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Robots need to understand their environment to perform their task. If it is possible to

pre-program a visual scene analysis process in closed environments, robots operating in

an open environment would benefit from the ability to learn it through their interaction with

their environment. This ability furthermore opens the way to the acquisition of affordances

maps in which the action capabilities of the robot structure its visual scene understanding.

We propose an approach to build such affordances maps by relying on an interactive

perception approach and an online classification for a real robot equipped with two

arms with 7 degrees of freedom. Our system is modular and permits to learn maps

from different skills. In the proposed formalization of affordances, actions and effects are

related to visual features, not objects, thus our approach does not need a prior definition

of the concept of object. We have tested the approach on three action primitives and on

a real PR2 robot.

Keywords: autonomous exploration, affordance learning, interactive perception, perceptual map, online learning

1. INTRODUCTION

Nowadays, robots can achieve specific tasks with a high accuracy in controlled environments, such
as automated factories. In such environments, the engineers can anticipate all the aspect of the
problem at hand and then simply program the robot to achieve its goal. However, in open and
dynamic environments, it is difficult to anticipate everything. To solve tasks in such a context,
robots need adaptive skills. A way to approach this issue is to let it explore its surrounding and learn
from its experiences. By exploring its environment, the robot is able to build its own representation
according to its embodiment, skills and goals.

The psychologist E. Gibson claimed that acquiring perception is “discovering distinctive features
and invariant properties of things and events” (Gibson, 2000) and “discovering the information
that specifies an affordance” (Gibson, 2003). This could be interpreted, for a robot, as the
system must isolate regularities and invariance in the data collected during an exploration to
build representations. And, these representations are affordances. The concept of affordances was
introduced by Gibson (1966, 1979).

With this concept, Gibson wanted to highlight that objects have inherent “values” and
“meanings” which could be perceived by an agent and could be linked to its possible actions on
those objects. An animal or a human thus perceives the world through the actions it can perform
according to their abilities and the elements in the environment. However, in Gibson’s view, animals
and humans do not need computation or representations to perceive the affordances. A robotic
system needs to build a representation from its visual stream in order to learn complex task e.g.,
recognizing objects with the aim of interacting with them. Fortunately, psychologists continued to
work on the ecological’s approach and refined the concept of affordance. From these studies, we
summarized several main aspects of affordances suitable for a robotic system:
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• Affordances emerge from the relation between the agent and
the environment (Chemero, 2003);
• Functionality is an inherent property of objects or parts of the

environment. A functionality could become an affordance if
the agent has some knowledge about it and if the agent is able
to use it (Steedman, 2002a,b);
• Affordances are perceived thanks to an internal representation

which maps the agent perceptions and actions (Vera and
Simon, 1993).
• Affordances are not always self-evident. Therefore learning

and exploration could be needed to perceive affordances.
Signifiers could be built to help an agent perceive affordances
(Norman, 2013).

In this article, we state that an affordance is an emergent
relationship in the agent-environment system. Thus, an
affordance is a relationship between a sensory signal, the agent
skills and the possible effect that would result from the agent’s
actions. Affordances are learned from experience of the agent
interacting with the real world, and as a result of this learning,
affordances can then be directly perceived in the environment.
Moreover, for the affordances to be learned, the environment
needs to have distinctive and coherent sensory signals associated
with actions and effects, in other words, they need to be
discoverable. This definition is coherent with the ones proposed
in the developmental robotic literature (Zech et al., 2017).

The work, presented in this article, proposed a system to
learn a perceptual representation based on affordances. The aim
is to answer to the following problematic: How can a robot
with a toolbox of action primitives build a representation of the
environment based on affordances by autonomous exploration?
The robotic system learns from data collected during an
autonomous exploration by interacting with the environment,
following the interactive perception paradigm.

Interactive perception aims at learning perception from
interaction. According to Bohg et al. (2017), a robotic system,
with interactive perception, isolates regularities in the combined
space of sensory signals, motor commands and time. This meets
the vision of Gibson about learning. Therefore, it is natural to
use interactive perception to let a system autonomously learn
affordances.

However, most works in interactive perception are interested
in learning objects representations for recognition, segmentation
or manipulation. To achieve their goal, these methods need to
introduce assumptions about the structure of the environment
or about the objects themselves. These assumptions reduce
the range of environments that the robot could face. One
of our previous works (Le Goff et al., 2019) addresses this
issue by proposing a method to learn a perceptual map, called
relevance map, through interactive perception with minimum
environment-specific assumptions and by using a classifier
trained online called the Collaborative Mixture Models based on
Gaussian Mixture Model. This article presents an extension of
this previous work in which a relevancemap is built based on data
collected through the interaction of a robot with an environment
through a push primitive. This approach is within the scope of
interactive perception as it learns a representation of the world

through interactions with an environment. This relevance map
was representing the relevant areas in a visual scene for the
push primitive, i.e., the areas that would produce an effect after
the application of the push primitive. Thus, the relevance map
represents areas which afford a certain action. In the present
study, relevance maps relative to several affordances are learned:
pushable objects, liftable objects, and pressable buttons. These
maps are then combined to produce an affordances map. This
affordances map is a starting point for further developmental
steps, and provides the knowledge needed to bootstrap a decision
process (Doncieux et al., 2018).

Themain contribution of this work is a modular framework to
learn low level affordances represented by a perceptual map. The
affordances map gives to the robot a rich and direct perception of
its surrounding according to the actions it can perform. This is
close to Gibson’s first conception of affordances.

To support this contribution, three series of experiments
are presented in this article. In each of these experiments the
robot explores its environment using interactive perception with
a specific action primitive and a specific effect detector: push
primitive with movement detector, lift primitive with movement
detector, and push primitive with button activation detector. The
goal of these experiments is to build a relevance map related to
the primitive and the effect detector used.

Before explaining the method used in these experiments in
Section 3, related works about affordance learning are described
in Section 2. You can find a detailed description of the
experimental protocol and of the results in the Sections 4 and 5.

2. RELATED WORKS

Affordances have raised a lot of interest in the developmental
robotics community these last 10 years, as shown by the
numerous reviews and surveys dedicated to this topic (Sahin
et al., 2007; Horton et al., 2012; Jamone et al., 2016; Min et al.,
2016; Zech et al., 2017).

According to a recent survey (Zech et al., 2017), among
146 reviewed articles, 104 articles consider learning affordances
directly from a meso level, i.e., considering objects as a whole,
while only 27 articles consider it from a global level, i.e., by
considering the whole environment and only 15 articles from
a local level. The global level considers the whole environment
and thus allows the learning system to integrate the context. The
context is important to predict or to do recognition of high-
level affordances. Most articles on affordance use the meso level
because for most actions having a complete model of an object is
practical. For instance, for successful grasps, the object states such
as orientation and position or shape are important information.
Learning affordances at a local level allows the system to perceive
them directly, Moreover considering the local level is simpler and
is thus suitable to bootstrap the system.

The proposed method is based on learning affordances from
local visual features, so from the local level. Therefore, this
section is focused on articles interested in learning affordances
at a local level. From these 15 articles, 11 are interested in
linking local descriptors to the possible actions applicable in
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the present environment for quick or direct perception of
affordances. From these articles, 6 learn from exploration using
an interactive perception approach. This shows that the question
of learning affordances from local features using exploration has
not been extensively studied yet. This section reviews different
groups of works addressing this question. A first group aims at
learning several kinds of affordances with supervised learning on
annotated datasets, a second one focuses on the object grasping
issue and finally, works that do not fit in these two categories are
mentioned.

Some studies use an annotated dataset to train a model
of affordance classification and then integrate this model in
a robotic framework, as a tool for planning, task solving or
manipulation. Myers et al. (2015) study tool use affordances.
They train a classifier on superpixels using SLIC. Achanta et al.
(2010) have extended it to work on RGB-D images, with features
related to shape. Two classifiers are proposed in this work.
A first one is called superpixel hierarchical matching which
is computationally demanding and slow for prediction. The
second one is a structured random forest which achieves fast
prediction and is therefore suited to real-time systems, but this
last classifier is trained offline. AfRob method proposed by
Varadarajan and Vincze (2012) is used to classify affordances
from 2D images. It is a deep neural network trained in batch.
AfRob is the adaptation of, previously proposed, AfNet, from
the same authors, to robotics constraints (fast prediction, light
computation). Katz et al. (2014) aim at detecting affordances
from stacks of objects. With this aim, an SVM linear classifier is
used to learn pulling, pushing, and grasping affordances. As they
use objects with simple shapes and only consider their facets as
features, i.e., small planar surfaces which compose a 3D shape,
they can use a simple linear classifier, especially if trained offline
on an annotated dataset. In the same idea, Kim and Sukhatme
(2014) proposed a method to detect affordances of surfaces based
on a geometrical analysis of the pointcloud, K-means clustering,
and logistic regression.

Those methods proposed efficient tools for robotic systems to
detect affordances, but they are all based on supervised learning
on datasets annotated by a human expert. Annotating is a costly
process that naturally limits the learned model to the datasets
produced by the expert. Moreover, affordances in ecological
psychology depend on the agent body structure and on the
actions it is capable of. Another approach is thus to let the
robot explores its environment with one or several actions and
collects information about the affordances in its surrounding and
discovers by itself the affordances.

A group of works (Bierbaum et al., 2009; Montesano and
Lopes, 2009; Kraft et al., 2010; Krüger et al., 2011; Popović et al.,
2011; Dang and Allen, 2014) are focused on building affordance
maps of successful grasps on an object. Bierbaum et al. (2009)
let a robotic hand with tactile sensors explore an unknown
object in simulation. The robot hand has five fingers including a
thumb. The system detects a potential grasp by finding opposite
flat surfaces. Then, candidate areas for grasping are determined
offline on the basis of the geometrical analysis of local shape
features. The analysis is a heuristic based on the configuration
of the hand used. Alternatively, Montesano and Lopes (2009)

propose a trial and error process to determine the probability
of success of a grasp on parts of an object. Learning is based on
local visual features in a Bayesian framework. The robot tries to
grasp several times the same object part and, with a Bernoulli-
beta distribution based on the successes or failures, the system
determines the probability of the graspability of this part. In the
same idea, Dang and Allen (2014) proposed a system that learns
a graspable affordance map on objects but they add what they call
semantic constraints. These constraints are designed by a human
to force grasping to be compatible with a specific task. In the
same way, Popović et al. (2011) and Krüger et al. (2011) use Early
Cognitive Vision (ECV, Krüger et al., 2010) for preliminary image
processing to extract features with a stereo camera. The features
are edges, contours, textures, and surfaces. The robot tries to
grasp different objects and associates ECV’s features to successful
grasps. A limitation of this work is that ECV needs textured or
complex objects to work properly.

These works are conceptually similar to ours: a robotic system
explores an environment (here an object) with an action (here
grasping) and learns to associate local visual features to successful
actions. However, they assume that the system is already able to
extract objects from a scene and focus on it to learn grasping. In
our work, the robotic system has no notion of objects. The whole
environment is considered, in order to learn relevant areas for
different affordances. From these areas, object candidates could
be extracted as a base for the above-mentioned methods. Thus,
these works correspond to a later developmental step with respect
to ours.

Uǧur et al. (2007) proposed a method for learning
“traversability” affordance with a wheeled mobile robot which
explores a simulated environment. The robot tries to go through
different obstacles: laying down cylinders, upright cylinders,
rectangular boxes, and spheres. The laying down cylinders and
spheres are traversable while boxes and upright cylinders are
not. The robot is equipped with a 3D sensor and collects data
after each action labeled with the success of going through the
objects. The sample data are extracted thanks to a simulated
RGB-D camera. Then, an online SVM (Bordes et al., 2005) is
trained based on the collected data. The resulting model predicts
the “traversability” of objects based on local features. To drive
the exploration, an uncertainty measure is computed based on
the soft margin of the model decision hyperplane. Finally, they
tested their method on a navigation problem, on real robots and
in a realistic environment. They demonstrate, by using the model
learned in simulation, that the robot is able to navigate through
a room full of boxes, spherical objects and cylindrical objects like
trash bins without colliding with non-traversable objects.

Kim and Sukhatme (2015), with a similar idea, seek to learn
pushable objects in a simulated environment using a PR2 with an
RGB-D camera. The objects are blocks the size of the robot. They
are either pushable in one or two directions, or not pushable. The
PR2 uses its two arms to try to push the blocks. The learning
process relies on a logistic regression classifier and a Markov
random field is used to smooth spatially the predictions. The
robot explores then the environment and collects data by trying
to push the blocks. The outcome of the framework is what they
called an affordance map indicating the probability of pushability
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FIGURE 1 | Overview of the general approach to build an affordances map.

of a block. When in the work of Uǧur et al. (2007) the learning
is made on continuous space, in the work of Kim and Sukhatme
(2015) the environment is discretized in a grid with the cells of
the size of a block, thus, the learning space is discrete. Finally,
they use an exploration strategy based on uncertainty reduction
to select the next block to interact with.

In a more developmental perspective, Paletta et al. (2007)
proposed a framework to learn composite affordances by starting
from low level affordances. Their approach is split into 3 steps:
first, the robot explores its environment with a reactive behavior,
like a grasp reflex, and collects visual data consisting of SIFT.
Then, in a second step, basic affordances are learned with simple
actions such as pushing or gripping. Finally, in the third step,
the robot learns composite affordances based on a combination
of the basic action used in the previous step. For instance, this
combination of actions allows the robot to achieve stacking.
They validate their framework with a mobile robot equipped
with a stereo camera and a magnetized end-effector. In a real
environment the robot tries to learn to identify objects that are
liftable with its magnetized end-effector.

These works (Paletta et al., 2007; Uǧur et al., 2007; Kim and
Sukhatme, 2015) are close to the work presented in this article.
They gather in a single study affordance learning, online learning,
exploration process, and interactive perception. The affordance
map of Kim and Sukhatme (2015) is close to our relevance map
by the way they both segment interesting elements for the agent,
but exploration and learning were conducted in simulation only,
in simple environments and setups, and only one affordance was
learnt. The study proposed by Paletta et al. (2007) can learn
several affordances in simulation, but it was tested in reality with
only one action.

Thus, they do not address the challenge of separating local
visual features in complex and realistic environment. The
approach proposed in this article is based on similar principles
but it allows the system to learn relevance maps relative to
several affordances in more complex and realistic environments
and in real world-experiments. Real environments have often

rich visual features in which both classes could share similar
visual features. This makes the problem of classification complex.
Also, exploration in a real environment produces unexpected
errors with the interactions or the detection of a possible effect.
By conducting experiments in the real world, our approach is
confronted to such issues.

3. METHOD

The goal of this work is, for a robot, to learn which part of an
environment affords a given effect to a specific action through
an autonomous exploration. The robot is interacting with the
environment thanks to an action primitive in order to collect
data. The method is tested with three affordances: pushable
objects, pressable buttons and liftable objects. These affordances
are respectively linked to a push primitive, a press primitive and
a lift primitive.

The general approach, summarized in Figure 1, is to
separately build the relevance map relative to each considered
affordance. Each relevancemap is built by collecting data through
the interactions of the robot and then by training online a
classifier on the data. The classifier is used to build the relevance
map by attributing weights to segments extracted from the
current scene (see Sections 3.2.2 and 3.2.4). Finally each relevance
map is merged in one affordances map (see Section 3.3).

A formalization of affordances is proposed in Section 3.1.
Then, in Section 3.2, the workflow to build a relevance map is
explained.

3.1. Affordances Formalization
In this study, an affordance is a relation φ between an action
a and an effect e. This relation is formalized as a conditional
probability of an effect e to occur after the application of an
action a on an element with a visual feature X (see Equation 1).
Thus, φ is a function parameterized by a and e which takes as
input X and gives as output a value between 0 and 1. This value
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represents the probability of existence of the affordance which
draws a relationship between the triplet a, e, and X.

φ(a,e)(X) = P(1 = (a, e)|X) (1)

In this equation, 1 denote the random variable which takes as
value a pair of action and effect.

In this study, our method is tested with three affordances
: pushable objects, liftable objects, and pressable buttons. The
pressable and pushable are simple affordances which can be
represented by Equation (1) with 1 = (push,moved) and 1 =

(press, activated). Regarding the liftable affordance, we assume
that a liftable object is surely pushable. To consider this case,
based on the Equation (1), we define a composite affordance as
an affordance based upon one or several affordances.

P(11|X) = P(11|X,10)P(10|X)

φ(a1,e1)(X) = P(11 = (a1, e1)|X,10 = (a0, e0))φ(a0,e0)(X)
(2)

Equation (2) presents the formal representation of a composite
affordance which links an action a1 and an effect e1 to an action
a0 and an effect e0. It assumed that if the feature X affords the
action a1 by producing the effect e1 then it affords the action a0
by producing the effect e0 too. In other words, the existence of the
affordance associated with 11 = (a1, e1) implies the existence of
the affordance associated with 10 = (a0, e0). In the following
text, we say that the probability of X to afford a1 by producing
the effect e1 is filtered by the probability of X to afford a0 by
producing the effect e0. The Equation (2) is obtained by the Bayes’
rule. The proof is presented in Appendix A.

Equation (3) presents the general case of a composite
affordance as a composition of several other affordances. For
this equation to be true, all the component affordances must be
independent from each other.

φ(a,e)(X) =

P(1 = (a, e)|X,

n
⋂

i=0

1i = (ai, ei))

n
∏

i=0

φ(ai,ei)(X)
(3)

For instance, in this article, the probability of something to be
liftable is filtered by the probability of something to be pushable.
Because we assume that something liftable is also pushable, thus
the liftable affordance requires the pushable affordance.

3.2. Workflow to Build a Relevance Map
3.2.1. Overview
Our method aims at building an affordances map through
an autonomous exploration driven by a robot equipped with
two arms. The affordances map is the combination of several
relevance maps. Each of them is relative to a specific affordance.
To build one relevance map, the robot explores the environment
which is unknown, with a specific action primitive. An action
primitive is a pre-programmed sequence of motor commands
to achieve a specific action. The system detects a possible effect
thanks to a process, named here effect detector, detecting the

FIGURE 2 | Overview of the workflow followed during an exploration to build a

relevance map.

changes in the environment produced by an action primitive.
Thanks to the interaction and the effect detector, labeled samples
are collected. They are labeled with a value of 1 if the interaction
produced an effect, with a value of 0 otherwise. A classifier is
used to build the relevance map. It is trained online in order
to use the relevance map to drive the exploration. The visual
system of the robot is an RGB-D camera (Microsoft Kinect v2)
which generates 3D pointclouds. The Kinect v2 offers several
resolutions, in this work, we use a resolution of 960× 540 which
offers a compromise between performance and quality. Thus,
the 3D pointclouds are composed of 518,400 points. The action
primitives and effect detector used in this study are described in
Section 3.2.6.

The exploration is sequential, the robot interacts with the
environment, observes the effect, updates its perception and
starts again. During the interaction, the system does not update
its perception. The workflow of one iteration (shown in Figure 2)
follows 5 steps:

• Step 1: An oversegmentation of the 3D pointcloud into
supervoxels using Voxel Cloud Connectivity Segmentation
(VCCS) method is done on the current scene. Visual features
are extracted from each supervoxels. Supervoxel segmentation
is described in Section 3.2.2 and the visual feature extraction
method is explained in Section 3.2.3.
• Step 2: The classifier is updated with the training dataset

extended with a new labeled sample. Then, the classifier
weights are attributed to each supervoxel. The outcome is the
relevance map of the current scene. This step is explained in
Section 3.2.4.
• Step 3: The next supervoxel to interact with is chosen as a

target for the action primitive. Section 3.2.5 explains how the
target is chosen.
• Step 4: An action primitive is applied on the center of

the chosen supervoxel. Each action primitive is explained in
Section 3.2.6.
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TABLE 1 | Value of the hyperparameters of VCCS used for the experiments in the

present paper.

Rseed λ µ ǫ

0.05 0.2 0.4 0.4

• Step 5: To check if an effect is produced by the action
primitive, an effect detector is applied. The visual feature of the
selected supervoxel is added to the training dataset with a label
indicating if there was an effect. The different effect detectors
are described in Section 3.2.6.

3.2.2. Supervoxels
The relevance map relies on supervoxels segmentation.
Supervoxels were introduced by Papon et al. (2013a) with his
voxel cloud connectivity segmentation (VCCS) method. A
supervoxel is similar to a superpixel like in SLIC (Achanta et al.,
2010) or turbopixel (Levinshtein et al., 2009) methods except
that it integrates depth information. Contrary to superpixel
segmentation, VCCS works directly on a 3D pointcloud. A
supervoxel is a cluster of voxels. A voxel is the smallest unit in a
3D image. In a pointcloud, a voxel is a point. The use of depth
information allows the supervoxels to respect the boundary
of objects which is a significant enhancement compared with
superpixels. So, the information extracted from a supervoxel
is more likely to be relative to a single component of the
environment. Thus, this information is more consistent.

VCCS method workflow is the following: voxel seeds are
evenly distributed on the pointcloud, then with local nearest
neighbor, regions grow from these seeds by adding voxels. The
neighborhood is defined by a radius named seed radius (Rseed).
This hyperparameter controls the size of the supervoxels. The
local nearest neighbor uses a distance (see Equation 4) composed
of CIELab1 color distance (Dc), spatial distance (Ds), and shape
distance (Df ) computed by the fast point feature histogram
(FPFH, Rusu et al., 2009) algorithm.

D =

√

λD2
c

m2
+

µD2
s

3R2
seed

+ ǫD2
f

(4)

As shown in Equation (4), three weights λ, µ, and ǫ control the
importance of each distance. Therefore, VCCS algorithm has four
important hyperparameters. Also, m is a constant to normalize
the distance in the CIELab space. Rseed controls the size of the
supervoxels and (λ, µ, ǫ) control their shapes. Only the size
of the supervoxel is critical because if an object is smaller than
a supervoxel then the information extracted from it will not
be consistent. While, for the three other parameters, they can
be tuned to have meaningful supervoxels for a large range of
environments. The values used in this study for these parameters
are listed in Table 1.

A major drawback of VCCS is the inconsistency of the
segmentation over a video stream. When extracted on a video

1CIELab is a colorimetry international standard from the International

Commission on Illumination (CIE) of 1978.

stream, the segmentation is different for each frame even if the
scene is static. This due to the noise of the depth image.

In this work, supervoxels are used as the smallest visual unit
for image processing as well as for the action primitives targets.
The version used is the VCCS implemented in the PointCloud
Library (Rusu and Cousins, 2011). In this implementation, the
algorithm gives as output a centroid point for each supervoxels
which is at the average position, has the average color and
normal of the points in the supervoxel. Also, an adjacency map
is provided which represents a graph of Euclidean proximity of
each supervoxel. Therefore, to find the neighbors of a supervoxel,
going through the adjacency map is enough.

3.2.3. Features Extraction
The visual features extracted from the supervoxels and used to
train the classifier are the concatenation of color histograms with
the CIELab encoding and a geometric descriptor based on FPFH.

For each channel of the CIELab color, a five-bin histogram
is extracted. Then, they are concatenated into one vector of 15
entries.

Fast point feature histogram (FPFH) proposed by Rusu et al.
(2009) is a widely used geometrical descriptor. It is appreciated
for its high discriminative capacity. In the present method,
FPFH is extracted on the central point of the pointcloud
including the targeted supervoxel and its neighbors. The radius
of neighborhood to compute FPFH is set to the size of a
supervoxel, thus the central point FPFH takes into account the
whole considered pointcloud. The central point is the centroid of
the targeted supervoxel. This feature has 33 dimensions.

3.2.4. Building a Relevance Map
Thanks to the online trained classifier, the supervoxels are
weighted with values between 0 and 1. A weight represents the
relevance of a supervoxel, i.e., the probability of a supervoxel to
be part of a component which will produce an effect after the
application of a certain action. Thus, a relevance map is a set
of weighted supervoxels. The classifier called the Collaborative
Mixture Models (CMMs) was introduced in our previous work
(Le Goff et al., 2019).

The conditional probability which formalized an affordance is
the output of CMMs. CMMs are used to classify samples between
two classes (a, e) and (a, e). The first one is the class of effect
occurrence and the second one is the class of absence of effect after
the application of action a. Equation (5) defines the probability of
a feature X to be part of the class (a, e).

P(1 = (a, e)|W,2,X) =
1+ Ŵ(We,2e,X)

2+ Ŵ(We,2e,X)+ Ŵ(We,2e,X)
(5)

Where Ŵ is a Gaussian mixture model (GMM), We are the
weights associated to the GMM of class (a, e), 2e are the
parameters of the multivariate normal distributions of the GMM
associated to (a, e), W = We ∪ We, and 2 = 2e ∪

2e. 1 is added to the numerator and 2 is added to the
denominator to obtain a default probability of 1

2 if both mixtures
are empty.

The parameters of CMMs are the following:
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FIGURE 3 | Schema of the training algorithm of CMMs.

• KE: number of components of the mixture models encoding
the class (a,E) with E ∈ {e, e}. This number is estimated during
the training.
• S = {si,1i}i<I : database of samples and their corresponding

label constituted during the exploration.
• 2E = {µk,6k}k<KE

: parameters of the multivariate normal
distribution of model associated to class 1 with mean µk and
covariance matrix 6k. They are estimated by their sample
estimator.
• WE = {wk}k<KE

: weights of the mixture model associated with
class (a,E). These parameters are computed thanks to their
sample estimators.
• 1 ∈ {(a, e), (a, e)}: class to be predicted by the classifier.

Each class is modeled by a GMM and each GMM is composed of
several multivariate normal distributions. A distribution models
a component. The means and the covariances of the distributions
are computed by their samples estimators.

Figure 3 summarizes the training algorithm used to
build the models. CMMs are trained online in iterations
in which a single new sample is added at a time,
along with its label. Adding a sample consists of three
main steps:

1. If there is no component yet in the class of the new
sample, create a component with as mean the sample and an
initial fixed covariance, otherwise, find the closest component
and add the sample to this component. Finally, update the
parameters of the component;

2. A split operation is applied to the updated component. If it is
not successful themerge operation is then applied on the same
component;

3. One component per class is randomly chosen and the
split operation is applied to each of them. If the selected
component is not split then the merge operation is applied
on it.

From the previous algorithm introduced in Le Goff et al. (2019),
some minor changes have being made. They are described in
Appendix B.

3.2.5. Choice of the Next Area to Explore
From the predictions of the classifier, a choice distribution map is
computed. The choice distribution map is also a set of weighted
supervoxels, but a weight represents the probability for the
supervoxel to be chosen by the system as the next target of
the interaction. A weight is the combination of the uncertainty
and the confidence of the classifier. The higher the uncertainty
and the lower the confidence, the higher is the probability for a
supervoxel to be chosen.

Uncertainty are computed together in one metrics and
confidence in another. Then they are combined to output a
probability of choice of a feature Xi of the i

th supervoxel extracted
on a pointcloud as shown in Equation (6).

Pc(Xi) = u(Xi) ∗ (1− c(Xi)) (6)

Where u(.) is the uncertainty and c(.) is the confidence.

Uncertainty
As CMMs is a probabilistic classifier, its output can give directly
an uncertainty measure. The output of CMMs is a probability of
membership of a sample in a class (see Equation 5). The closer
this probability to 0.5, the more uncertain the classification is.
Uncertainty of classification is computed thanks to the Equations
(7) and (8).

u(Xi) =

{

f (p) |Se| <= |Se|

f (1− p) |Se| > |Se|
(7)

where p = P(1 = (a, e)|W,2,X), Se is the set of samples for
effect e and Se the set of samples for no effect and f is the following
function:

f (x) =

{

−2x(log(2x)− 1) x >= 0.5

−4x2(log(4x2)− 1) x < 0.5
(8)

The function f (.) is plotted in Figure 4.
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FIGURE 4 | Function used for uncertainty estimation (f ). This function gives a

higher probability of choice to uncertain classification, but also to certain

classification to the chosen class, i.e., the one with fewest samples.

The function of Equation (8) and represented in Figure 4 gives
a higher value for classification equal or greater to 0.5. Therefore,
the uncertainty computed this way drives the exploration to
collect samples with features from uncertain area but also from
areas predicted as part of the class with the less samples collected
yet. Thus, the exploration process tends to balance the dataset
between the classes as defined in Equation (7).

Confidence
The classification of CMMs relies on a mapping of the feature
space of normal distributions. The border of these distributions
can give an insight on the least dense areas in the feature space.
The confidence of the classifier for a sample is its probability
of membership in its closest component. This probability is
computed thanks to Equation (9).

P(KE = k|X,2,1) =
wk ∗ G(µk,6k,X)

∑KE−1
i=0 wi ∗ G(µi,6i,X)

(9)

By choosing areas with the lowest confidence, the exploration
gives a focus to areas in which the system has less information.
Therefore, this metric could be interpreted as an approximation
of entropy.

3.2.6. Action Primitives and Effect Detectors

Pushable Objects
The pushable affordance is associated to a push primitive and
a change detector as effect detector. The push primitive is
going through three steps. First, the end-effector is going in an
approach pose near and oriented toward the target. Then, the

end-effector follows a straight line toward the target until going
through it. Thus, if a pushable object is on the target, it will be
pushed. Finally, a reverse motion is applied in which the arm
goes back to its home position. For each interaction, the left or
the right arm is randomly chosen. If no valid plan is found with
the chosen arm then planning is tried with the second arm.

The planning is done within the MoveIt framework (Şucan
et al., 2012; Şucan and Chitta, 2019). This framework provides
planning algorithms with obstacle avoidance. Obstacle avoidance
is used during the approach motion to prevent any involuntary
disturbance in the scene.

The effect detector is a simple change detector of the scene. As
shown in the Figure 5, a difference point cloud is computed (in
white in the Figure 5) by substracting the pointcloud before (the
left picture of the Figure 5) and the one after the interaction (the
right picture of the Figure 5). Then, if the points of the targeted
supervoxel (its center is represented by a red dot in the Figure 5)
is part of the difference pointcloud then a change has occurred.

Pressable Buttons
This affordance is associated with pressable buttons which
activate a signal displayed on a screen visible to the robot. The
action primitive is similar to the push primitive except for the
orientation which is only vertical or horizontal in the robot
frame (the push primitive used to learn the pushable affordance
has a continuous range of orientations). The effect detector is a
recognition system which allows the robot to see if a button is
pushed. The state of the buttons is displayed on a screen like
in the pictures of Figure 6. The state is perceived by the robot
through a visual recognition system implemented with OpenCV.
This system is specific to the interface.

Liftable Objects
Among the pushable parts in the environment the robot will
try to learn liftable parts. It is assumed that liftable parts are
first pushable, thus, liftable affordance is a composite affordance,
composed by the pushable affordance. The probability to afford
the lift primitive is filtered by an already learned probability to
afford the push primitive. Therefore, the exploration is biased by
a relevance map of pushable affordance.

For this affordance, the robot uses a lift primitive that consists
in going above the target, rotating the wrist of its gripper in
a certain orientation, then going down and closing the gripper
before finally going up again and letting the lifted “thing” fall
by reopening the gripper. Like for the push primitive during the
approachmotion to go above the target, the obstacles are avoided.

To detect if something is lifted, the opening of the gripper is
checked before reopening the gripper. If it is not fully closed, the
target will be considered as lifted.

In this primitive the gripper is fixed in the vertical orientation,
thus, only liftable objects laying on a horizontal plane are
considered here. The approach can be extended to any liftable
object with an appropriate lift primitive.

3.3. Building the Affordances Map
The affordances map is a combination of several relevance maps.
Each supervoxel has a set of weights assigned corresponding to
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FIGURE 5 | Visualization of the change detector. The right picture represents a part of a scene before a push and the left picture after a push. The red dot on both

pictures represents the target of the push primitive which is here the upper part of the blue toy. This target corresponds to the center of a supervoxel. The white areas

represent the parts detected as different between both images.

FIGURE 6 | Interface which displays on a screen the state of different interactive modules. For the present study, only the right bottom part is used. It displays the

buttons’ state. The rectangle is red if no button is pushed and it becomes green if at least one button is pushed. (A) No button pushed. (B) At least one button is

pushed.

each relevance. All the weights under a certain threshold are
reduced to zero. The affordances map is represented by assigning
a color to each affordance and no color for supervoxels with
weights all equal to zero.

4. EXPERIMENTS

4.1. Protocol
For each of the three affordances, 4 experiments have been
conducted. An initialization step has been added in the
experiments of liftable objects and pressable buttons in which
the system is forced to gather at least 10 samples of each class.
With a uniform random sampling, the chance to gather positive
samples in these experiments is very low, thus at the beginning
of the experiment, the robot collects only negative samples. This
initial step allows the system to start from a balanced dataset.
Adding this step was not useful for the experiments with the push
affordance as the probability to gather positive samples is higher.

Figure 8 is a collection of pictures representing the objects
used in the experiments: 3 bowls in a pile, 3 mugs in a pile, two
different toy locomotives, Duplo bricks, two identical wooden
cubes, and 5 buttons. Of course, the pile of bowls and mugs
(see Figures 8C,D) can be dismantled during an experiment. The
Duplo bricks are of different colors (red in the Figure 8E): green,
red, purple, orange, yellow. There are five buttons, all are visible
in Figure 7: circular blue (the one in Figure 8H), red, yellow,
green and squared green. Figure 8 indicates in bold for each
object its expected affordance.

4.2. Quality Measures
To assess the performance of the trained classifier precision,
recall, and accuracy are computed by following the Equations
(10) and (11). These measures are computed according to a
ground truth. The ground truth is obtained from a snapshot of
the scene without the objects that afford the studied action which
corresponds to the background. For the pushable affordance, the
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ground truth is exact as it corresponds just to the background
and the buttons. For the pressable buttons, the ground truth is
approximative because only a part of the button is pressable, the
colored central part (see 8h) while the ground truth we have set
takes into account the whole white box. Thus, the performances
should be slightly better than the one presented in the section 5.
For the liftable affordance, the ground truth is even less accurate
as it corresponds to our a priori about what the robot may lift

FIGURE 7 | The setup used for all the experiments. The setup is a toy kitchen

with 5 interactive push buttons integrated into a vertical plane.

or not. An autonomous exploration is interesting and useful
precisely when the ground truth is difficult to set. In our case,
it is difficult to predict exactly the robustness of the lift according
to the robot capacity and the designed lift primitive.

precision =
tp

tp+ fp

recall =
tp

tp+ fn

accuracy =
1

2
(
tp

GTe
+

tn

GTe
)

(10)

Where tp is the number of true positives and tn is the number
of true negatives [i.e., supervoxels well-classified in the class (a, e)
and (a, e)]; fp are false positives, i.e., supervoxels misclassify as
part of class (a, e) and fn are false negatives, i.e., supervoxels
misclassified as part of class (a, e); andGTe is the ground truth for
parts of the environment that produced the expected effect and
GTe is the ground truth for parts of the environment that do not
produce the expected effect. Their definitions, for N supervoxels

FIGURE 8 | Eight different types of objects used in the experiments. The affordance expected to be linked to these objects is indicated in bold. (A) Toy locomotive:

pushable, liftable. (B) Toy locomotive: pushable, liftable. (C) Pile of bowls: pushable. (D) Pile of mugs: pushable. (E) Duplo bricks: pushable, liftable. (F) Toy

car: pushable. (G) Wooden cube: pushable, liftable. (H) Buttons: pressable.
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extracted from a pointcloud, is the following:

tp =

N
∑

i

P(1 = (a, e)|W,2, xi) ∗ (1− δi)

tn =

N
∑

i

P(1 = (a, e)|W,2, xi) ∗ δi

fp =

N
∑

i

P(1 = (a, e)|W,2, xi) ∗ δi

fn =

N
∑

i

P(1 = (a, e)|W,2, xi) ∗ (1− δi)

GTe =

N
∑

i

1− δi

GTe =

N
∑

i

δi

(11)

Where δi is the Kronecker symbol equal to 1 if the ith supervoxel
is part of the background, and otherwise equal to 0; xi represents
the features of the ith supervoxel.

These measures are widely used as quality measures for
supervised learning algorithm.

5. RESULTS

For each experiment, the precision, recall, and accuracy scores
of each replication are presented separately to avoid losing
information.

The precision, recall, and accuracy scores of the experiment
for the pushable affordance (presented in Figure 9) are satisfying
considering the complexity of the setup. The classification quality
is very different for each replication. In the first experiment
(Figure 9A), the classifier converges only around the 150th
interaction with an accuracy around 0.8, a recall varying between
0.6 and 0.8, and a low precision around 0.4. Finally, for this
replication, the quality drops at the end. For the second and third
experiments (Figures 9B,C) the classifier converges around the
60th interaction. For the second replication, the accuracy, recall,
and precision are not stable and the classifier starts diverging
after the 100th interaction. The classifier, of the third replication
(Figure 9C), converges to an accuracy and a recall around 0.8 and
a precision between 0.4 and 0.5 and stays stable. But it diverges
after the 150th interactions. For the last replication (Figure 9D),
it is difficult to isolate a period of convergence of the classifier.
The classification quality of this experiment is very unstable.

For all the replications, the quality of classification diverges at
the end. The divergence is probably due to mislabeled samples.
The instability of the classification quality, clearly visible in the
second replications, is due to the inconsistency of the supervoxel
segmentation when extracted on a video stream as shown in
Figure 10.

The Figure 10 shows three pictures representing push
relevance maps. These relevance maps have been extracted with

the same classifier on the same static scene on a video stream.
The variability of the relevance map over these three images
are due to the extraction of the supervoxels which produces
a different segmentation at each frame. The variability of the
segmentation is due to the noise of the depth stream. The higher
the noise, the higher the variability is. On these pictures, the toy
locomotives and the button are the noisiest areas. On these areas,
the geometrical features can change a lot, which is due to the
variation in the shape of the supervoxels.

The unstability of the results are more deeply discussed in
Section 6.

The precision, recall, and accuracy scores of the experiment
with the buttons are shown in the Figure 11. In this experiment,
the replications give also different results. For the first replication
(Figure 11A), the classifier converges around the 80th interaction
and keep the quality of classification steady around a value
of 0.6 for the accuracy and the precision, a value of 0.5
for the recall. For the second replication (Figure 11B), the
classifier converges around the 75th interactions with an accuracy
around 0.7, a recall around 0.5 and a precision under 0.4, but
this replication starts to diverge around the 160th interaction.
For the third replication (Figure 11C), the classifier converges
quickly to a value between 0.7 and 0.8 for the accuracy,
around 0.6 for the recall while the precision increases slowly
during all the replication. The accuracy and the recall slowly
decrease after the 100th interaction. Finally, the last replication
(Figure 11D) presents poor results. The classifier converges
first between the 50th and 100th interaction, then diverges,
and then converges again to a low classification quality, before
finally diverging.

Overall, the classification is more stable for this experiment
than for the experiments with the pushable affordance. The main
difficulty in this experiment is that the buttons represent a small
area. The size of the actual pushable area is even smaller, about
the size of a supervoxel. This introduces noise on the extracted
features. A solution may be to reduce the size of the supervoxels,
but if a supervoxel contains too few points, the features could
be inconsistent. Moreover, this reduced size creates a strong
requirement in terms of the accuracy of the action primitive to
prevent mislabeling.

Figure 12 represents the performances monitored during
the experiment conducted for the liftable affordances. For the
first and the third replications (Figures 12A,C), the quality
scores have similar shapes, the convergence is reached around
the 100th interaction with a low precision and an accuracy,
and a recall between 0.7 and 0.8. For the first replication,
the recall, and precision are unstable between the 100th and
the 150th interactions. In both, the recall and precision cross
themselves to have a higher precision than recall which can
be seen with a light decrease of the accuracy. For the second
and fourth replications (Figures 12B,D), the classifier converges
after the 100th interaction, with an accuracy around 0.8, a recall
around 0.6, and a higher precision around 0.7. Unlike the two
previous experiments (pushable objects and pressable buttons),
the classification quality does not seem to diverge at the end of
the experiment, except for the forth replication for which the
precision decreases slowly after the 150th interaction.
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FIGURE 9 | (A–D) Plots of precision, recall, and accuracy for pushable affordance. Each plot correspond to one replication of the experiment.

FIGURE 10 | Three push relevance maps extracted from the same scene and with the same classifier on a video stream. The differences between the three maps is

due to the extraction of the supervoxels which produces a different segmentation at each frame. The bottom right picture represents the environment from which the

relevance maps have been extracted.

As in the previous experiment, this experiment gives stable
results. The low precision, observed on the first and third
replications, is probably due to the inaccuracy of the ground

truth. Finally, the stability of the convergence may be due to the
use of a fixed push relevance map to filter the classification which
does not change during the experiment.
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FIGURE 11 | (A–D) Plots of precision, recall, and accuracy for pressable buttons. Each plot correspond to one replication of the experiment.

FIGURE 12 | (A–D) Plots of precision, recall, and accuracy for liftable affordance. Each plot correspond to one replication of the experiment.

Figure 13 represents an affordances map obtained by the
experiments described above. This map represents the areas
categorized as pushable buttons in green, as liftable objects in
purple, and as pushable objects in red. It was obtained by selecting

the best performing classifier among the experiments and at
the best moment inside a replication. Only supervoxels of both
relevance maps with a probability equal or higher of 0.5 are
displayed.
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FIGURE 13 | Affordances map of liftable pressable buttons and pushable

affordances. Colored areas indicate areas classified with a probability above

0.5, in red to afford the push primitive, in purple to afford the lift primitive and in

green to be an pressable buttons. The bottom picture represents the

environment on which the affordances map has been extracted.

An interesting property in this affordance map, is the low
overlap between the parts predicted to be pushable and to be a
pressable button. Also, as expected, the pile of bowl is detected as
only pushable. The other objects are predicted as pushable and
liftable or partially liftable. This affordances map is a proof of
concept of what can be obtained with the proposed approach.
For each experiment, more replications are required for a better
assessment of the method robustness. The instability of the
classifier needs to be dealt with for this approach to be more
reliable.

The source code use to produce this results can be found on
github2.

6. DISCUSSION AND FUTURE WORK

The experiments described in this article provide a proof
of concept of learning affordances from the local level in a
real environment. The results show the possibility of building
affordances map from local features associated to a given action
with a given expected effect. Although the results have shown
a large variability over the four replications done for each
affordance, relevance maps have been produced and combined
into a meaningful affordances map. The relevance maps of the

2https://github.com/robotsthatdream/wave1_relevance_map

pressable and of pushable affordances do not overlap, which
shows the capacity of the classifier to learn different concepts.
The classifier is also able to refine a concept as shown in the
experiment with the liftable affordance. Four different kinds of
problems have been identified as the main causes of the observed
variability and instability.

The most important one is the inconsistency of the supervoxel
extraction over a video stream, as shown in Figure 10. This issue
is directly linked to the active depth camera (kinect v2) used
which produces noise on the depth images. Better cameras would
alleviate the problem. Another possibility would be to include
algorithms able to extract persistent supervoxels. The persistency
of the supervoxels would allow to collect more data during an
experiment and to remove some of the effect classification errors
(Papon et al., 2013b).

The second problem is related to the quality of actions
primitives and associated effect detectors. They greatly condition
what could be learned by the system. Designing general
and accurate action primitives in complex environments is a
challenge. In our experiments, the poor accuracy of the button
pressing and object lifting primitives probably plays a significant
role in the instability of the method. As the generated affordances
map represents the ability of action primitives to generate
expected effects on each part of the environment, the precision
and success rate of those primitives is critical and impacts the
generated affordances map. This is actually expected: if a part
of the environment does not consistently allow to obtain a
given effect, it is normal that the classifier does not reliably
considers it as affording the corresponding action. Further work
on creating more elaborate, more reliable action primitives is
thus expected to significantly improve the precision and stability
of the generated affordances maps. Also, in the principle of
developmental robotic, it will be interesting to connect this
method to other developmental steps which would learn adaptive
and accurate motor skills as well as effect detectors (Kim and
Sukhatme, 2014; Jegorova et al., 2018). Any improvement with
respect to this problem would significantly improve the results,
as shown in our previous work (Le Goff et al., 2019) in which
experiments in simulation have been conducted in a simplified
setup with no primitive and a “perfect” effect detector.

The third problem comes from the features taken into account
by the classifier. Engineered descriptors have been used instead of
learned ones. It has the advantage to require less data to train the
system, but it comes at a price: the features may not be the most
appropriate to distinguish the different parts of the environment.
Relying on the data generated by the system would make the
system more flexible and adaptive. To solve the data generation
problem, the method could rely on engineered features at first
and, once enough data have been generated, trained features
could start to be taken into account by the classifier.

Finally, online learning brings the advantage of providing an
estimation of environment parts category during exploration. It
thus gives criteria to guide the exploration. However, the samples
are processed in the order of arrival. At a certain point of the
learning this order is optimized by the exploration process but
at the beginning the order is random, following the underlying
probability distribution of the explored environment. This initial
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phase is definitively a factor of the high variability of the method.
A solution often used in online learning is a mechanism of
unlearning (Cauwenberghs and Poggio, 2001; Bordes and Bottou,
2005; Saffari et al., 2009). An alternative would be to alternate
between online and offline phases with batch learning.

7. CONCLUSION

In this study, a method is proposed to learn different perceptual
maps called relevance maps relative to specific affordances. The
framework is modular and thus permits to learn relevance maps
relative to different affordances. In this article, as proof of
concept, experiments have been conducted to learn relevance
maps relative to pushable objects, liftable objects, and pressable
buttons. Then, by combining these maps, a new perceptual
map is obtained, called affordances map. This affordances map
allows the robot to perceive the environment through its possible
actions.
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APPENDIX A

This first appendix explains how the Equation 2, about
affordances composition is obtained.

Let consider two affordances associated with 10 = (a0, e0)
and 11 = (a1, e1). It is assumed that if the affordance associated
with11 exists for a visual featureX then the affordance associated
with 10 exists for the same visual feature. In other words, if the
action a1 produces an effect e1 when applied on a part of the
environment with a visual featureX then it is certain that an effect
e0 will occur after the application of an action a0 on the same part
of the environment.

The Equation 2 is based on Bayes’ rule :

P(A|B) =
P(B|A)P(A)

P(B)
(12)

Lets start with the decomposition of the probability of
existence of the affordance 11 knowing the action a1 was applied
on a visual feature X and an affordance 10 exists with the Bayes’
rule:

P(11|X,10) =
P(10|X,11)P(11|X)

P(10|X)
(13)

We know that P(10|X,11) = 1 because, according to
the assumption gave at the beginning of this appendix, if the
probability that the affordance associated with 11 exists then
there is a probability of one that the affordance associated with
10 exists. Therefore the equation become :

P(11|X,10) =
P(11|X)

P(10|X)

P(11|X,10)P(10|X) = P(11|X)

(14)

APPENDIX B

From the algorithm introduced in Le Goff et al. (2019),
the split and merge have been modified. The maximization

of the loglikelihood of the model to validate the splits
and merges have been removed. Also, the split operation
is limited to a maximum number of components per
class. The Algorithms 1 and 2 are the new split and
merge operations used in CMMs for the experiments
in this article. The rest of the CMMs training algorithm
remains unchanged.

Algorithm 1MERGE algorithm

1: procedureMERGE(C,l,M1, ...,MN)
2: C′ ← closest_component(C) ∈ Ml ⊲ Search the closest component

from C inMl

3: if C ∩ C′ 6= ∅ then ⊲ If component C intersect with C’
4: C̃← C ∪ C′

5: Ml ← (Ml \ C,C′) ∪ C̃
6: end if

7: returnM = ∪N
l=1

Ml

8: end procedure

Algorithm 2 SPLIT algorithm

1: procedure SPLIT(C,l,M1, ...,MN)
2: if |Ml| < Kmax then ⊲ If the number of components of class l is

above Kmax

3: returnM = ∪N
l=1

Ml ⊲ Then abandon the split

4: end if

5: C′ ← closest_component(C) ∈ M \ {Ml} ⊲ Search the closest

component from C with a label 6= l

6: if C′ ∩ C 6= ∅ then ⊲ If component C intersect with C’

7: C1,C2 = split(C)

8: Ml ← (Ml \ {C}) ∪ {C1,C2}

9: end if

10: returnM = ∪N
l=1

Ml
11: end procedure

Kmax is the maximum number of components.
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