xa(k) =
N−1∑
n=0

xa(n)e−j2pnk/N , 0 ≤ k ≤ N − 1 (10)
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We take to square amplitude spectrum calculation for it
and get the discrete energy spectrum |Xa(k)|2. Where N is the
point number of the Fourier transform. Then, a set of Meir scale
triangular filters are used to filter the discrete energy spectrum,
and the logarithmic operation is performed on the output results
to obtain the logarithmic energy Za(m), the equation is as
follows.

Za(m) = In(
N−1∑
k=0

|Xa(k)|2Hm(k)), 0 ≤ m ≤ M (11)

The Hm(k) is a number of band-pass filters, and M is the
number of filters. Finally, the logarithmic energy is calculated by
discrete cosine transform, and the new characteristic parameter
LPMFCC is obtained.

Ca(n) =
M−1∑
m=0

Za(m) cos[
p× n(m+ 0.5)

M
] (12)

In summary, it can be seen that the calculation method
of LPMFCC refers to the calculation of MFCC. It carries out
cepstral operation on LPC coefficient at Meir frequency. The
specific extraction process is shown in Figure 2. In addition,
the LPMFCC feature Yi(i = 1, · · · ,T) extracted from dance
signal Si is denoted as Y = {Y1, · · · ,TT}. The average feature
vector Ŷ is used to represent the features of dance signal S,
where Ŷ = 1

T
∑T

t=1 Yi and T represent frame number of dance
signal S.

Bi-long short-term memory for feature
training

With the continuous development of deep learning, the
structure of NN is becoming more and more complex.
Compared with the simple feed-forward NN in the past,
there are both feed-forward and internal feedback connections
between the hidden layers of RNN. RNN can process sequence
data well, but there are problems of gradient disappearance
and gradient explosion. The gated recurrent unit in LSTM
can solve the gradient problem well, but LSTM only uses the
previous moment information, so the prediction result is not
very accurate. Bi-LSTM makes use of both past and future
information (Marini et al., 2021), so that the prediction results of
the network are more accurate. Therefore, Bi-LSTM is selected
in this study to extract dance emotion time series features.

Only extracting time series information cannot represent
dance emotion well. Therefore, convolution operation is
used to extract dance spatial information in this study.
Combining temporal and spatial information to represent
emotion can make the prediction result more ideal.
The attention mechanism gives different attention to
frame features from different moments, and reduces the

computational burden greatly. Therefore, this study constructs
a new model SA-Bi-LSTM for dance emotion recognition
based on key technologies such as attention mechanism,
skip connection and masking operation, as shown in
Figure 3.

The model has 8 layers including 2 fully connected
layers, convolution layer, jump layer, masking layer, Bi-LSTM
layer, attention layer, and pooling layer. The full connection
layer mainly extracts common features of dance signals.
Convolutional layer extracts emotional spatial features of
dance. The jump layer fuses the features extracted from the
full connection layer with the features extracted from the
convolution layer, and it solves the gradient problem well. The
main function of the masking layer is to make the value 0 in the
data not participate in the calculation and reduce the calculation
amount. Bi-LSTM extracts the time series information of dance
emotion. The attention layer assigns weights according to the
contribution degree of different time series features to emotion.
The pooling layer calculates the weight of the entire dance
emotion sequence.

The output h1
j of the first fully connected layer of SA-Bi-

LSTM model is calculated as follows:

h1
j = f (

d∑
i=1

w1x+ b) (13)

where b = [b1, b2, · · · , b36]
T is the bias. x is the 36-dimensional

input eigenvector, that is, x = [x1, x2, · · · , x36]
T . w1

ij is the
component of the weight matrix w1, which represents the weight
matrix of the i-th node of the input layer connected to the j-th
node of the first full connection layer. The weight matrix w1 is
defined as w1

= [w1
ij]

T
i×j . f (·) is the LeakyReLU function.

In this model, the convolution layer acts as a local feature
extractor. When the original dance data is transferred to the
convolution layer, it will carry out convolution operation with
the convolution kernel, and then generate the feature graph
through the dot product operation between the convolution
kernel and the input. In the two-dimensional convolution layer,
an input signal x(i, j) is convolved with the convolution kernel
w(i, j) with size (i, j) to obtain z(i, j). In this paper, the random
initialization is used to set the convolution kernel.

z(i, j) = x(i, j)× w(i, j)

=

a∑
s=−a

b∑
t=−b

x(s, t) · w(i− s, j− t)
(14)

Similar to human selective vision, the attention mechanism
can sift through a large amount of information for important
information. The attention mechanism works by assigning
different numerical weights to each component of the
input sequence x = [x1, x2, · · · , xn]. It gives more weight
to important components and less weight to unimportant
components. The weight of the component is obtained through
the training model, and the conditional probability of the i-th
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FIGURE 2

Feature extraction process of LPMFCC.

FIGURE 3

SA-Bi-LSTM network structure.

component of the given training parameter matrix W and input
sequence x is calculated by the Softmax function, which is
mathematically expressed as:

ai = exp(f (xiW))/
∑n

j=1
exp(f (xjW)) (15)

where f (·) represents the scoring function, which is jointly
determined by the training parameter matrix W and the input
sequence x, namely,

f (x,W) =WTx (16)

Then, the weighted average sum of the input sequence is
calculated to obtain the attention value of the entire sequence,
which is mathematically expressed as:

attention(x,W) =

n∑
i=1

aixi (17)

The output of the skip layer is used as the input of the
masking layer. Masking operation ym is calculated by:

ym = Mask(Fc, 0) (18)

In the Eq. 18, the value 0 in Fc is excluded from calculation,
which can reduce the amount of calculation.

The output of the masking layer is used as input to the Bi-
LSTM layer. In Bi-LSTM layer, the input of the current moment
t is o3

conv, and the output ht is:

ht = ot2 tanh(Ct) (19)

Ct = Ct−12ft + C̃t2it (20)

where Ct is the update state of memory unit at time t. ft is the
output of t time forgetting gate. it is the output of the input gate
at time t. ot is the output of the output gate at time t.
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The input of the Bi-LSTM layer is used as the input of the
attention layer. In the attention layer, the weight of attention
parameters of each frame is calculated, namely:

α = Soft max(u · yB) (21)

where, “.” stands for dot product operation. u is a 256-
dimensional vector. yB is the output of the Bi-LSTM layer and
the probability is calculated by the Softmax() function. The
eigenvalue corresponding to the maximum probability is the
target that the attention mechanism should pay attention to.

The pooling layer receives input from the attention layer and
calculates the weight zp of each sequence, that is:

zp = α · yB (22)

At the output layer of SA-Bi-LSTM network model,
probabilities are calculated and classified by Softmax() function:

ynk = Soft max(zp) (23)

To find the optimal weight and bias, the SA-Bi-LSTM
network is trained using the cross entropy loss function. The
cross entropy loss function LCE can be expressed as:

LCE = −
1
N

∑
n

∑
k

tnk log ynk (24)

where N is the total number of samples. n is the n-th sample.
k = 0, 1, · · · , 6 is the k-th class. tnk is the sample label. ynk is the
output of SA-Bi-LSTM network and represents the probability
that the n-th sample belongs to the k-th class.

To solve the problem of linear indivisibility of low-
dimensional space, SVM uses kernel function to map data from
low-dimensional sample space to high-dimensional feature
space, and then seeks a hyperplane in the feature space to achieve
linear indivisibility of samples. The non-linear separable SVM
optimization problem can be described as:

min
w,b,ξ
{0.5||w||2 + C

L∑
i=1

ξi} (25)

yi{w · xi + b} ≥ 1− ξ (26)

where x is the feature vector. yi ∈ [+1,−1] is the category label.
w is the weight vector. b is the classification threshold vector. C
is the penalty factor. ξi is the relaxation variable. L is the number
of training samples. λi is Lagrange factor. K(xi, x) is the kernel
function. Radial basis function is selected as the kernel function
of the model in this paper, and the equation is as follows:

K(xi, x) = exp{−γ||xi − x||2} (27)

Weights updating

In this paper, the classical back-propagation error (BP)
algorithm is used to update the weights of nodes at each layer

of the proposed network. The main idea of back propagation is
to use the error between the output result of neural network and
the output layer to calculate and adjust the weight of the leading
layer in the output layer. Then, the error estimate between the
output of the neural network and the training target is used to
update the connection weights of the NN in the previous layer.
In this way, the error selection is modified layer by layer from
the output to the input, and the connection weights of each
neural network layer are obtained. The error of each layer is
used to modify the corresponding connection weight matrix.
The gradient descent algorithm is usually used for training. We
define the output error of neuron i when it selects n generations
as shown in Eq. 28

ei(n) = di(n)− yi(n) (28)

where di(n) is the target output vector. yi(n) is the actual output
vector of neuron i. If the error of neuron i is regarded as the
instantaneous value of energy 0.5e2

i (n), the sum of error energy
of all neurons in the output layer is the total error value of the
output neural network node. The calculation of the total error
value ξ(n) is shown in Eq. 29:

ξ(n) = 0.5
∑

i∈Y
e2

i (t) (29)

where Y is the number of neurons in the output layer.
Weight modification of the output layer: at time t, the

modified value 1W3
ij(t) of the connection weight between the

i-th neuron of the output layer and the j-th neuron of the hidden
layer z(t) in the neural network is shown in Eq. 30:

1W3
ij(t) = η · δi · zj(t) (30)

where η is the learning rate and zj(t) is the input signal of j-th
neuron in the output layer. δi is the local gradient, and the
calculation method is shown in Eq. 31:

δi = ei(t) · f ′(yi(t)) (31)

yi(t) is the actual output of the i-th neuron in the output layer.
Modification of the hidden layer z(t): at time t, the correction

1W2
jq(t) of the connection weights between the j-th neuron of

the hidden layer z(t) and the q-th neuron of the hidden layer x(t)
is shown in Eq. 32:

1W3
jq(t) = η · δj · xq(t) (32)

where, xq(t) is the input of the q-th neuron in the hidden layer.
δi is the local gradient, and the calculation method is shown in
Eq. 15:

δj(t) = f ′(zi(t)) ·
∑

i∈Z
δi ·W3

ij(t) (33)

Modification of input layer E(t): at time t, the correction
1W5

jq(t) of connection weights between the j-th neuron of
hidden layer z(t) and the p-th neuron of input layer E(t) is shown
in Eq. 34:

1W5
jq(t) = η · δj · ep(t) (34)
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TABLE 2 Performance comparison in ten model cross validation with SA-Bi-LSTM.

Dropout 1 2 3 4 5 6 7 8 9 10

0.7 66.47 59.92 64.60 63.66 60.86 64.60 62.73 59.92 48.71 58.99

0.6 63.66 63.66 64.60 69.27 66.47 66.47 66.47 72.07 59.92 66.47

0.5 72.07 66.47 67.40 59.92 70.20 67.40 64.60 69.28 57.12 68.33

0.4 71.14 69.27 64.60 72.07 69.27 73.01 70.20 73.01 53.38 72.07

0.3 73.01 68.33 68.33 73.01 65.53 69.27 69.27 68.40 61.79 72.07

0.2 71.14 67.40 67.40 70.20 73.01 73.01 67.40 74.88 60.86 68.33

0.1 72.07 67.40 71.14 74.88 73.01 67.40 69.27 72.07 59.99 76.75

0 72.07 68.33 67.40 74.88 65.53 70.20 66.47 75.81 59.92 69.27

Modification of the weight of memory layer xc(t): at time t,
the correction value1W4

qm(t) of the connection weight between
the q-th neuron of hidden layer x(t) and the m-th neuron of
memory layer xc(t) is shown in Eq. 35:

1W4
qm(t) = η · δq · xcm(t) (35)

where xcm(t) is the input of the m-th neuron in the memory
layer of the network, δq is the local gradient, and the calculation
method is shown in Eq. 36:

δq = f ′(xq(t)) ·
∑

i∈Q
δj(t) ·W2

iq(t) (36)

Experiments and analysis

Table 2 compares the performance of SA-Bi-LSTM network
on the emotional corpus of dance under different dropout
values.1 The Optimizer is Adam, Epochs = 200, Batch_size = 32.
The number of model cross validation (K_folds) is 10. In the
whole datasets, 60% for training, 20% for testing, and the
remaining 20% for validation. The evaluation indexes include
confusion matrix, accuracy, mean value, and variance.

The following conclusions can be drawn from Table 1.
First, the average performance of the model varies greatly for

different dropout values. For example, when the dropout values
are 0.1 and 0.7, the average recognition performance differs by
nearly 10%, suggesting that the choice of dropout is critical to
model performance.

Second, as the dropout value drops from 0.7 to 0.1, the
average performance of the SA-Bi-LSTM model increases. This
is because the larger the dropout value is, the more dance
emotion information is lost, resulting in a lower recognition
rate. But when the dropout value drops to 0, the model’s average
recognition performance drops by 1.31%, because the model
overfits the training data, making it difficult to predict the test
data. The loss function of the model is small in the training data
and the prediction accuracy is high, but the loss function is large
in the test data and the prediction accuracy is low.

1 http://www.bbci.de/competition/ii/#datasets

TABLE 3 Performance of SA-Bi-LSTM network model.

Dropout Training set Test set ACC Precision

0.7 66.47 66.47 66.47 71.03

0.6 73.24 72.07 73.01 75.65

0.5 89.13 72.07 85.72 85.89

0.4 92.17 73.01 88.33 87.72

0.3 94.97 73.01 90.58 92.31

0.2 94.97 74.88 90.95 91.68

0.1 96.37 76.75 92.45 94.11

0 89.13 75.81 88.90 89.01

Finally, the performance of SA-Bi-LSTM model varies
greatly in different model cross validation times. For example,
when the dropout value is 0.1, the recognition performance can
be as high as 76.75% and as low as 58.99% during 10 times
of cross-validation. In the cross-validation of other models, the
performance achieved is closer to 76.75%, so 58.99% is treated
as an outlier in post-processing.

Table 3 shows the confusion matrix of the SA-Bi-LSTM
model on a dance database. Each column represents the
true category to which each type of sample belongs. Each
row represents the probability that one type of emotion
is predicted to be another. The numbers on the diagonal
indicate the probability that the corresponding category is
correctly identified. This confusion matrix has the following
characteristics:

First of all, the probability of correct recognition on the
diagonal is more than 90.00%, indicating that each emotion
category has achieved good recognition performance. For
example, in the W emotion, 97.75% of the samples are correctly
predicted, 0.90% of the samples are correctly predicted as A
emotion, and 1.68% of the samples are correctly predicted
as F emotion. That is, in 127 emotion samples, 124 samples
are correctly predicted, and only 3 samples are predicted as
other emotion, which is a very considerable recognition result.
Secondly, although the recognition rate of F emotion reaches
90.25%, there is still a certain difference compared with W
emotion. A total of 4.34% of the samples are predicted to
be W emotion, indicating that F emotion and W emotion
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FIGURE 4

Line graph of SA-Bi-LSTM.

are easily confused. Finally, one type of sample may be easily
predicted as another, but the reverse is not necessarily true.
For example, 2.64% of the samples of N emotion can be
easily predicted as A emotion, but A emotion cannot be
predicted as N emotion.

Figure 4 is the line graph of SA-Bi-LSTM network
model. Where, the x-axis is the number of cross
validation, and the y-axis is the accuracy of test set.
This line chart shows the model accuracy varies with
the number of cross-validation and dropout values.
When dropout = 0.1, the model achieves the highest
performance at different cross-validation. In addition,
it can be seen that at the ninth cross-validation,
the model presents the lowest inflection point and
achieves the lowest performance under different
dropout values, which may be related to data set
division.

The performance of the SA-Bi-LSTM model on the
dance database under different dropout values is shown
in Table 4. It can be seen that when the dropout is
not used, the model needs too many parameters to be
trained, and the over-fitting phenomenon is serious. In other
words, the model has achieved good performance on the
training set and poor performance on the test set. When
dropout is used and the value is large, too much dance
emotion information is lost, resulting in a lower recognition
rate.

Overall, when dropout = 0.1, the model achieves optimal
performance on the test set, with an accuracy of 92.45%
and precision of 94.11%, indicating that when dropout = 0.1,
it not only prevents the over-fitting phenomenon, but most
features are not lost.

Finally, Table 5 presents the comparison results of different
methods in the field of emotion recognition in recent years.
The accuracy of these studies is not well, which is mainly
determined by the internal structure characteristics of dance

TABLE 4 Accuracy comparison with different models.

Model Accuracy/%

Support vector machine (SVM) (Sun et al., 2022) 57.61

SVM tree (Atila and Şengür, 2021) 72.92

CNN-LSTM (Shoeibi et al., 2021) 89.05

ACRNN (Tao et al., 2020) 94.78

A-BLSTM (Fujioka et al., 2020) 96.53

MHA (Nediyanchath et al., 2020) 96.58

SA-Bi-LSTM 97.96

TABLE 5 Confusion matrix with SA-Bi-LSTM.

W L E A F T N

W 97.75 0 0 0.90 1.68 0 0

L 0 95.17 1.34 0 0 0 3.81

E 0 0 93.59 2.28 0 2.28 2.29

A 1.56 0 3.01 95.76 0 0 0

F 4.34 1.52 1.52 1.53 90.25 0 1.52

T 0 1.72 0 0 0 96.88 1.72

N 0 5.17 0 2.64 0 1.38 91.25

Bold value denotes the best value with proposed method.

data. In addition, the quality of data annotation further
reduces the recognition accuracy of the data set. According
to the annotation rules, only when the judgment of the
emotion category contained in the audio clip is unanimously
evaluated by more than half of the experts, can the clip
be labeled. About 25% of the audio clips in the data set
can not be assigned to the emotion label, and less than
50% of the labeled clips can obtain unanimous evaluation
from all experts, which further illustrates the complexity of
human emotion expression and the subjectivity of emotion
evaluation. As can be seen from Table 5, compared with
other comparison methods, the recognition performance
of the proposed model in this paper is optimal on the
dance data set. The recognition performance of traditional
machine learning SVM is weaker than that of neural network.
Sun et al. (2022), a single SVM with low-level feature
set as input can obtain 57.61% accuracy. Fujioka et al.
(2020), the ability of extracting potential relationships from
original audio is far inferior to MHA-based models, and the
reduction of computing efficiency brought by the increase
of network depth is not conducive to its deployment in
mobile terminals. Although the network structure of the
model based on the manually extracted sound features such
as Mayer’s spectrogram is simpler than the previous model,
it is limited by the deviation of the artificial selection of
sound features and the problems of high dimension and small
scale of sample data. The model cannot mine the internal
potential features of the sound sequence according to the
characteristics of the specific dance emotion data set, and
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the generalization ability of the model is weaker than that of
the MHA-based model. The experimental results show that the
MHA-based model can effectively capture the internal temporal
and spatial relationships in the original sound sequence. SVM
as a classifier has a positive role in promoting the sound feature
classification of high-dimensional small-scale samples.

Conclusion

In this paper, a SA-Bi-LSTM model for dance emotion
recognition is proposed, which has eight hidden layers,
including two fully connected layers, convolution layer,
jump layer, masking layer, Bi-LSTM layer, attention layer,
and pooling layer. The convolutional layer in the model
can effectively extract low-dimensional features of dance
signals, and the attention mechanism can reduce the length
of sequence information, fully mine the spatio-temporal
structure information of dance signals, and further improve
the recognition accuracy of dance emotion classification by
combining SVM. The experimental results show that this
model has greater advantages than the model based on Mayer
spectrogram, because the input is original waveform and
there is no manual feature extraction step, which brings
convenience to the deployment of the model on the mobile
terminal. In the future, we will continue to optimize the model,
improve the accuracy of model recognition, and make the
model have a development and application prospect in the
mobile terminal.
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