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Introduction: Small target detection with remote sensing images is a challenging

topic due to the small size of the targets, complex, and fuzzy backgrounds.

Methods: In this study, a new detection algorithm is proposed based on the YOLOv5s

algorithm for small target detection. The data enhancement strategy based on the

mosaic operation is applied to expand the remote image training sets so as to diversify

the datasets. First, the lightweight and stable feature extraction module (LSM) and C3

modules are combined to form the feature extraction module, called as LCB module,

to extract more features in the remote sensing images. Multi-scale feature fusion is

realized based on the Res 2 unit, Dres 2, and Spatial Pyramid Pooling Small (SPPS)

models, so that the receptive field can be increased to obtain more multi-scale global

information based on Dres2 and retain the obtained feature information of the small

targets accordingly. Furthermore, the input size and output size of the network are

increased and set in di�erent scales considering the relatively less target features in

the remote images. Besides, the E�cient Intersection over Union (EIoU) loss is used

as the loss function to increase the training convergence velocity of the model and

improve the accurate regression of the model.

Results and discussion: The DIOR-VAS and Visdrone2019 datasets are selected in the

experiments, while the ablation and comparison experiments are performed with five

popular target detection algorithms to verify the e�ectiveness of the proposed small

target detection method.
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1. Introduction

With the development of remote sensing technologies, a large amount of remote sensing

images can be obtained from video satellites and unmanned aerial vehicles (UAVs) (Hu et al.,

2019; Zhang et al., 2019; Hou et al., 2020; Lu et al., 2020; Wang et al., 2020; Pei and Lu, 2022).

Recently, remote sensing image processing has attracted widespread attention, such as target

detection, classification, tracking, and surveillance (Jia, 2000, 2003; Guo et al., 2017; Wang et al.,

2018; Yin et al., 2020; Zhong et al., 2020; Jiang et al., 2021; Dong et al., 2022; Habibzadeh et al.,

2022; Ma and Wang, 2022; Pei, 2022). Particularly, target detection is a hot topic with remote

sensing images (TDRSIs), where the TDRSI has been widely applied in the fields of military,

transportation, forest survey, security monitoring, disaster monitoring, and so on (Zhang et al.,

2016; Han et al., 2017; Zhu et al., 2017). Therefore, TDRSI is a significant and challenging task

due to the small size of the targets, high speed detection, and high accuracy requirements (Zhang

et al., 2017; Dong et al., 2022).

Target detection aims to find all interested objects in the images, which has been studied

with the development of computer vision technologies in recent decades. Numerous algorithms,

especially convolutional neural networks (CNNs), have been widely employed for general target
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detection, such as SSD, YOLO, R-CNN, and Faster R-CNN (He et al.,

2016; Li et al., 2019, 2021; Zhong et al., 2020; Fan et al., 2021; Tu

et al., 2021; Dong et al., 2022; Mikriukov et al., 2022). For instance,

Lawal (2021) have proposed a modified YOLOv3 model to detect

tomatoes in complex environments. Wu et al. (2018) presented a

different scaled algorithm based on the Faster R-CNN to solve small-

scaled face detection. YOLOv3 network can be used for blood cell

recognition (Shakarami et al., 2021) while a YOLOv4 algorithm can

be used for oil well detection (Shi et al., 2021).

Considering general target detection, small target detection in

remote sensing images is more difficult due to several reasons (refer

to Figure 1) (Meng, 2012; Li, 2016; Du et al., 2018; Chen et al., 2021;

Liu et al., 2022). First, the scales of the remote sensing images may be

relatively large compared to the small target size or clustered targets

in the images. Moreover, the background of the remote sensing

images could be complex and fuzzy, sometimes even similar to the

target features. Third, there is not enough feature information of the

targets in one image, i.e., vehicles, pedestrians, and others have only

few pixels for object detection in the optical remote sensing images

(DIOR) (Li et al., 2020) and Visdrone2019 (Zhu et al., 2019) datasets.

Hence, a lot of methods have been developed specifically to

achieve small target detection in remote sensing images. For instance,

Lu et al. (2021) have proposed a single shot detection (SSD) to detect

the small target with complex background and scale variations. An

improved YOLOv3 model has been designed for ship detection in

remote sensing images with high accuracy and robustness (Xu, 2020).

In Wang J. et al. (2020), an end-to-end feature-reflowing pyramid

network has been proposed for multi-scale and multi-class object

detection. Furthermore, a novel cascaded rotating-anchor-assisted

detection network has been presented in Yu et al. (2022) to improve

ship detection accuracy with aerial images. Moreover, Huang et al.

designed a lightweight target detector to rapidly and accurately detect

small targets (Huang et al., 2022). A detection algorithm based

on the feature balancing and refinement network is developed to

successfully detect ships (Fu et al., 2020). A squeeze-and-excitation

YOLOv3 algorithm has been designed for small target detection in

remote sensing images with low computation costs (Zhou et al.,

2021). Moreover, Ling et al. (2022) have developed a new time-delay

feedback model to detect small target motion in complex dynamic

backgrounds. An indoor small target detection algorithm is described

in Huang L. et al. (2022) based on multi-scale feature fusion to

improve the accuracy and speed of the target detection.

Based on the above analysis, this study presents an improved

LCB-YOLOv5s detection algorithm for remote sensing images.

First, a new module comprising the lightweight and stable module

FIGURE 1

Examples of targets in remote sensing images.

(LSM) and cross-stage partial networks with three convolutions (C3)

structure module where these modules are combined to form the

feature extraction module, called as LCB module, is designed to

extract numerous features of small targets. Then, the Spatial Pyramid

Pooling Small (SPPS) module is developed to increase the weight of

these features in the spatial dimension. Moreover, the Duble Res2Net

(Dres2) module is used in the head to increase the receptive field so

as to obtain more multi-scale global information and realize fine-

grained feature extraction. In order to overcome the difficulty of

relatively few features, the input size of the network is increased with

different output feature map sizes. In summary, the contributions of

the paper are summarized as follows:

1) An LCB-YOLOv5 algorithm has been developed for small target

detection with remote sensing images. In the feature extraction

module, the LCB module is configured based on the LSM and

C3 modules to extract more features. Moreover, the SPPS and

Dres2 modules are introduced to increase the weight of the

features in the receptive field and so as to extract more multi-scale

global information.

2) In order to improve the accuracy of the small target detection, the

input size of the network is increased from 640 × 640 to 1,024 ×
1,024, and the output feature map size is set as 32 × 32, 64 × 64,

and 128× 128, respectively.

3) The EIoU function is employed as the loss function to increase

the training convergence velocity of the model and the regression

accuracy for the target detection.

The remainder of the paper is organized as follows. Section 2

describes the proposed method in detail. Experiments of the small

target detection with the selected datasets are performed and the

results are analyzed in Section 3. The conclusion is provided in

Section 4.

2. The proposed method

This section presents the details of the proposed method. As

shown in Figure 2, except for the first layer, the 3 × 3 convolutional

layers in the backbone of the YOLOv5s detection algorithm are

replaced with the LSMmodule. Since small targets have fewer features

than those large targets in the images, the SPPS module is designed to

increase the weight of these features in the spatial dimension. The

Dres2 module is further introduced in the head with the strategy

of multi-scale feature fusion to enhance the small target detection

performance. The input size of the network is also increased with
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FIGURE 2

The architecture of the developed LCB-YOLOv5s.

various output feature map sizes, while the EIoU loss function is

designed to increase the convergence speed.

2.1. Data augmentation

In general, the original training data have to be pre-processed

to meet the training requirement; hence, many data enhancement

strategies are employed to expand and diversify the remote sensing

images so as to improve the generalization ability of the trainedmodel

and to minimize the irrelevant characteristic information in the

training data. As shown in Figure 3, the mosaic operation is applied

to enrich the datasets, where four original images can be randomly

selected from a batch in the datasets to perform a flip, translate,

change the color gamut, and stitch the images such operations. Based

on the above data enhancement operations, the size of the images is

relatively close to the small targets, and the number of small targets

can be increased in the remote sensing images. Therefore, the small

target datasets can be expanded, which can effectively improve the

small target detection ability of the model. Accordingly, the demand

for GPU memory can be reduced and the training speed can be also

improved greatly.

2.2. Feature extraction module

In the remote sensing images, the sizes of the targets may

be small and the edges of the targets may be blurred. Hence, a

LCB feature extraction module is designed to improve the target

detection performance, as shown in Figure 4. Specifically, numerous

features of the small targets can be extracted using the LSM module.

The standard 3×3 convolution is used for feature extraction, and

some significant features of the original feature map are preserved

using maximum pooling. Then, the output feature map is enriched

by concatenation. Moreover, the C3 module can perform feature

extraction and fusion, where 1 × 1 convolution is applied to reduce

the dimension of the original feature map, and the feature map after

convolutional extraction is spliced as the output.

It is known that the conv + batch normalization + silu (CBS)

and conv + batch normalization + relu (CBR) modules are two

types of standard convolution modules. As shown in Figures 5A, B,

CBS and CBR utilize the convolution operation, batch normalization

(BN), and activation function, where the SiLU and the ReLU

are employed as the activation functions, respectively. It is noted

that the CBR module with the ReLU can reduce the amount

of calculation and eliminate the gradient diminishing, where the

activating function with ReLu can learn faster than the sigmoid or

tanh functions.

Figure 6 displays the proposed LSM module, mainly composed

of convolution and pooling branches. First, the 1 × 1 standard

convolution and 3 × 3 convolution are used to reduce the data

dimension and extract features, respectively. Then, the 1×1 standard

convolution is used once again to increase the data dimension.

Furthermore, the feature map is subsampled by 2 × 2 max pooling

and the number of channels is adjusted based on the 1 × 1 standard

convolution. Finally, the output is obtained based on the Concat

module with the above features. Compared to the traditional 3 × 3

convolution, LSM can obtain more abundant features. On the other

hand, LSM can preserve some significant features of the original

featuremap based on themaximum pooling. On the other hand, LSM

can enrich the feature map and merge it as the output.

The Res unit is a standard residual module, which is depicted

in Figure 7. The 1 × 1 standard convolution is used to reduce
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FIGURE 3

The procedure of the mosaic data enhancement.

FIGURE 4

The structure of the LCB module.

FIGURE 5

The schematic diagram of the standard convolution: (A) CBS module, (B) CBR module.

FIGURE 6

LSM module configuration.

the dimension, and the 3 × 3 convolution is used to extract

features. Then, the original information and feature information

after convolution are added as the output. The C3 module is used

for feature extraction and feature fusion, as described in Figure 8.

Hence, the rich semantic information and features are obtained to

convolve the upper layer feature map based on the Res unit and

the 3 × 3 convolution is applied to extract features. Then, 1 × 1

convolution is applied to reduce the dimension of the original feature

map, which is spliced with the convolved feature maps and used as

the output.

2.3. Feature fusion module

In order to improve the accuracy of the small target detection, the

Res2 unit module is designed (refer to Figure 9), where multigroup

3 × 3 convolutions are cascaded to enlarge the receptive field of

the network and the features of each group are fused. The Dres2

module is further designed based on the C3 module (refer to

Figure 10), where the original residual block is replaced with two

Res2 modules. Compared to the C3 module, the Dres2 module

can increase the receptive field to obtain more multi-scale global
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FIGURE 7

Res unit module.

FIGURE 8

C3 module configuration.

FIGURE 9

The configuration of the Res2 unit module.

FIGURE 10

The configuration of the Dres2 module.
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FIGURE 11

The configuration of the SPPS module.

information. Therefore, the Dres2 module is applied here to realize

fine-grained feature extraction.

As depicted in Figure 11, the SPPS module is a modified version

of the Spatial Pyramid Pooling (SPP) module in the network, where

the three groups of maximum pooling are 1 × 1, 3×3, 5 × 5, and

7×7. Since small targets have a relatively small proportion of pixels

in the remote sensing images, the effective feature information may

be difficult to extract. In order to overcome the above difficulty, the

SPPS module applies different sizes of the max pooling kernels, and

thus, the feature information of the small targets can be retained

accordingly since SPPS not only has the advantages of SPP but also

can improve the detection performance for small targets.

2.4. Input size of the network

The input image size of the YOLOv5 network is 640 × 640 and

the output size is 80, 40, and 20 in the prediction head. Compared

to the YOLOv5 algorithm, the input size of the network and the

predicted feature map are maximized to 1,024 and 256, and 128

and 64, respectively. Consequently, the input size of the network is

enlarged to overcome the limitation of less small target features in the

remote sensing images.

2.5. Loss function

Here, the IoU and GIoU Loss functions of the original YOLOv5

algorithm are first presented to analyze the deficiencies in small target

detection. Then, the EIoU Loss is introduced (Zhang et al., 2021),

where the GIoU Loss function refers to an improved intersection-

over-union (IoU). The IoU is used to denote the intersection ratio

of the prediction box (PB) and ground truth box (GB), which is

described as follows:

IoU =
PB ∩ GB

PB ∪ GB
, (1)

Moreover, the IoU Loss function is calculated as follows:

LIoU = 1−
PB ∩ GB

PB ∪ GB
. (2)

However, if there is no intersection between PB and GB, IoU Loss

is nearly zero, which can hardly be used to reflect their distance.

Moreover, the IoU Loss has a relatively slow convergence rate; hence,

theGIoU is introduced to avoid such a problem, calculated as follows:

GIoU = IoU −
Ac − U

Ac
, (3)

where Ac is the area of the smallest rectangular box including

both PB and GB simultaneously and U is the union of PB and GB.

Furthermore, the GIoU Loss can be expressed as follows:

LGIoU = 1− GIoU = 1− IoU +
Ac − U

Ac
. (4)

It is noted that GIoU Loss can be optimized for situations where

the PB and GB are not overlapped. Nevertheless, if these two boxes

are positioned relatively close, the values of the GIoU and IoU Loss

are also approximately equal. In order to solve the above problem,

the EIoU Loss is used as the loss function of LCB-YOLOv5. The EIoU

and the EIoU loss functions are calculated as follows:

EIoU = IOU −
ρ2

(

b, bgt
)

c2
−

ρ2
(

w,wgt
)

c2w
−

ρ2
(

h, hgt
)

c2
h

, (5a)

LEIoU = LIoU + Ldis + Lasp = 1− IOU +
ρ2

(

b, bgt
)

c2
+

ρ2
(

w,wgt
)

c2w

+
ρ2

(

h, hgt
)

c2
h

, (5b)

where cw and ch are the minimum widths and heights of the

outer box covering two boxes, respectively. Compared with IoU and

GIoU Loss functions, the distance between the target and anchor, the

overlap rate and penalty items are considered based on the EIoU Loss

function. Therefore, the regression accuracy for detection is more

stable and the training convergence speed is faster.
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3. Experimental results and analysis

3.1. Experimental settings

The proposed LCB-YOLOv5s network is trained with the

RTX 3090, 24G memory, and Ubuntu 20.04.4 operating system,

while the proposed network and the comparison algorithms are

programmed in Python 3.8 and Cuda 11.3. The hyperparametric

configuration is displayed in Table 1. In total, two datasets are

selected for the experiments. The first is the VisDrone2019 dataset,

which was collected by the Aiskyeyee team in the Machine

Learning and Data Mining Laboratory of Tianjin University.

It includes 10 categories comprising more than 2.6 million

annotation boxes. The targets in the VisDrone2019 dataset are

pedestrians, people, bicycles, cars, vans, trucks, tricycles, awning-

tricycles, buses, and motors. Moreover, the training and validation

sets contain 6,471 and 548 remote sensing images, respectively.

The other dataset is the DIOR remote sensing dataset, which

contains 20 categories with 23,463 remote sensing images and

192,472 examples.

In the experiments, vehicles, ships, and airplanes are

selected as the targets from 1,673 remote sensing images.

Furthermore, a new dataset called the DIOR-VAS dataset

is reconfigured including three types of targets: vehicles,

airplanes, and ships. As shown in Table 2, the training

and verification sets contain 1,334 and 339 remote sensing

images, respectively.

3.2. Evaluation metrics of the experiments

During the experiments, three common evaluation metrics are

used to evaluate the effect of the proposed method, mean average

precision (mAP), precision (P), and recall (R). Specifically, P and R

are calculated as follows:

P =
TruePositives

TruePositives+ FalsePositives
, (6a)

R =
TruePositives

TruePositives+ FalseNegatives
, (6b)

where TruePositives denotes the targets correctly classified as

positive examples, FalsePositives denotes the targets incorrectly

TABLE 1 Hyperparametric configuration of the experiments.

Hyperparametric Epochs Batch size Learning rate Momentum Weight decay

Configuration 150 16 0.01 0.973 0.0005

TABLE 2 Details of the VisDrone2019 and DIOR datasets.

Datasets Categories Totaling images Training set Validation set

VisDrone2019 10 8,629 6,471 548

DIOR 20 23,463 5,862 5,863

DIOR-VAS 3 1,673 1,334 339

TABLE 3 Comparison of the proposed method and other approaches based on the Visdrone2019 dataset.

Models P (%) R (%) mAP (%) Car Bus Pedestrian

YOLOv5 42.2 31.5 30.5 0.72 0.38 0.39

PicoDet 35.7 30.5 28.2 0.75 0.33 0.38

YOLOv3 40.5 26.8 25.9 0.65 0.28 0.32

YOLOv3-SPP 42.5 25.1 25.4 0.65 0.26 0.32

YOLOv7 39.5 30.3 26.2 0.72 0.33 0.34

LCB-YOLOv5s 56.2 46.7 47.9 0.86 0.65 0.59

TABLE 4 Comparison of the proposed method with other approaches based on the DIOR-VAS dataset.

Models P (%) R (%) mAP (%) Vehicle Airplane Ship

YOLOv5 93.3 85.8 90.4 0.75 0.99 0.96

PicoDet 81.6 29.3 55.9 0.53 0.54 0.59

YOLOv3 92.7 84 88.6 0.74 0.99 0.93

YOLOv3-SPP 92.9 83.9 88.6 0.74 0.98 0.94

YOLOv7 92.5 85.8 90 0.74 0.99 0.96

LCB-YOLOv5s 93.4 88.6 93 0.84 0.99 0.96
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FIGURE 12

Comparison of the target detection of six di�erent models on the Visdrone2019 dataset.

classified as positive examples, and FalseNegatives denotes the targets

incorrectly classified as negative examples.

Additionally, AP is the average classification accuracy of a

category in the datasets. It is calculated as follows:

AP =
∫ 1

0
P (R) dt (7)

where P (R) is the P–R curve to be used to calculate the AP. Based

on the AP, themAP can be obtained as follows:

mAP =
∑N

n=0 APn

N
(8)

where N is the number of the detected target categories.

3.3. Experimental results and analysis

Table 3 displays the comparison results of our proposed method

with the other five approaches, Mets = {YOLOv5, YOLOv3,

YOLOv3-SPP, YOLOv7, PicoDet}, on the Visdrone2019 dataset. The

proposed method has achieved significantly higher performance

than the other methods, with P, R, and mAP as 56.2, 46.7, and

47.9, respectively. Particularly, the mAP of the proposed method

is 17.4, 19.7, 22, 22.5, and 21.7 higher than those of the methods

in Mets one by one. Furthermore, the P of the LCB-YOLOv5s is

higher by {14, 20.5, 15.7, 13.7, 16.7} in comparison to those of

methods in Mets. Moreover, the R of the LCB-YOLOv5s is higher

by {15.2, 16.2, 19.9, 21.6, 16.4} than those of the methods in Mets

in turn. However, the PicoDet method has a relatively weaker

performance in the DIOR-VAS dataset. Furthermore, in Table 3,

the LCB-YOLOv5s exhibits much better detection performance

than the other five methods for bus and pedestrian detection and

slightly better detection performance than the rest methods for

plane and ship detection. In general, LCB-YOLOv5s can achieve

higher small target detection performance with a reduced false

detection rate.

Table 4 illustrates the comparison results of the proposed

method with the other five methods on the DIOR-VAS dataset,

where vehicles, airplanes, and ships are selected as the small

targets. The proposed method exhibits a better performance

than the other methods, with mAP, P, and R of 93, 93.4, and

88.6, respectively. Particularly, the mAP, P, and R of YOLOv5s

and YOLOv7 are 90.4, 93.3, and 85.8 and 90, 92.5, and 85.8,

respectively. Thus, the mPA and R of the YOLOv3 and YOLOv3-

SPP are lower by 4.4, 4.6, 4.4, and 4.7, respectively. The R of

the YOLOv3 and YOLOv3-SPP is also relatively lower. Figure 12

displays the target detection results of the six algorithms on the

Visdrone2019 dataset, where the orange, green, and red boxes

indicate the detected targets of cars, buses, and pedestrians,

respectively. Compared to the other five algorithms, LCB-YOLOv5s

can accurately detect more targets, especially buses and pedestrians,

although the prediction boxes are densely distributed in the leftmost

subfigure of Figure 12. This demonstrates that the proposed LCB-

YOLOv5 algorithm has an advantage over the other algorithms

for small target detection. The target detection comparison of

the six algorithms on the DIOR-VAS dataset is illustrated in

Figure 13, where the orange, green, and red boxes are the

detection results of the ships, airplanes, and vehicles. It is clear

that more expected targets can be detected via LCB-YOLOv5s

compared to the other methods. Additionally, Figures 14, 15

display the mAP (threshold is 0.5) of the six algorithms on the

Visdrone2019 and DIOR-VAS datasets. The visual results of the

original YOLOv5s and the LCB-YOLOv5s are demonstrated in

Table 5. It can be intuitively seen that the proposed LCB-YOLOv5

algorithm has a better performance and higher robustness for
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FIGURE 13

Comparison of the target detection of six di�erent models on the DIOR-VAS dataset.

small target detection in remote sensing images. In particular,

the LCB-YOLOv5s have a stronger ability in dense small target

detection.

3.4. Results of ablation experiments

Ablation experiments are further performed to verify the

optimization performance of each improved module. The EIoU

loss function, LCB module, SPPS module, and Dres2 Module are

introduced in the original network to construct the improved Model

1, improved Model 2, improved Model 3, and improved Model 4,

respectively. In the improved model 5, the input size is 1,024, while

all the mentioned modifications above are applied in the improved

Model 6. The ablation results with the improved modules are listed

in Table 6.

Compared with the original YOLOv5s network, the mAP of the

model is improved by 1.3 percentage points in IM1, and the mAP of

the models with IM3 and IM4 is increased by 0.9 and 0.6 percentage

points, respectively. Moreover, the mAP of the model is improved

by 11.8 percentage points with IM2. Meanwhile, when the input

size is 1,024, the mAP of IM5 is also improved by 12.8 percentage

points. Furthermore, when these six improvements are combined in

IM6, the mAP is increased by 17.4 percentage points. The ablation

experimental results strongly demonstrate that the proposed LCB-

YOLOv5s model has a higher detection performance for small target

detection with remote sensing images.

4. Conclusion

In this paper, an improved detection algorithm, called LCB-

YOLOv5s, has been developed to detect small target objects in
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remote sensing images. The proposed algorithm comprises the LCB

module via the combination of LSM and C3 modules, the SPPS

module, and the Dres2 module in the feature extraction module to

achieve multi-scale feature fusion. Furthermore, the input size of

the network is increased and the output feature map size is set in

various scales to improve the small target detection performance.

Experiments have been performed on the DIOR and Visdrone2019

datasets to compare with other methods to verify the effectiveness

of the proposed method for small target detection. Future work

will continue to investigate small target detection and tracking

under special and harsh circumstances with more general remote

sensing datasets.

FIGURE 14

The mAP (threshold is 0.5) of the proposed method in comparison with the other five detection algorithms on the Visdrone2019 dataset.

FIGURE 15

The mAP (the threshold is 0.5) of the proposed method in comparison with the other five detection algorithms on the DIOR-VAS dataset.
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TABLE 5 Visual results of the small target detection on Visdrone2019 dataset.

Categories Visual results of YOLOv5s Visual results of LCB-YOLOv5s

The original images

Backbone

Prediction head 1

Prediction head 2

Prediction head 3

TABLE 6 Results of ablation experiments.

Model EIOU LCB SPPS Dres2 Input
1,024

mAP Improvement
(mAP)

LCB-YOLOv5s × × × × × 30.5 -

Improved Model 1 (IM1)
√

× × × × 31.8 +1.3

Improved Model 2 (IM2) ×
√

× × × 42.3 +11.8

Improved Model 3 (IM3) × ×
√

× × 31.4 +0.9

Improved Model 4 (IM4) × × ×
√

× 31.1 +0.6

Improved Model 5 (IM5) × × × ×
√

43.3 +12.8

Improved Model 6 (IM6)
√ √ √ √ √

47.9 +17.4
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