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In a complicated forest environment, it is usual to install many ground-fixed

devices, and patrol personnel periodically collects data from the device to

detect forest pests and valuable wild animals. Unlike human patrols, UAV

(Unmanned Aerial Vehicles) may collect data from ground-based devices.

The existing UAV path planning method for fixed-point devices is usually

acceptable for simple UAV flight scenes. However, it is unsuitable for

forest patrol. Meanwhile, when collecting data, the UAV should consider

the timeliness of the collected data. The paper proposes two-point path

planning and multi-point path planning methods to maximize the amount

of fresh information collected from ground-fixed devices in a complicated

forest environment. Firstly, we adopt chaotic initialization and co-evolutionary

algorithmto solve the two-point path planning issue considering all significant

UAV performance and environmental factors. Then, a UAV path planning

method based on simulated annealing is proposed for the multi-point path

planning issue. In the experiment, the paper uses benchmark functions to

choose an appropriate parameter configuration for the proposed approach.

On simulated simple and complicated maps, we evaluate the effectiveness

of the proposed method compared to the existing pathplanning strategies.

The results reveal that the proposed ways can effectively produce a UAV

patrol path with higher information freshness in fewer iterations and at a lower

computing cost, suggesting the practical value of the proposed approach.

KEYWORDS

UAV, fixed-point path planning, multi-point path planning, two-point path planning,
co-evolutionary algorithm
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1 Introduction

Many ground-based fixed-point Internet of Things devices
(also called IoT equipment) must be deployed during forest
pest and disease prevention and rare species monitoring in
order to collect ecological factors, various types of images,
and other crucial data. Due to the fact that these devices are
typically used in forests, which have high crown densities,
complex environments, and no internet access, manual methods
are typically used to regularly patrol fixed-point equipment in
the forest and collect perception data. Manual data collection
during patrols is time-consuming, ineffective, and increases
patrol costs. Perceived data is frequently not obtained in a
timely manner, leading to data quality issues like data loss. This
is especially true when fixed-point equipment is deployed in
challenging mountain environments. These have a significant
impact on the precision of disaster and other warnings, as well
as forest protection.

The UAV (unmanned aerial vehicle) has a wide load
platform, high cruising efficiency on fixed routes, and other
features. The data collected by the ground fixed-point
equipment in the fixed-point cruise mode can be obtained in
complex mountain environments by the multi-source sensor
equipment mounted on the UAV, and the data can then be
stored in the data center for further processing and analysis
when the UAV returns. UAV patrol has gradually taken the place
of manual patrol in maintaining some national forest parks and
keeping an eye on the area close to cities.

Path planning allows for the prompt collection of data from
fixed-point equipment deployed in the challenging mountain
environment, solving the issue of manual data collection.
Under a variety of constraints, including the performance of
the UAV, its maximum flight length, potential environmental
threats, flight altitude, maximum turning angle, and maximum
climb/dive angle, traditional UAV path planning can be seen
as a feasible flight path from the starting point to the target
point. Numerous researchers, including (Yingkun, 2018; Hu
et al., 2020; Kiani et al., 2022), have investigated UAV cruise
problems and track path planning techniques and proposed a
range of models and methods for urban security, agricultural
patrol, and other scenarios. These techniques, however, typically
only work for the starting and stopping points of a fixed-point
track problem. The requirements of the forest point patrol data
collection are not met because the scenario where the navigation
needs to cover multiple points is not taken into account. The
accuracy and timeliness of the data used in wildlife monitoring,
forest disaster warning, and other specialized fields are also
based on how quickly the patrol collects data. As a result, when
the UAV is on patrol, the timeliness of data collection should
also be prioritized.

Therefore, this paper focuses on the optimal trajectory
planning problem of UAV fixed-point data collection in complex
forest environments, with the goal of effectively obtaining

a feasible trajectory planning path that satisfies fundamental
requirements like flight performance and equal-height obstacle
avoidance through the co-evolution method with domain
adaptation. The perception data from all types of ground fixed
point equipment has a significant time sensitivity when it comes
to data collection during the forest patrol process. To assess how
timely UAV data collection is, the age of information (AoI) index
was created. As a result of AoI’s critical importance in patrol
planning, AoI was included in the goals of UAV patrol planning.
The paper’s specific contributions consist of:

(1) A path planning method for UAV fixed-point collection
of forest floor monitoring data with comprehensive navigation
performance, AoI, and other factors in complicated forest
environments is provided. This method is targeted at time-
sensitive forest monitoring tasks such as wildlife patrol, forest
fire prevention, and pest monitoring.

(2) The plan took into account a wide range of variables,
including the UAV data collection mode, the patrol or
monitoring information timeliness, the UAV navigation posture,
the obstacle avoidance in complex environments, and others. It
methodically abstracted the objectives and constraints (terrain,
threat, etc.) of UAV path planning in various intricate scenarios.

(3) An algorithm for co-evolving UAV patrol paths through
complex forests is put forth. The algorithm continuously
improves the dominant strategy applicable to the current
scene from multiple evolutionary strategies through enhanced
learning, then solves the UAV patrol flight path in an efficient
and adaptive manner based on the characteristics of the patrol
environment and AoI requirements.

2 Related work

Unmanned aerial vehicles path planning is a crucial
component of UAV system design and serves as the foundation
for UAV edge calculations, networking data transmission, and
UAV flight control (Pehlivanoglu and Pehlivanoǧlu, 2021). At
the moment, there are two main areas of UAV path planning
research. The first step is to use domain problem modeling to
attempt an accurate description of the domain characteristics
and essential components of UAV solutions. The second is to
design a UAV path planning algorithm that is efficient and
satisfies the domain modeling characteristics.

Environment modeling and UAV modeling are
two common examples of domain problem modeling.
Environmental modeling is primarily used in UAV application
scenarios, such as those involving city, mountain, and weapon
threat models. Maximum flight height, maximum deflection
angle, maximum pitch angle, maximum energy power, and
longest flight path are among the flight characteristics that are
primarily taken into account in UAV modeling.

Many researchers have adopted AoI as a crucial metric
to assess the timeliness of data collection in UAV modeling
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in recent years because the perception data collected by UAV
should be delivered to the data collector as soon as possible
(Abbas et al., 2022). In 2012, (Kaul et al., 2012) first put forth
the conception of AoI and described it as the interval from the
time of packet generation to the present. Following that, many
academics studied UAV path planning based on AoI and tailored
to the needs of the field (Abd-Elmagid et al., 2019). Jointly
optimized UAV flight trajectory using deep reinforcement
learning framework, aiming for the least weighted sum of
AoI (Jia et al., 2019) aiming to minimize the average AoI of
sensors, optimizing UAVs’ flight trajectory and data collection
mode through dynamic programming algorithms (Liu et al.,
2018) took the maximum AoI optimal trajectory, averaged AoI
optimal trajectory as targets, and used a dynamic programming
algorithm and genetic algorithm to design the path planning of
UAV in two-dimensional space (Tong et al., 2019) continued
their research based on (Liu et al., 2018), using the nearest
neighbor propagation algorithm to form sensor networks by
clustering, reducing the influence of sensor size on algorithm
efficiency through the specific collection points of each sensor
network. Then designing the ideal trajectory using the dynamic
programming algorithm (Liu et al., 2021) investigated the
data collection technique used by unmanned aerial vehicles in
wireless sensor networks based on AoI.

According to all of the aforementioned studies, AoI-based
UAV path planning modeling has emerged as the most effective
way to address the issue of the timing of domain perception
data collection. The aforementioned studies, however, mainly
concentrate on two-dimensional or approximate plane scenes.
Complex forest scene patrol scenes cannot be directly applied
to the relatively simple constraints taken into account in scene
abstraction and the formation of target routes. Building a
domain problem model for effective data collection from multi-
point equipment at various altitudes based on AoI and complex
conditions such as geographic factors, UAV performance, and
UAV collision remains a necessary challenge for complex
forest scene patrol.

In the aspect of UAV path planning algorithm design,
heuristic algorithm or bionics algorithm has become the
leading technical route. For example, Neural Networks (NNs)
(Yan et al., 2020; Jin et al., 2022b; Shi et al., 2022; Xie
et al., 2022), Dijkstra Algorithm (Maini and Sujit, 2016), Ant
Colony Algorithm (ACO) (He et al., 2013), Artificial Potential
Field Method (APF) (Chen et al., 2016a), Particle Swarm
Optimization (PSO) (Zhang et al., 2013), Artificial Bee Colony
(ABC) (Goel and Singh, 2013), Simulated Annealing Algorithm
(SA) (Turker et al., 2015), and Genetic Algorithm (GA) (Xiao-
Ting et al., 2013; Wang and Chen, 2014). Some scholars
improved the above methods to build a more efficient UAV

FIGURE 1

Unmanned aerial vehicles (UAV) forest fixed-points patrol diagram. Panel (A) is the top view of two-point path planning, panel (B) is the route
map of multi-point path planning, and panel (C) is the top view of route map of multi-point path planning.

FIGURE 2

Path smoothing, generate a number of waypoints (red points) between the start point and end point, then generate a large number of
intermediate points (black points) based on path smoothing, and finally connect them into a smooth curve.
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path-solving algorithm. Pehlivanoglu (2012) designed a multi-
frequency vibration genetic algorithm (MVGA) that supports
the Voronoi diagram to solve the problem of UAV path planning
(Yang and Yoo, 2018) designed a UAV flight path planning
method based on information such as no-fly zone, geographical
positioning conditions, and sensor deployment by using a
multi-objective biologically-inspired algorithm (Nikolos and
Tsourvelouds, 2009) combined the traditional genetic algorithm
and the improved proliferation genetic algorithm to design a
path planner for the autonomous navigation of UAVs (Chen
et al., 2016b) improved the path planning method through
improved Particle Swarm Optimization (PSO) algorithm and
Genetic Algorithm (GA) (Liu et al., 2016) solved the PSO
algorithm’s efficiency problem in solving path planning from
multiple perspectives, such as particle search space limitation
and sensitivity.

The aforementioned research demonstrates that the key
to increasing the effectiveness of UAV path planning is
optimizing a single evolutionary strategy, coordinating multiple
evolutionary strategies, and adapting to solve problems.
However, in a complex forest environment, the UAV patrol path
must deal with the accuracy of fixed point equipment’s data

collection and ensure that UAV performance consumption and
obstacle avoidance in a three-dimensional complex forest scene.
The overall optimization algorithm structure, collaborative
method of calculation strategy, algorithm execution efficiency,
and domain problem ability must still be combined to create
a UAV path planning algorithm with high problem execution
efficiency, robustness, and scene generalization ability.

3 Description of problem

3.1 Scene modeling

The actual patrol path of UAVs in a complex forest
environment can be planned in two steps to gather data on
ground equipment dispersed in various locations (Figure 1).
In the first stage, a smooth multi-track flight path was built
between the data collection points of two fixed points on
the ground by combining flight obstacle avoidance, flight
energy consumption, and other factors. The optimal path
between every two points is successively obtained in the
second stage, and the patrol path—capable of patrolling all

FIGURE 3

Multi-point diagram.
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the ground equipment at the points—is constructed on the
basis of the smooth path between the points constructed in
the first stage. The first stage, which will be abstracted in

TABLE 1 GASA coevolution algorithm pseudo-code to solve the
optimal path between two points

(
vi, vj

)
.

Input: The start point start point vi and end point vj

Output: An optimal path according to cubic B-spline curve

1 Initialize map parameters and set GASA algorithm parameters

2 Initialize population based on logistic Chaos

3 Evaluate population and keep global_best

4 for i from 1 to iterMax do

5 if a random number of 0–1 is less than the GA selection
probability then

6 Select out superior individuals for crossover operations

7 Select some individuals for mutation operation

8 Optimize population

9 Evaluate population and update global_best

10 Converge populations and update strategy selection
probability

11 else

12 Randomly select a particle X0

13 while T > Tf do

14 T = k*T

15 for m from 1 to L do

16 Generate a new individual Xnew based on X0

and evaluate (Xnew)

17 if the result of Xnew is better than global_best
then

18 Update global_best and accept new
particle Xnew

19 end if

20 if the result of Xnew is better than the previous
particle Xm then

21 Accept new particle Xnew

22 else

23 Calculate the probability p in the
Metropolis criterion

24 if a random number of 0–1 is less than p
then

25 Accept new particle Xnew

26 end if

27 end if

28 end for

29 end while

30 Converge populations and update strategy selection
probability

31 end if

32 end while

Section “3.1.1 Scenario of UAV two-point path planning,”
can be represented as a flight path planning scenario of the
flight path between two fixed-point devices. The second stage,
which will be abstracted in Section “3.1.2 Scenario of UAV
multi-point path planning,” can be represented as a global
path planning scenario of flight paths between all fixed point
equipment.

TABLE 2 GASA coevolution algorithm + SA algorithm pseudo-code to
solve the global optimal path.

Input: Input N data collection points

Output: An optimization path with minimum AoI

1 for i from 1 to N do

2 for j from i to N do

3 Calculate the optimal path of vi to vj

4 end for

5 end for

6 Randomly select a global path P and evaluate P

7 while T > Tf do

8 for i from 1 to L do

9 Generate a new path Pnew by swapping two
points

10 if the AoI of Pnew is smaller than Pbest

11 Update Pbest and accept new path Pnew

12 end if

13 if the AoI of Pnew is smaller than P

14 Accept new path Pnew

15 else

16 Calculate the probability p in the
Metropolis criterion

17 if a random number of 0–1 is less than p
then

18 Accept new path Pnew

19 end

20 end if

21 end for

22 end while

FIGURE 4

Swap operation.
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TABLE 3 Function values obtained for the different r.

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5

Ackley Average 0.059356 0.051123 0.083617 0.064636 0.072232

Median 0.063423 0.049352 0.067312 0.053876 0.072025

Standard deviation 0.03689 0.018303 0.068941 0.041195 0.032264

Griewank Average 0.01274 0.00808 0.00976 0.01122 0.00975

Median 0.010217 0.009962 0.010012 0.009993 0.010957

Standard deviation 0.007427 0.004097 0.003337 0.006903 0.004048

The bold values are the suitable ones.

3.1.1 Scenario of UAV two-point path planning
To ensure that the UAV can successfully avoid flight

obstacles while adhering to energy consumption restrictions,
take into account the complex landforms, numerous obstacles,
and other features present in the forest scene that the UAV is
inspecting. Thus, in order to create the three-dimensional path
planning scene for the UAV, flight paths must be constructed
for every pair of two points in the multi-point path planning in
Section “3.1.2 Scenario of UAV multi-point path planning.”

3.1.1.1 Form of solution in two-point programming
scenario

In the two-point path planning, when there are obstacles
such as high mountains in the process of flying from point vk

to point vk+1, the flight path of the UAV is no longer a simple
straight line, but connects point vk to point vk+1 and avoids
multiple obstacles. The three-dimensional spatial curve path
(vk, d1, d2, . . . , dp, vk+1) is composed of p intermediate points
(Yang et al., 2015) (d1, d2, . . . , dp) (Figure 2).

TABLE 4 Main parameters of GASA coevolution algorithm on the
Benchmark function.

Parameter Symbol Parameter
values

Upper limit Xs 32

Lower limit Xx −32

Population size popNum 300

Chromosome length chromLength 3

Iteration number iterMax 100

Selection probability p_select 0.8

Crossover probability p_crs 0.8

Mutation probability p_mut 0.2

Initial temperature T 10

Regulatory factor k 0.95

Length of Markov chain L 20

Final temperature Tf 0.1

Initial selection probability initialProbability 0.5

Probability selection step r 0.2

3.1.1.2 Two-point flight time representation

According to the two-point path planning scenario
representation method, the time required for the UAV to
move from point vk and point vk+1 is shown in formula (1).
η(k),(k+1) represents the time spent going from vk to vk+1 on
the two-point path.

η(k),(k+1) =
∑p+1

s=1
ls
v (1)

Among this v represents the speed of the drone, and when
s is 1, l1 represents the Euclidean distance from vk to d1,ls
represents the Euclidean distance from ds−1 to ds,when s is p+1,
lp+1 represents the Euclidean distance from dp to vk + 1.

3.1.2 Scenario of UAV multi-point path
planning

In the UAV multi-point path planning scenario, the UAV
will fly over the ground sequentially to gather data on wildlife,
forest and grass disaster warning, and other time-sensitive data
collected at the fixed points (Liu et al., 2018). Each location
is traversed by the UAV, which collects all the data and sends
it back to the data center. In order to obtain and excavate
crucial data in the forest and grass field, such as forest and grass
early warning and priceless animal habitat, the data center will
conduct additional analysis and processing of the data collected
by the UAV.

3.1.2.1 Form of solution in multi-point planning
scenario

The set V = {v1, . . . , vN} is used to represent the location
of fixed equipment to be flown over during UAV patrol, and
the data center point of the UAV return position is indicated by
v0. For any point vk ∈ {v0} ∪ V, vk =

(
xk, yk, zk

)
, among them,

xk, yk, zk represent the spatial location of the k-th data collection
point, respectively, in multi-point path planning scenarios, this
parameter must be met:

{(
xk·yk·zk

)
|xmin ≤ xk ≤ xmax,

ymin ≤ yk ≤ ymax, zmin ≤ zk ≤ zmax
}

(2)

xmin, xmax, ymin, ymax, zmin, zmax represent the boundaries
of the environment, respectively. The solution of multi-point
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FIGURE 5

Results based on the Ackley function. Genetic Algorithm (GA) algorithm (A), GA algorithm based on logistic chaos initialization (B), Simulated
Annealing Algorithm (SA) algorithm (C), GASA coevolution algorithm (D), an GASA coevolution algorithm based on logistic chaos
initialization (E).

path planning can be regarded as taking v0 as the starting point
and the endpoint, a primary loop containing each point in V, the
node sequence with no repetition in the loop except v0, and each
point in V appears, such as v0 → v1 → v2 →—vN → v0,vk ∈V
represents the k-th data collection point, and the form of the
actual multi-point planning path in the UAV patrol scenario is
shown in Figure 3.

3.1.2.2 A representation of the age of information
collected by a fixed-point device in a scenario

Since the data collected by UAV during patrol is time-
sensitive, it is necessary to introduce the age of information and
construct the representation method of the age of information.
When the data is collected from the fixed-point device vk and
is collected when the UAV is hovering above vk at tk, the age
0k (t) of the collected data information in vk can be represented
as 0k (t) = (t−tk)

+,where tk represents the moment when the
UAV reaches the k-th sensor node, (x)+ max (Hu et al., 2020). ζk
represents the time taken for vk to upload the data to the drone.
In multi-point path planning scenarios, it is generally assumed
that the upload time of fixed point equipment, the flight time
of UAV, the sampling time of each fixed point equipment and
communication overhead can be ignored (Tong et al., 2019).
The k-th node data information age is the sum of the upload

data time on the path and the flight time of the UAV, as shown
in formula (3).

0k (t) =
∑n

i=k+1 ζi +
∑n

i=k η(i),(i+1) (3)

TABLE 5 Main parameters of GASA coevolution algorithm in
two-point path planning.

Parameter Symbol Parameter values

Execution space – 100× 100× 100

Start point startPos [10,10,20]

End point goalPos [68,47,24]

Population size popNum 50

Chromosome length chromLength 3

Iteration number iterMax 30

Selection probability p_select 0.8

Crossover probability p_crs 0.8

Mutation probability p_mut 0.2

Initial temperature T 10

Annealing rate k 0.95

Markov chain length L 20

Termination temperature Tf 0.1

Initial selection probability initialProbability 0.5

Probability selection step r 0.2
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TABLE 6 Comparison of every algorithm in two-point path planning.

Algorithm name Two straight distance Algorithm for the optimal
path length

Convergence iteration
number

GASA (popNum = 150, iterMax = 30) 68.91 70.74 19

GASA (popNum = 100, iterMax = 30) 68.91 70.50 25

GASA (popNum = 70, iterMax = 50) 68.91 70.54 21

GASA (popNum = 50, iterMax = 30) 68.91 70.34 5

GASA (popNum = 30, iterMax = 20) 68.91 70.74 20

PSO 68.91 74.14 60

GA 68.91 144.20 22

ACO 68.91 94.89 19

ABC 68.91 71.91 70

The bold values are the suitable ones.

Among these, η(n),(n+1) represents the time when the drone
flies back to the data center from the last data collection point.
According to formula (3), on the multi-point path planning, the
average AoI (Tong et al., 2019) of the UAV flying over all ground
fixed-point locations can be shown in formula (4).

0 (t) = 1
n
∑n

k=1 0k (t) = 1
n
∑n

k=1
(∑n

i=k+1 ζi +
∑n

i=k η(i),(i+1)

)
(4)

3.2 Objective function

Two-point path planning and multi-point path planning
make up the UAV forest patrol’s path planning, according to
Section “3.1 Scene modeling.” The two scenarios mentioned
above are combined to create the respective objective functions.

3.2.1 Objective function of UAV two-point path
planning

The objective function of multi-point path planning
was built from the perspective of path length cost and
mountain obstacle threat cost, taking into account the
complex characteristics of the forest flight environment and
the three-dimensional curve characteristics of the two-point
patrol trajectory.

3.2.1.1 Path length cost

Formula (1) states that the shorter the actual route length of
the UAV’s two-point curve is, the less time is required, and the
simpler it is to gather the perception data in a timely manner
during obstacle avoidance flight. Formula (5) shows the cost of
building the two-point path planning length.

min L =
p+1∑
s=1

ls =
p+1∑
s=1√

(xs − xs−1)
2
+
(
ys − ys−1

)2
+ (zs − zs−1)

2 (5)

Among this L represents the sum of distances between
all adjacent intermediate track points from the two data
collection points. p represents the number of intermediate
points (xs, ys, zs) is the coordinate of the s-th intermediate node
in the path, with s equal to 0, the starting coordinate vk, and s
equal to p+1, the ending coordinate vk + 1.

3.2.1.2 Mountain obstacle threat cost

The primary obstacle avoidance targets for UAV forest
patrol in complex forest environments are mountain peaks.
Mountain obstacle threat costs are added to ensure that UAV
can reasonably avoid mountain peaks, as shown in formula
(6). Formula (6) states that the adaptability of this path can
be decreased if the middle track point of two-point planning
intersects with the surface of a mountain peak or is inside a
mountain peak, leading to this path being viewed as an infeasible
path in the planning process.{

L = L ∗ 1000 If the collision
L = L else

(6)

3.2.2 Objective function of UAV multi-point path
planning

To quantify the freshness of the data collected from UAV
missions, many scholars have used AoI as an objective function
for UAV trajectory optimization (Meng et al., 2021; Wu et al.,
2021). In the process of forest patrol, to timely collect more
valuable ground fixed point equipment perception data, the goal
of UAV multi-point path planning is to minimize the average
AoI of UAV data collection, that is, the minimum 0 (t).

3.3 Condition of constraint

The energy consumption, flight attitude, and other
performance constraints as well as the environmental
constraints of various UAVs must be taken into account
when planning UAV tracks.
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FIGURE 6

Convergence curve and flight path for two-point planning.
GASA (A,B), Particle Swarm Optimization (PSO) (C,D), Genetic
Algorithm (GA) (E,F), Ant Colony Algorithm (ACO) (G,H), Artificial
Bee Colony (ABC) (I,J).

3.3.1 Performance constraints
3.3.1.1 Energy consumption constraints

The energy consumption model of UAV patrol is created
based on the current mainstream fixed-wing and rotary-wing
UAV products to guarantee that the energy consumed by UAV
during flight must be less than its maximum energy.

Energy consumption model of rotary wing UAV. When
the UAV flies at the speed v, the generated propulsion power
consumption can be expressed as (Zeng et al., 2019):

P (v) = P0

(
1+ 3v2

U2
tip

)
+ Pi

(√
1+ v4

4v4
0
−

v2

2v2
0

) 1
2
+

1
2d0ρsAv3

(7)

In formula (7), P0

(
1+ 3v2

U2
tip

)
is leaf profile power,

Pi(

√
1+ v4

4v4
0
−

v2

2v2
0
)

1/2
is induced power, and 1

2 d0ρsAv3 is

parasitic power. Among them, P0 and Pi is constant, respectively
for the UAV hovering state blade profile power and induced
power, Utip said rotor blade tip speed, ν0 means hovering rotor
average induction speed, d0 and s, respectively for UAV fuselage
resistance ratio and rotor strength, related to the type of UAV, ρ
and A, respectively said air density and rotor disk area.

Energy consumption model of fixed-wing UAV. The energy
consumption model of fixed-wing UAV depends on the flight
speed and acceleration of the UAV (Hua et al., 2018), which can
be expressed as

P (ν, α) = c1|v|3 + c2
||v||

1+
||a||2−

(
aTv

)2

||v||2

g2

+maTv (8)

Among these ν and α are the flight speed and acceleration
of the UAV, respectively, c1 and c2 are the parameters related
to its weight, wing area, and air density, g = 9.8 m/s2 is the
gravity acceleration, and m is the mass of the UAV and its load.
When the fixed-wing UAV flies smoothly at speed v, its energy
consumption model can be reduced to the following form

P = c1||v||3 +
c2

||ν||
(9)

The propulsion energy of a UAV during flight can be
expressed as:

EF (t) = δ
⌊
c1||v||3 + c2

||ν||

⌋
(10)

The c1 and c2 are constant and are related to UAV weight,
wing area, air density, etc. The δ is the length of time in
the unit time slot.

3.3.1.2 Flight attitude constraints

The maximum horizontal rotation angle, the maximum
climbing angle, and the minimum and maximum flight altitude
of the UAV flight will all have an impact on the flight energy
consumption in the three-dimensional path flight.

3.3.1.2.1 Maximum turning angle
First, the UAV’s turning angle should not be too large due

to its own performance constraints. Second, while turning,
the UAV will slightly veer from the intended flight path; at
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this point, the flight path curvature should be taken into
account to maintain a safe distance between the flight path
and the terrain. In other words, it should not exceed the
maximum turning Angle.

3.3.1.2.2 Maximum climbing angle
The ability of the UAV to maneuver, flight altitude, and

weather conditions are the main factors limiting the climbing
angle of the UAV in 3D space flight path planning. Therefore,
during flight, the UAV’s climbing Angle should not exceed its
maximum climbing Angle.

3.3.1.2.2 Minimum and maximum flight altitude
The minimum altitude of each track point in the UAV

track search must not be less than a specified terrain altitude,
and the flight altitude must not be higher than the maximum
flight altitude.

3.3.2 Environmental constraints
The main danger to UAVs using ground sensors in

challenging mountain environments is the danger posed by
the mountains. UAVs should therefore avoid running into
mountains while in the air.

3.4 Path smoothing

To ensure that the planned path of two points can be
used as the smooth trajectory of actual UAV flight, it is
also necessary to construct a smooth flight path for the
track points between two adjacent points in multiple points.
Based on this, cubic B-spline curve (Chai et al., 2022)
was introduced in this paper to smooth the flight path
of UAVs and build a feasible flight path. The red points
represent the algorithm-generated waypoints and the black

FIGURE 7

Three algorithms for multi-point path planning trajectory maps in simple maps. GASA (A–C), Particle Swarm Optimization (PSO) (D–F), Artificial
Bee Colony (ABC) (G–I).
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points represent the points generated by the cubic B-spline curve
(Figure 2).

4 Materials and methods

4.1 Logistic chaos initialization

Chaos is a spontaneously generated instability in
deterministic systems, commonly found in nonlinear systems.
Due to the ergodic nature of chaos, cango through all states
in a certain range without repetition. Using chaotic variables
for optimization is superior to blind and disorderly random
searches. In this paper, chaos theory is introduced to population
initialization. The main idea of chaotic search is to generate
chaotic sequences in some iterative way, and generally most

logistic equations are used to generate chaotic sequences, as
shown in Equation (11):

ri+1 = µri (1− ri) i = 1, 2, . . . , n (11)

The logistic mapping is in a fully chaotic state at the
bifurcation parameter 3.57< µ ≤ 4, and the trajectory of the
equations in this interval shows chaotic characteristics. In this
paper, we take µ = 3.98.

4.2 Coevolution algorithm

4.2.1 The introduction of coevolution
algorithm

No single algorithm is the most efficient for solving
all optimization problems, according to the “No-free-lunch”

FIGURE 8

Three algorithms for multi-point path planning trajectory maps in complex maps. GASA (A–C), Particle Swarm Optimization (PSO) (D–F),
Artificial Bee Colony (ABC) (G–I).
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theorem, and many researchers are working to increase the
generalization ability of the approaches by hybridizing the
characteristics of the problems that have been solved (Shi and
Zhang, 2020; Jin et al., 2022a; Liu et al., 2022).

Coevolution algorithms have the ability to actively learn
the properties of the solution space in accordance with the
properties of the issue, adaptively select the dominant strategy
suitable for the algorithm’s convergence from a variety of
evolutionary strategies, significantly increase the algorithm’s
generalization ability to the problem, and produce superior
results while addressing active complex optimization problems.

In a complex forest environment, UAV two-point path
planning is the key to avoiding obstacles and collecting fixed-
point data efficiently. This paper uses GA and SA strategies
to design the parallel evolutionary algorithm (GASA). Under
parameter control, the GA is an adaptive global search strategy,
and the SA can reflect good local search capabilities. During
the co-evolutionary process, the two evolutionary techniques
complement each other and can improve the algorithm’s
convergence speed and improve path planning efficiency.

4.2.2 Two-point path planning using the GASA
coevolution algorithm
4.2.2.1 Setting of algorithm parameters

Set the relevant parameters and map boundaries of the
GASA coevolution algorithm, which include population
size popNum, chromosome length chromLength, crossover
probability p_crs, mutation probability p_mut, iteration
number iterMax, initial temperature T, termination temperature
Tf, annealing rate k, Markov chain length L, and probability
selection step r.

4.2.2.2 Logistic chaos initialization in two-point path
planning

The set of waypoint coordinates between two data collection
points is considered as an individual, the chromosome length
of the individual is chromLength, and the path between data
collection point vk and data collection point vk+1 is denoted as(
vi, d1, d2, . . . , dp, vi+1

)
. First take the random number vectors

a1, b1, c1 initial values between 0∼ 1.

a1 =
(
a1

1, a
2
1, . . . ,a

chromLength
1

)
(12)

b1 =
(
b1

1, b
2
1, . . . ,b

chromLength
1

)
(13)

c1 =
(
c1

1, c
2
1, . . . ,c

chromLength
1

)
(14)

Then a new vector is generated according to the form of the
logistic mapping.

ai+1 = µai (1− ai) (15)

bi+1 = µbi
(
1− bi

)
(16)
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ci+1 = µci (1− ci) (17)

Where i = 1, 2, . . . , popNum
The resulting chaotic variables are mapped into the three-

dimensional space to obtain the set of three-dimensional
coordinates of the i-th individual of the initial population. The
i-th individual in the population popi = (Xi,Yi,Zi).

Xi = (xmax − xmin) ∗ ai + xmin (18)

Yi =
(
ymax − ymin

)
∗ bi + ymin (19)

Zi = (zmax − zmin) ∗ ci + zmin (20)

4.2.2.3 GA strategy

Superior genes can be kept in the population by using
selection, crossover, and mutation operations to create new
populations and keeping elite particles out of crossover and
mutation operations.

4.2.2.4 SA strategy

Randomly select an individual for annealing operation to
generate a new population of the received particles. After the
evolution is finished, the annealing temperature of the SA
strategy is updated in time.

4.2.2.5 Adjust the solution according to the constraint

Optimize populations by eliminating some particles
according to constraints.

4.2.2.6 Update strategy selection probability

After the evolution of the GA strategy or SA strategy,
the parent population and the child population are fused and
ranked according to the fitness value. The individuals with the
population are retained to form a new population. Suppose the
number of individuals from the parent population is more than
the number of individuals from the offspring population. In that
case, the corresponding algorithm is the dominant strategy and
the probability of selection of this algorithm should be increased
according to formula (21), and vice versa, the probability of
selection of the algorithm should be decreased according to
formula (22).

u(l) = u(l)+ r ∗ (1− u(l) (21)

u
(
l
)
= u

(
l
)
− r ∗ u

(
l
)

(22)

The pseudo-code for solving the shortest path between two
points

(
vi, vj

)
using the GASA coevolution algorithm is shown

in Table 1.

4.3 Multi-point path planning using
simulated annealing algorithm

A full alignment of the data collection points makes up one
particle of the simulated annealing algorithm, and the process
calculates the total fitness value of the entire path, accepting
and updating the global optimum if it is better than the global
one, accepting if it is better than the previous one, and accepting
probabilistically if it is worse than the previous one.

The locations of the data collection points to be flown by the
UAV in this study are known, and the UAV starts from a fixed
starting point v0 and flies over each fixed point device only once,
and finally returns to the starting point v0 with the minimum
average AoI 0 (t) of all nodes.

It is known from formula (1) that the timeliness of the data
and the flight path are proportional to one another when the
UAV flies at a particular speed. This study applies the GASA
coevolution algorithm to discover the shortest path between two
points in order to achieve the time-optimal path of the UAV
from the current collection point to the next target point. This
work employs the simulated annealing process to determine the
best solution for the issue of minimizing the average information
age of all nodes; the algorithm pseudo-code is displayed in
Table 2. Figure 4 depicts the SA algorithm swap operation.

5 Experiment

5.1 Summary of experiment

Four distinct sorts of experiments are set in this
chapter to test the usefulness of the suggested method.
The first experiment is a fundamental experiment for
selecting the proper probability choice step parameter
r, the second experiment is an experiment to verify the
algorithm on the Benchmark function, and the third
experiment is an experiment to compare two-point path
planning simulations based on simulation maps. The
fourth experiment is a multi-point comparative simulation
experiment involving multiple data gathering points in two
different circumstances.

On a Windows 10 computer with an Intel Core i7-6700HQ
processor, 8 GB of memory, and the Matlab2016a platform, all
experiments in this paper were simulated.

5.2 Probability selection step
parameter

Theoretically, selecting a greater r will cause the algorithm
to be over-sensitive to changes in the probability of strategy
selection, resulting in over-fitting. When r is too little, the
sensitivity to a problem is insufficient to achieve the benefit
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of adaptive learning. To further determine the optimum
probability selection step parameter r, this work analyzes the
statistics of the adaptation of the matching results provided
by GASA when r = 0.1, 0.2, 0.3, 0.4, 0.5, and presents the
results of 3-dimensional experiments as an example. The values
in Table 3 are the mean, median, and standard deviation of
the Ackley function and Griewank function in 10 independent
experiments.

According to the experimental results, the various statistics
are better when r = 0.2. In the subsequent experiments, r = 0.2.

5.3 Benchmark function experiments

In order to prove the effectiveness of chaotic initialization,
this paper tests the convergence rate and optimal function
value of GA algorithm, Logistic chaotic initialization-based GA
algorithm, SA algorithm, GA algorithm, GASA coevolution
algorithm, and Logistic chaotic initialization based GASA
coevolution algorithm on Ackley function. The experimental
parameters are shown in Table 4. The experimental results
(Figure 5) show that GA algorithm converges in the 47th
generation, and the optimal Ackley function value is 2.196. The
GA algorithm improved based on logistic chaos initialization
converges in the 23rd generation, and the optimal Ackley
function value is 2.194, which can accelerate the convergence
speed of GA algorithm. Although the two final results are
similar, the convergence speed of the improved GA algorithm
is increased by 100%. Logistic chaos initialization can accelerate
the convergence of GA algorithm. Compared with the other
three algorithms, the GASA coevolution algorithm based on
logistic chaos initialization has better convergence speed and
accuracy and optimization ability.

5.4 Two-point path planning
experiment

This paper constructs a simulation map for the simulation
experiment to test the validity of the GASA coevolution
algorithm in the path planning problem between two points.
To test the effect of population size and the number of
iterations on the GASA coevolution algorithm, we fine-tuned
the selection range of parameters and did several sets of
comparison experiments, and the results of the experiments
showed that the effect of the parameters was small, and
we later chose the most suitable parameters to compare
with other algorithms. It contrasts the PSO algorithm, GA
algorithm, ACO algorithm, and ABC algorithm in terms
of convergence speed, path cost, and three-dimensional
track diagram. Table 5 displays the precise experimental
parameters.

The convergence speed and objective function values of all
algorithms are shown in Table 6. GASA coevolution algorithm

converges in the 5th generation. The optimal path length is
70.34, and the linear distance between the two points of the
starting point and the end point is 68.91, which is close to
that of the GASA coevolution algorithm. The path cost of
the GASA coevolution algorithm is much lower than the GA
and ACO algorithms. Although the final objective function
value of PSO algorithm is not much different from that of
the GASA coevolution algorithm, the PSO algorithm does not
converge until the 60th generation, and the convergence speed
is slower than that of the GASA coevolution algorithm. The
optimal path length obtained by the ABC algorithm is 71.91,
but it does not converge until the 70th generation, and the
convergence speed is slower. It can be seen from the above that
GASA coevolution algorithm has the optimal planning result,
which can effectively restrain the precocity of traditional genetic
algorithm and accelerate the rate of algorithm convergence.

From the experimental simulation results (Figure 6), it
can be seen that the GASA coevolution algorithm proposed
in this paper can plan the flight path of UAVs and improve
the optimization accuracy of the original algorithm. Compared
with the GA algorithm, GASA coevolution algorithm can
better jump out of the local optimal in the middle and later
optimization stage, restrain algorithm precocity and accelerate
algorithm convergence speed. Moreover, compared with the GA
algorithm, PSO algorithm, ACO algorithm and ABC algorithm,
GASA coevolution algorithm has higher optimization accuracy
and faster convergence speed. It can better plan an optimal flight
path for UAVs.

5.5 Path planning experiment between
multiple points

To verify the effectiveness of the proposed algorithm
in multi-point path planning, this paper constructs two
different terraforms, simple scenario, and complex scenario
(Figures 7, 8), sets different numbers of data collection points,
and compares the average AoI of data collection points. The
starting point of the route is (10,10,20). We employ the PSO
algorithm for comparison to test the validity of SA for multiple-
point planning. In addition, for the inner two-point path
planning algorithm, we compare the PSO and ABC algorithms
from Section “5.4 Two-point path planning experiment” with
the GASA collaborative algorithm. The experimental results
indicate that the SA algorithm is a highly stable method.
When conducting path planning experiments in simple and
complicated maps, the average AoI of SA algorithm is better
than that of the PSO algorithm, according to Table 7.

According to the results (Table 7), compared with PSO
algorithm and ABC algorithm, the GASA algorithm proposed
in this paper can reduce the average AoI of the collected
data and improve the freshness of the data. Compared with
the PSO algorithm, the average AoI of data in the simple
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map is reduced by 16.31, 20.67, and 23.33% at 3, 6, and 10
data collection points, respectively. In the complex map, the
average data AoI decreased by 11.45, 19.47, and 24.87% at 3, 6,
and 10 data collection points, respectively. Compared with the
ABC algorithm, the average AoI of data in the simple map is
reduced by 5.14, 3.87, and 1.49% at 3, 6, and 10 data collection
points, respectively. In the complex map, the mean AoI of data
decreased by 1.7, 0.05, and 0.02% at 3, 6, and 10 data collection
points, respectively.

6 Conclusion

In this paper, the UAV path planning method in complex
environment is designed for forest pest monitoring, wildlife
protection and resource monitoring process, where the
UAV needs to efficiently collect data from fixed-point
monitoring devices. With the information freshness as the
main optimization objective, the two-point and multi-point
path planning process is integrated to design the UAV path
planning method facing the complex mountain environment.
In the multi-point path planning, the UAV patrol path between
multiple fixed-point devices is obtained by simulated annealing
method with the goal of information freshness. In the two-point
path planning, the UAV 3D smooth patrol path between two
fixed-point devices is obtained by integrating information
freshness, flight attitude, and complex environment elements
through the coevolution algorithm. In the experiment, the
reasonable configuration of parameters of the proposed method
is determined using the benchmark function, and then, the
effectiveness of the two-point path planning method and the
multi-point path planning method is verified using simulated
complex mountain environments with different configurations
of the number of fixed points. Then, the effectiveness of the
two-point path planning method and the multi-point path
planning method is verified using simulated complex mountain
environments with different configurations of the number of
fixed points. When the outer algorithm uses the SA algorithm
and the inner two-point path planning GASA coevolution
algorithm is compared with the existing method PSO, the
proposed two-point optimization method reduces 11.4, 19.4,
24.8% in terms of AoI in the complex environment, and when
the inner algorithm When the inner layer algorithms are the
same, the proposed multi-point optimization method SA is
more stable in the complex environment, and the AoI is reduced
by 2.3, 3.7, and 4.5%.

The method proposed in this paper is an exploration of
the UAV with fixed time path planning method for complex
mountainous environments. In the subsequent research, the
applicability and practical application value of the algorithm
can be improved in terms of scene migration and method
improvement. In the scenario migration, the multi-objective
optimization method applicable to other UAV patrol scenarios

can be constructed by combining the UAV patrol needs
of simple urban suburban environments and introducing
airtime, etc. as the objective function. In the convenience of
method improvement, it can be combined with the actual
wildlife monitoring needs and domain expert knowledge to
construct the illuminating information optimization objective
function of the optimization method, meanwhile, some new
optimization methods can be combined with the existing
methods to construct the co-evolutionary algorithm to verify
the applicability of different evolutionary strategies in the
forest patrol problem.
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