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Path planning obtains the trajectory from one point to another with the robot’s kinematics

model and environment understanding. However, as the localization uncertainty through

the odometry sensors is inevitably affected, the position of the moving path will deviate

further and further compared to the original path, which leads to path drift in GPS denied

environments. This article proposes a novel path planning algorithm based on Dijkstra to

address such issues. By combining statistical characteristics of localization error caused

by dead-reckoning, the replanned path with minimum cumulative error is generated with

uniforming distribution in the searching space. The simulation verifies the effectiveness

of the proposed algorithm. In a real scenario with measurement noise, the results of the

proposed algorithm effectively reduce cumulative error compared to the results of the

conventional planning algorithm.

Keywords: path planning, greedy search, cumulative error estimation, global planning, Dijkstra

1. INTRODUCTION

To obtain the optimal trajectory from one point to another, path planning needs to combine the
robot’s geometric and dynamic information (Bidot et al., 2013), environmentmap (Peng andGreen,
2019), the initial state and target state (Choset et al., 2005), etc. According to task requirements, the
optimal path seeks the shortest length and the best energy (Ibraheem and Hassan Ajeil, 2018). In
specific tasks, path planning is commonly performed by combining sensor type and performance,
carrier kinematics and dynamics characteristics, and task requirements.

Classical path planning methods consists of heuristic searching, sampling planning, and
model-dependent methods (Yilmaz et al., 2008). In particular, when localizing through IMU (Tick
et al., 2013), visual odometry (He et al., 2020), or other sensors (Paull et al., 2014), none of the
mentioned methods considers the localization uncertainty issue. However, the GPS may be subject
to some limitations in practical applications, especially in underwater scenarios (Li et al., 2019).
In applications with GPS-denied, it is not feasible to combine the robot’s motion attributes with
inaccurate odometry sensors, which will cause localization errors in long-term missions. It is
generally accepted that positioning errors do not affect the planning task since planning is first
performed and then control decisions are made. In robot tasks where errors exist, however, it is
also possible to impact localization errors by changing the path planning strategy.

To address the cumulative error of navigation, many studies first perform accurate statistical
analysis on it. Miller et al. (2010) proposed an error state formula for the navigation algorithm
of an underwater vehicle. The kinematics model of the system is augmented with unknown
parameters from the sensor model, and the difference between the estimation of the real
augmented system equation is expressed as the error state system. And a Kalman filter is
designed to estimate this error state by the measurement residuals of the auxiliary sensor.
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Yin et al. (2013) established a strap-down inertial navigation
system error model based on various error sources of inertial
components. By using Particle Swarm Optimization (PSO) to
optimize the parameters of SVM, the positioning error prediction
method of a navigation system is realized. By redesigning the
system parameters and using data recalculation algorithms, Xu
et al. (2014) proposed an improved alignment method for
Strapdown Inertial Navigation System (SINS) based on Doppler
Velocity Log (DVL). Dai et al. (2016) proposes a particle swarm
algorithm to identify the error parameters of the Delta parallel
robot, and the geometric parameter errors can be identified
by a simple iterative process. Mansouri et al. (2020) settles
positioning uncertainty by defining adaptive weights for tracking
position and speed reference points, and calculating based on
the uncertainty associated with measurement. Accurate error
estimationmethods facilitate the correction and compensation of
navigation positioning. Nevertheless, few studies have effectively
integrated error estimation with the navigation planning process,
which is uncharted territory.

To effectively reduce the navigation error, generally
intermittent global position correction methods based on
GPS, SLAM, acoustic positioning, (Thomson et al., 2017; Chew
and Zakaria, 2019; Marchel et al., 2020), etc. There are also
studies on error compensation based on artificial intelligence
methods (Brossard et al., 2020) or combined with the kinematics
of the robot (Batista et al., 2013). However, in the planning
stage, the navigation error cannot be effectively reduced without
a determined path. Therefore, the existing research generally
solves such problems through fault-tolerant planning. Carlson
et al. (2013) proposed and compared three different strategies
for estimating the change of the robot’s motion, which effectively
reduced the probability of collisions and avoided sources of
error in industrial scenarios. Eaton et al. (2017) proposed a
robust Partially Observable Markov Decision Process (POMDP)
formula, which provides the capability of planning and tracking
with limited observations. Lv et al. (2019) cited the dense
connection method to improve the Q-networks structure to
solve the issue of robot drift by adopting the framework of a
dense network. Sainte Catherine and Lucet (2020) combined
with the improved Hybrid Reciprocating Speed Obstacle (HRVO)
method of tracking error estimation, and adapting the speed
obstacle paradigm to agents with dynamic constraints and
unreliable velocity estimation. Yilmaz et al. (2021) uses the
fuzzy logic network to model dynamic uncertainty, and
proposes a new definition of the error-like vector containing
the pseudo-inverse of the Jacobian matrix. The current method
only considers the fault-tolerance of path planning and does
not apply the mechanism of the cumulative error to avoid
tracking drift, i.e., does not consider the impact of the motion
after planning.

By considering the perceptual uncertainty, some planning
methods consider the generation and elimination strategies
of planned path errors, and thus, new planning methods are
designed. Pilania and Gupta (2017) designs sensor measurements
that depend only on the samples, achieving higher uncertainty
reduction by placing more samples in regions with higher
uncertainty reduction while maintaining enough samples in

regions with poor uncertainty reduction. It also uses uncertainty
measures (instead of distance) to connect new samples to
neighboring nodes, achieving an efficient and high-quality
planning capability. Park et al. (2018) achieved collision
avoidance path planning by considering the uncertainty of
the time-varying trajectories of linearly increasing Autonomous
Ground Vehicles (AGVs) and obstacles, modeling the error
covariance using a tracking filter designed to estimate motion
information, and employing a probabilistic approach to calculate
the collision risk combined with the dynamic characteristics
of AGVs. Papachristos et al. (2019) designed a paradigm that
follows a hierarchical optimization objective and executes it in
a backward horizon manner to implement an uncertainty-aware
path planning strategy. Combining adaptive error sampling
for generating possible path candidates with a utility-based
approach, Lee et al. (2020) implements a path planning task
for safe parking under perceptible uncertainty, which takes into
account detection errors and makes optimal decisions under
uncertainty. Uncertainty generation is mainly obtained through
passive sensors, and unfortunately, the current capability to rely
on inertial navigation alone for path planning under uncertainty
needs to be further explored.

However, in practical applications, system errors and

deviations are inevitable with sensor registration problems.
Failure to use the control strategy to optimize the planning

and motion process, a disastrous deviation will occur in
the tracking process. Our previous study (Wang et al.,

2021) applies reinforcement learning to address this issue

and obtains a path with a relatively smaller cumulative
error by generating a probability sampling. As the

limitation of sampling, the global optimal solution cannot

be obtained.
This article combines a qualitative and quantitative analysis

of the ranging error and traversal advantage of the greedy

search algorithm in the path planning process. To minimize

the accumulated errors in navigation, we obtain an ideal path

that can achieve high accuracy tracking. The key innovation
is the theoretical modeling from the systematic perspective of
error estimation and planning based on greedy search in a
practical scene. In scenarios where measurement errors exist,
the proposed algorithm is effective in reducing the path error
concerning the underlying Dijkstra method. To the best of
the author’s knowledge, this is the first study that considers
the cumulative error of tracking in the pre-planning process
and performs global corrections to form paths with minimal
cumulative error.

The main contributions of this article are as follows:

• Through the statistical qualitative and quantitative analysis
of the cumulative error by odometry positioning, the
qualitative and quantitative expressions for path planning are
summarized.

• Improve the map exploration method of Dijkstra to adapt to
the qualitative expression of reducting cumulative error.

• By iterating and optimizing the cumulative errors of the paths,
the results of their statistics and the global optimal path
are obtained.
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This article is organized as follows: The second part analyzes
the mathematical representation and statistical characteristics
of the cumulation error. The third part proposes a path
planning framework based on the improved Dijkstra method and
optimized cumulative error. In the fourth part, the simulation
planning results are compared and analyzed, and the results are
discussed. Finally, the fifth part concludes the full article and
discusses possible directions for future study.

2. METHODOLOGICAL BACKGROUND

When the global positioning system is unavailable, the robot
has to utilize the attitude sensor and inertial sensor (gyro and
accelerometer) to perform dead-reckoning. Assuming odometry
sensor measurement is only presented in polar coordinates,
and the corresponding noises are distributed with Independent
Identically Distribution (IID), which is determined based on the
comparative statistics of the measured value and the true value
in Fallon et al. (2010). As the presence of noise, robot positioning
by heading projection will produce a continuous accumulation of
errors. Hence, the robot has to calibrate its positions regularly.

The main challenge of numerical analysis of errors is the drift
caused by relative noise measurements, i.e., the cumulative error
increases nonlinearly with distance or time. This article uses
statistical properties to study the growth rate of cumulative error
in our previous article (Zhang et al., 2013). In this article, the
robot is viewed as a mass, i.e., there are no kinematic constraints.
This means that localization information can only be derived
from inertial navigation measurements and cannot be corrected
for localization based on kinematic models. Still, the proposed
method applies to all types of robots, since it only considers
planning paths and does not involve path tracking strategies.

The robot position is estimated based on angle and
distance in polar coordinates, as shown in Figure 1. Define the
corresponding metric:

θmn = θn + θ̃n; d
m
n = dn + d̃n (1)

where n is the time index, d and θ represents relative distance and
direction between consecutive frames. The pose measurement
(θmn , dmn ) is then consisted of ground truth (θ̄n, d̄n) and error
(θ̃n, d̃n) with SD δθ and δd.

The principle of dead-reckoning in the Cartesian coordinate
system is as follows:

xmn =
∑n

i=1

(
dmi sin

∑i

j=1
θmj

)
(2)

ymn =
∑n

i=1

(
dmi cos

∑i

j=1
θmj

)
(3)

The accumulation of drift by noise measurement is unbounded.
The lower bound can be estimated by Cramer2Rao bound
(Arrichiello et al., 2012), but the upper bound cannot be
estimated by traditional methods, especially when there are no
basic facts. However, the error distribution properties of multiple
statistics can be used for the statistical estimation of errors.

FIGURE 1 | Relationship between robot relative measurement and position.

When the true value is known, the trajectory can also be
expressed as:

xmn = xn + x̃n

=
∑n

i=1

(
dmi sin

∑i

j=1
θmj

)

=
∑n

i=1

((
di + d̃i

)
sin
∑i

j=1

(
θj + θ̃j

))

=
(∑n

i=1
di +

∑n

i=1
d̃i

)
·

[
sin
∑i

j=1
θj cos

∑i

j=1
θ̃j

+ cos
∑i

j=1
θj sin

∑i

j=1
θ̃j

]

(4)

Then the mathematical expression of the cumulative error in the
x-direction can be obtained:

x̃n =
∑n

i=1 di

[ sin∑i
j=1 θj

(
cos

∑i
j=1 θ̃j − 1

)

+ cos
∑i

j=1 θj sin
∑i

j=1 θ̃j

]

+
∑n

i=1 d̃i

[ sin∑i
j=1 θj cos

∑i
j=1 θ̃j

+ cos
∑i

j=1 θj sin
∑i

j=1 θ̃j

] (5)

In fact, the cumulative error depends to a large extent on basic
facts. In addition, the expected and variance of the cumulative
error are estimated based on statistical properties:

E
[
x̃|θ , d

]
=
∑n

i=1
di

[
sin
∑i

j=1
θj

(
e−

iδ2
θ
2 −1

)]
(6)

var
(
x̃|θ , d

)
= E

[
x̃|θ , d

]
− E2

[
x̃|θ , d

]

= A+ B+ C − E2
[
x̃|θ , d

] (7)
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FIGURE 2 | Initial global map.

where:

A =
∑n

i=1
d2i

[
sin2

∑i

j=1
θj

(
0.5e−2iδ2θ + 1.5− 2e−

iδ2
θ
2

)

+0.5cos2
∑i

j=1
θj

(
e−2iδ2θ + 1

)]
(8)

B = 2
∑n−1

i=1

∑n
p=1+i didp




sin2
∑i

j=1 θj cos1θ

[
1+ 0.5

(
1+ e−2iδ2θ

)
e−0.5(p−i)δ2θ

e−0.5iδ2θ − e−0.5iδ2θ e−0.5(p−i)δ2θ

]

+ sin
∑i

j=1 θj sin1θ cos
∑i

j=1 θj


1+ 0.5
(
1+ e−2iδ2θ

)
e−0.5(p−i)δ2θ + 1

−e−0.5iδ2θ − e−0.5iδ2θ e−0.5(p−i)δ2θ

−0.5
(
1− e−2iδ2θ

)
e−0.5(p−i)δ2θ




+cos2
∑i

j=1 θj cos1θ · 0.5
(
1− e−2iδ2θ

)
e−0.5(p−i)δ2θ




(9)

C =
∑n

i=1

[
0.5sin2

∑i

j=1
θj

(
e−2iδ2θ + 1

)

+0.5cos2
∑i

j=1
θj

(
1− e−2iδ2θ

)]
(10)

The above formula is an explicit expression of expectation and
variance of cumulative error. Since the global planning map is
a priori, this article uses the true value to calculate expectation
and variance. However, the ground truth is quite challenging to
acquire in real scenarios. To effectively evaluate the error in a
real scene, the expected values of the true moment are evaluated
conditional on the noisy relative measurements:

E
[
x̃mn
]
=
∑n

i=1
dmi

(
e−iδ2θ − e−0.5iδ2θ

)
sin
∑i

j=1
θmj (11)

var
(
x̃mn
)
= A1 + B1 + C1 − E2

[
x̃mn
]

(12)
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FIGURE 3 | The error map generated by the original Dijkstra and improved Dijkstra. (A) The error map of original Dijkstra. (B) The error map of original Dijkstra.

where:

A1 =
∑n

i=1

(
dmi
)2





(
0.5e−2iδ2θ + 1.5

−2e−0.5iδ2θ

)


 0.5

(
1+ e−2iδ2θ

)
sin2

∑i
j=1 θmj

+0.5
(
1− e−2iδ2θ

)
cos2

∑i
j=1 θmj




+0.5
(
1+ e−2iδ2θ

)

 0.5

(
1+ e−2iδ2θ

)
cos2

∑i
j=1 θmj

+0.5
(
1+ e−2iδ2θ

)
sin2

∑i
j=1 θmj







(13)

B1 = 2
∑n−1

i=1

∑n
p=1+i d

m
i d

m
p





 0.5

(
1+ e−2iδ2θ

)
· sin2

∑i
j=1 θmj

+0.5
(
1− e−2iδ2θ

)
· cos2

∑i
j=1 θmj




·
[
cos1θme−0.5(p−i)δ2θ

]
[· · · ]

+
[
sin
∑i

j=1 θmj · sin1θm · cos
∑i

j=1 θmj

·e−2iδ2θ e−0.5(p−i)δ2θ
]
[· · · ]

+


 0.5

(
1+ e−2iδ2θ

)
· cos2

∑i
j=1 θmj

+0.5
(
1− e−2iδ2θ

)
· sin2

∑i
j=1 θmj




[
cos1θme−0.5(p−i)δ2θ

]
[· · · ]





(14)

C1 =
∑n

i=1





0.25
(
e−2iδ2θ + 1

)


(
e−2iδ2θ + 1

)
· sin2

∑i
j=1 θmj

+
(
1− e−2iδ2θ

)
cos2

∑i
j=1 θmj




+0.25
(
1− e−2iδ2θ

)


(
1+ e−2iδ2θ

)
· cos2

∑i
j=1 θmj

+
(
1− e−2iδ2θ

)
· sin2

∑i
j=1 θmj








(15)

More details could be found in Zhang and Knoll (2016) in the
same manner, the complete cumulative errors are, therefore,
calculated. In the next section, the Dijkstra-based global
exploration method will first be used to traverse the map
and determine the error-minimizing path for each location by
evaluating the error of each path, thus achieving the task of
reducing path drift.

3. PATH PLANNING METHOD BASED ON
DIJKSTRA

To obtain a globally optimal path with the smallest error in the
prior map, it is necessary to traverse the entire map and generate
an error map. That is, similar to the “breadcrumbs map,” the
error map has nothing to do with the endpoint but only with the
starting point. Meanwhile, a greedy algorithm means that only
the locally optimal solution is selected, but the part relative to the
starting point is known, which is conducive to the optimization
of the algorithm. Therefore, this algorithm can only choose the
global traversal method, not the heuristic method. This article
improved the Dijkstra algorithm based on its principle and the
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FIGURE 4 | Global error map after iteration.

qualitative results of error statistical calculations. At the same
time, the quantitative calculation of path error is applied to iterate
and update the error map, and finally, obtain the global error
map. In the case of a given endpoint, the minimum error path
can be quickly obtained through the global error map.

3.1. Improved Dijkstra
Breadth-First Search (BFS) (Broder et al., 2000) or Dijkstra (Kang
et al., 2008) can be used to traverse the map, which is suitable
for obtaining a global error map. However, the calculation of the
cumulative error needs to be based on the entire path rather than
part of the path segment, which does not apply to algorithms
based on father-node exploration. Therefore, based on the results
of Section II and previous study, the cumulative error has a great
relationship with angle change of path measurement. That is,
relative to starting point, the later the robot changes its angle,
the smaller the cumulative error of path. The improved Dijkstra
method will make the path generation of each point based on the
latest turn path of starting point in the process of traversing the
global map.

Since the Dijkstra algorithm is graph-based, we first initialize
graph G and give a starting point. This algorithm is not to obtain
the shortest path but to obtain a path that turns farther from
starting point based on the nature of the cumulative error. The
algorithm needs to initialize an empty set S to store those vertices
that have been traversed and initialize a set Q which includes all
vertices G.V . Q uses the data structure of the smallest priority
queue, in which the key is the number of angle changes from
starting point to vertex, expressed as trun_num. Additionally,
the vertex with the least number of angle changes is popped up
each time.

In the rasterized map, the change of the robot’s
movement angle is discrete. This article chose
{(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1)}
as optional movement directions G.Adj[u]. To reduce the
cumulative error of each path, we limit the angle change of each
vertex adjacent point, i.e., the angle of each movement |θ | ≤ π

4 .
In other words, G.Adj_limited[u] has only 3 adjacent vertices.

For the weight of the edge, we first make the path go
straight, and have to make a turn before turning. In the
algorithm, ω_d(u, v) is the distance from u → v, and
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FIGURE 5 | The number of calculations per iteration under different parameters.

ω(u, v, u.π) is the number of turns of the edge u →

v. Since the traversal only considers the current node and
adjacent nodes, the father node of the current node u.π
is also required. The final algorithm will first traverse the
nodes that have not turned, and then traverse the paths with
fewer turns until the initial global error graph is generated.
The complete pseudo-code of the improved Dijkstra algorithm
is shown in Algorithm 1. The algorithm aims to facilitate
subsequent point set updates and calculations by generating large
error variances.

In the scenario where the sensor exists errors, the statistics of
the cumulative error of the entire path are simple, but the error in
the planning stage cannot be measured. Similar to the inability
to obtain the best-first search strategy for the shortest path in
concave obstacle environments, in addition, common planning
methods are unable to move toward minimum error from the
beginning. This is since larger errors may occur in the following
trips, leading to larger overall deviations. This article evaluates
the cumulative error based on the entire path from starting point
to each point. Since the global map is a priori, the cumulative
error of each path could be calculated through the true value of
each measurement (θ̄ , d̄) based on Equation (6).

3.2. Global Iteration Strategy
In the initial global error map, the path from starting point will
pass through obstacles and intersect. That is, some points will be
reached by the paths on both sides of the obstacle together, which
results in different cumulative error values for this point. For the
points where there are differences in cumulative error caused by
different paths, this article initializes and updates the minimum
priority queue Q_dif to determine the point set that needs to
be iteratively calculated. In the iterative process, the error of the
point set is recalculated and the path is updated to obtain a path
with a smaller cumulative error for each point. The pseudo-code
of strategy for updating queue is shown in Algorithm 2.

To accurately get each point that needs to be iterated, we
need to update the key-value value of each point in the traversal
map in advance. In this article, it is defined as: v.value =

max(G.Adj[u].error − v.error)/v.d, which is due to the smaller
scale of the map and the absolute difference in cumulative error
is not obvious. For maps with obvious error differences, we can
judge whether the point needs iteration according to absolute
error difference v.value_absolute = max(G.Adj[u].error −

v.error). To adapt to different scale maps, we simultaneously
apply two benchmarks to update the queue Q_dif .
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FIGURE 6 | Comparison of two typical paths.

FIGURE 7 | Error estimation in path planning domain. (A) Average error in X-axis, (B) average error in Y-axis, and (C) average distance error.

TABLE 1 | Comparison of cumulative error of different methods for typical endpoints.

Endpoint
Dijkstra method Proposed method

Error reduction ratio (%)

x y Error x y Error

(170, 90) −0.07575 −0.41536 2.324235 −0.46782 −0.33134 2.171227 7.0471

(90, 60) −0.22252 −0.28665 0.621104 −0.17048 −0.28777 0.541869 14.62261

(130, 105) −0.30649 −0.44412 1.634435 −0.29347 −0.36458 1.485441 10.03032

(175, 140) −0.28543 −0.38564 2.698455 −0.43593 −0.45941 2.675029 0.875752

(240, 135) −0.02745 −0.39179 4.497923 −0.37665 −0.36357 3.914085 14.91635

(200, 110) −0.07465 −0.32521 3.181955 −0.32244 −0.37822 2.857053 11.37192

(125, 100) −0.28511 −0.4254 1.49236 −0.2927 −0.4051 1.369209 8.994302

(87, 145) −0.45045 −0.28108 1.596313 −0.49804 −0.25758 1.564632 2.024825
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FIGURE 8 | Results of the proposed method compared with artificial potential field (APF), RRT*, A*, and probabilistic roadmap (PRM) methods.

For point set Q_dif , the algorithm traverses its adjacent
nodes each time to calculate the minimum error. The algorithm
requires that error difference is caused by the path passing
through two sides of an obstacle, so the correlation between the
current node path and adjacent node path needs to be calculated.
To be logical, we define CORRELATION(path1, path2) =∑

(dis(path1, path2) < D)/LEN(path). It should be noted that,
as the short distance between adjacent nodes, if their paths pass
on the same side of an obstacle, the path correlation will be close
to 1. The complete pseudo-code of the iteration strategy is shown
in Algorithm 3.

In the algorithm, A,B,C, and D each represent a threshold
constant, which is only for adjusting the algorithm effect and
has no other representative meaning. Better convergence can be
achieved by dynamically setting the threshold size according to
the map size and task requirements.

4. SIMULATION

4.1. Implementation Details
A 2D grid map is used as a graphical basis for algorithmic
simulations. In this article, a map with a scale of 250/150 was
chosen and the starting point was randomly set to (22, 22).
The priority map consists of obstacles, driveable areas, and
boundaries as shown in Figure 2. In general, the robot can
accurately reach the end-point through the tracking process,
with the help of high-precision GPS. Considering cumulative

error generated by the noise-ranging sensor when GPS-denied,
this article assumed that sensor error satisfies the Gaussian
distribution, i.e., the error distributions in distance and angle are
N(0, 0.01) and N(0, 0.02).

The original Dijkstra method can only find the shortest
path, which is not the path with the smallest cumulative error
in individual scenarios. Especially every time robots pass an
obstacle, it will cause a fault in the error map. The improved
Dijkstra can delay turns from the starting point to each point,
which is achieved by turning restrictions. The initial path graph
generated by improved Dijkstra is conducive to the realization of
later iterative convergence. The improved error graph is shown
in Figure 3.

It is necessary to set a reasonable threshold in the update
point set and algorithm iteration. According to the map scale
in this article, we set the minimum allowable value that is A =

0.001, the path absolute error difference B = 0.1, the minimum
allowable correlation between two paths C = 0.8, and the path
correlation judgment distance is based onD = 5.0. Aftermultiple
iterations of the algorithm, the smallest error global map is finally
generated, as shown in Figure 4. Additionally, the path of each
point in the error map can be obtained by the way of parent node
search, namely PATH(s, u).

For different thresholds, there are some differences in the
convergence ability of the algorithm, although convergence
results can be obtained for all. Additionally, this algorithm is also
suitable for sensor calculation with different error distributions.
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Algorithm 1: Improved Dijkstra.

Require: Dijkstra(G, s)
Ensure: Original global error map G_error

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for each node n ∈ G.V do

3 n.turn_num = 0
4 n.d = ∞

5 n.π = NIL
6 end for

7 s.turn_num = 0
8 S = ∅

9 Q = G.V
10 while Q 6= ∅ do

11 u = heappop (Q)
12 S = S ∪ {u}
13 for each node v ∈ G.Adj_limited[u] do
14 if v.turn_num > u.turn_num+ ω(u, v, u.π) then
15 v.turn_num = u.turn_num+ ω(u, v, u.π)
16 v.π = u
17 v.d = u.d + ω_d(u, v)
18 v.error = Equation (6)
19 v.path = PATH(s, v)
20 end if

21 end for

22 end while

Algorithm 2: Update Iteration Point Set.

Require: Original global error map G_error
Ensure: Point set to be iterated Q_dif

1 Q_dif = ∅

2 Q_temp = G.V
3 while Q_temp 6= ∅ do

4 u = heappop (Q_temp)
5 for each node v ∈ G.Adj[u] do
6 if v.value > A or v.value_absolute > B then

7 Q_dif = Q_dif ∪ {v}
8 end if

9 end for

10 end while

We changed the settings of the relevant values, and the number
of points processed in each iteration eventually tended to 0, as
shown in Figure 5.

4.2. Analysis
Using the classic path planning algorithm, all points in drivable
areas can be reached from starting point through at least one
path. However, considering the influence of cumulative error
caused by the above-mentioned sensor noise, the actual path will
deviate from the original path and endpoint to a large extent.
By adding measurement noise, we select a few representative
path results and apply Equation (11) calculation to compare
the effect of the planning algorithm in this article to reduce
cumulative error.

Algorithm 3: Error Map Iteration Strategy.

Require: Point set to be iterated Q_dif
Ensure: Final error map G_error

1 while Q_dif 6= ∅ do

2 u = heappop (Q_dif )
3 for each node v ∈ G.Adj[u] do
4 if ERROR(v.path + u) < u.error and

CORRELATION(v.path+ u, u.path) < C then

5 u.π = v
6 u.path = v.path+ u
7 u.error = ERROR(v.path+ u)
8 end if

9 end for

10 end while

Set the starting point as (170, 90), (240, 135), two different
paths are obtained through the classic Dijkstra method and the
method in this article (the path can also be the same in some
scenarios, especially the scene where the path does not pass
through obstacles). In Figure 6, the results of different algorithms
are represented by dashed and solid lines, respectively. In the case
that the noise of the measuring sensor conforms to the Gaussian
distribution, the path error calculated by 1,000 Monte Carlo runs
is shown in Figure 7. The cumulative error only considers the
starting point and the endpoint, and the problem of large error
boundaries caused by the path process will not be within the
scope of this article.

To reflect the effectiveness of the algorithm, this article
selects 8 typical points, and compares the cumulative error
statistics of algorithm results and the classical Dijkstra
planning results, as shown in Table 1. The proposed
algorithm can effectively reduce cumulative error when
the sensor is biased. When a robot relies on its inertial
navigation, it is easy to deviate from the default path. During
the tracking process based on the proposed algorithm
path, the endpoint is closer to the target point. The
reduction of cumulative error verifies the effectiveness of
the proposed algorithm.

The proposed method is an iterative extension of Dijkstra,
and the level of cumulative error in its planning results is
significantly improved compared with the original method.
To evaluate the effectiveness of the proposed method, the
planning results of the proposed algorithm were evaluated
in comparison with typical path planning methods, such
as the artificial potential field method (APF) (Wang et al.,
2020), Grid-based RRT* (RRT*) (Chao et al., 2018), A*
(Zafar et al., 2021), and probabilistic roadmap method (PRM)
(Agha-mohammadi et al., 2014) methods. The error levels
of the different methods were analyzed by bypassing 1,000
Monte Carlo tests under measurement white noise, as shown
in Figure 8.

The proposed method has an advantage over the existing
probability-based, graph search-based planning methods at the
path error level. Note that the APF method falls into local
optimum several times in the test, especially in maps containing
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recessed obstacles, while the method in this article does not have
this problem. Among the compared methods, the PRM-based
planning method has the largest path accumulation error on
account of the probabilistic uncertainty.

5. DISCUSSION

The results of the proposed method are the same as those of
the Dijkstra method when the path from the starting point does
not pass through obstacles, i.e., the shortest path is also the
path with the smallest error. The advantage of the proposed
planning method is demonstrated after the path encounters
and bypasses the obstacles. Unfortunately, the computational
effort of the proposed algorithm increases exponentially as the
number of obstacles increases. The algorithm in this article is
suitable for applications in scenarios with sparse obstacles (e.g.,
underwater obstacle avoidance for AUVs). The discretization of
the map contributes to the lack of smoothness of the planned
paths, which can be optimized at a later stage by smoothing
algorithms. This will also be a problem that we need to solve
in the future. Theoretically, the proposed algorithm achieves
pathfinding with minimum estimation error by traversing the
global map.

6. CONCLUSION

To address the problem of path planning in the absence of
missing global positioning, a path planning algorithm with
minimum cumulative error considering sensor drift is proposed.
First, the statistical characteristics of sensor noise relative to
the cumulative error of the measurement are analyzed. Second,
considering the cumulative error in the positioning process, the
greedy search algorithm is used to traverse the global map and
generate an initial error map. Finally, the proposed algorithm
is iterated to generate a smooth global error map, and the path
planning task is carried out accordingly. Through simulation

analysis and comparison of results, the algorithm significantly
improves the safety of collision avoidance during tracking and
effectively reduces the cumulative error in complex conditions.

The motion of robots is continuous and regular. Future study
will need to accommodate continuous motion strategies and
complex path planning tasks in multidimensional spaces and
incorporate robot kinematic models to accommodate more types
of robots.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CW provided the original motivation and idea. CC performed
the writing of the manuscript and data analysis. DY completed
the design of the simulation experiment. GP provided financial
support and FZ is responsible for the resources and revision
of the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This study was supported by the National Natural Science
Foundation of China (52171322), the National Key Research
and Development Program (2020YFB1313200), and the
Fundamental Research Funds for the Central Universities
(D5000210944).

ACKNOWLEDGMENTS

The authors appreciated the participation of all the subjects in
the experiment.

REFERENCES

Agha-mohammadi, A.-A., Chakravorty, S., and Amato, N. (2014).

FIRM: sampling-based feedback motion-planning under motion

uncertainty and imperfect measurements. Int. J. Robot. Res. 33, 268–304.

doi: 10.1177/0278364913501564

Arrichiello, F., Heidarsson, H. K., and Sukhatme, G. S. (2012). “Opportunistic

localization of underwater robots using drifters and boats,” in IEEE

International Conference on Robotics & Automation (Saint Paul, MN).

Batista, P., Silvestre, C., and Oliveira, P. (2013). Globally exponentially stable filters

for source localization and navigation aided by direction measurements. Syst.

Control Lett. 62, 1065–1072. doi: 10.1016/j.sysconle.2013.07.010

Bidot, J., Karlsson, L., Lagriffoul, F., and Saffiotti, A. (2013). Geometric

backtracking for combined task and motion planning in robotic systems. Artif.

Intell. 247, 229–265. doi: 10.1016/j.artint.2015.03.005

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,

et al. (2000). Graph structure in the web. Comput. Netw. 33, 309–320.

doi: 10.1016/S1389-1286(00)00083-9

Brossard, M., Barrau, A., and Bonnabel, S. (2020). AI-IMU dead-reckoning. IEEE

Trans. Intell. Veh. 5, 585–595. doi: 10.1109/TIV.2020.2980758

Carlson, J., Spensieri, D., Söderberg, R., Bohlin, R., and Lindkvist, L. (2013). Non-

nominal path planning for robust robotic assembly. J. Manuf. Syst. 32, 429–435.

doi: 10.1016/j.jmsy.2013.04.013

Chao, N., Liu, Y.-K., Xia, H., Ayodeji, A., and Bai, L. (2018). Grid-based RRT∗ for

minimum dose walking path-planning in complex radioactive environments.

Ann. Nucl. Energy 115, 73–82.

Chew, W. K., and Zakaria, M. A. (2019). Outdoor localisation for

navigation tracking using differential global positioning system

estimation (DGPS): positioning errors analysis. Mekatronika. 1, 103–114.

doi: 10.15282/mekatronika.v1i2.4994

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., et al.

(2005). Principles of Robot Motion: Theory, Algorithms and Implementation.

Robotics & Automation Magazine IEEE.

Dai, Z., Liu, C., X. Sheng, and Zhang, D. (2016). The error analysis

and calibration of delta parallel robot. Mechatronics 22, 8–12.

doi: 10.16413/j.cnki.issn.1007-080x.2016.03.002

Eaton, C. M., Chong, E. K. P., and Maciejewski, A. A. (2017). “Robust UAV

path planning using POMDP with limited FOV sensor,” In 2017 IEEE

Conference on Control Technology and Applications (CCTA) (Maui, HI),

1530–1535.

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2022 | Volume 16 | Article 821991

https://doi.org/10.1177/0278364913501564
https://doi.org/10.1016/j.sysconle.2013.07.010
https://doi.org/10.1016/j.artint.2015.03.005
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1109/TIV.2020.2980758
https://doi.org/10.1016/j.jmsy.2013.04.013
https://doi.org/10.15282/mekatronika.v1i2.4994
https://doi.org/10.16413/j.cnki.issn.1007-080x.2016.03.002
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Path Planning With Uncertaining Localization

Fallon, M. F., Papadopoulos, G., and Leonard, J. J. (2010). “Cooperative AUV

navigation using a single surface craft,” in Field and Service Robotics, eds A.

Howard, K. Iagnemma, and A. Kelly (Berlin: Springer), 331–340.

He, M., Zhu, C., Huang, Q., Ren, B., and Liu, J. (2020). A review of monocular

visual odometry.Vis. Comput. 36, 1053–1065. doi: 10.1007/s00371-019-01714-6

Ibraheem, I., and Hassan Ajeil, F. (2018). Path planning of an autonomous mobile

robot in a dynamic environment using modified bat swarm optimization. arXiv

arXiv:1807.05352.

Kang, H. I., Lee, B., and Kim, K. (2008). “Path planning algorithm using the

particle swarm optimization and the improved Dijkstra algorithm,” in 2008

IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial

Application, vol. 2 (Wuhan), 1002–1004.

Lee, S., Lim, W., and Sunwoo, M. (2020). Robust parking path planning with

error-adaptive sampling under perception uncertainty. Sensors 20, 3560.

doi: 10.3390/s20123560

Li, G., Svogor, I., and Beltrame, G. (2019). Long-term pattern formation

and maintenance for battery-powered robots. Swarm Intell. 13, 21–57.

doi: 10.1007/s11721-019-00162-1

Lv, L., Zhang, S., Ding, D., and Wang, Y. (2019). Path planning via

an improved DQN-based learning policy. IEEE Access 7, 67319–67330.

doi: 10.1109/ACCESS.2019.2918703

Mansouri, S. S., Kanellakis, C., Lindqvist, B., Pourkamali-Anaraki, F., and

Nikolakopoulos, G. (2020). A unified NMPC scheme for mavs navigation with

3D collision avoidance under position uncertainty. IEEE Robot. Autom. Lett. 5,

5740–5747. doi: 10.1109/LRA.2020.3010485

Marchel, U., Naus, K., and Specht, M. (2020). Optimisation of the position of

navigational aids for the purposes of SLAM technology for accuracy of vessel

positioning. J. Navig. 73, 282–295. doi: 10.1017/S0373463319000584

Miller, P., A., Farrell, J., A., Zhao, Y., and Djapic, V. (2010). Autonomous

underwater vehicle navigation. IEEE J. Ocean. Eng. J. Devoted Appl. Elect.

Electron. Eng. Ocean. Environ. 35, 663–678. doi: 10.1109/JOE.2010.2052691

Papachristos, C., Mascarich, F., Khattak, S., Dang, T., and Alexis, K. (2019).

Localization uncertainty-aware autonomous exploration and mapping with

aerial robots using receding horizon path-planning. Auton. Robots 43, 2131–

2161. doi: 10.1007/s10514-019-09864-1

Park, J., Choi, J., and Choi, H.-T. (2018). COLREGS-compliant path planning

considering time-varying trajectory uncertainty of autonomous surface vehicle.

Electron. Lett. 55, 222–224. doi: 10.1049/el.2018.6680

Paull, L., Saeedi, S., Seto, M., and Li, H. (2014). AUV navigation and localization: a

review. IEEE J. Ocean. Eng. 39, 131–149. doi: 10.1109/JOE.2013.2278891

Peng, Y., and Green, P. N. (2019). Environment mapping, map constructing,

and path planning for underwater navigation of a low-cost µAUV in a

cluttered nuclear storage pond. IAES Int. J. Robot. Autom. (IJRA) 8, 277–292.

doi: 10.11591/ijra.v8i4.pp277-292

Pilania, V., and Gupta, K. (2017). Localization aware sampling and connection

strategies for incremental motion planning under uncertainty. Auton. Robot.

41, 111– 132. doi: 10.1007/s10514-015-9536-y

Sainte Catherine, M., and Lucet, E. (2020). “A modified hybrid reciprocal

velocity obstacles approach for multi-robot motion planning without

communication,” in Proceedings of the 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Las Vegas, NV:

IEEE). doi: 10.1109/IROS45743.2020.9341377

Thomson, D., Dosso, S. E., and Barclay, D. R. (2017). Modeling AUV localization

error in a long baseline acoustic positioning system. IEEE J. Ocean. Eng. 43,

955–968. doi: 10.1109/JOE.2017.2771898

Tick, D., Satici, A., C., Shen, J., Gans, and N. (2013). Tracking control

of mobile robots localized via chained fusion of discrete and continuous

epipolar geometry, IMU and odometry. IEEE Trans. Cybern. 43, 1237–1250.

doi: 10.1109/TSMCB.2012.2227720

Wang, C., Cheng, C., Yang, D., Zhang, F., and Pan, G. (2021). “Path Planning and

Simulation Based on Cumulative Error Estimation,” in Cognitive Systems and

Signal Processing. ICCSIP 2020. Communications in Computer and Information

Science, Vol. 1397, eds F. Sun, H. Liu, and B. Fang (Singapore: Springer),

131–141. doi: 10.1007/978-981-16-2336-3_12

Wang, D., Wang, P., Zhang, X., Guo, X., Shu, Y., and Tian, X.

(2020). An obstacle avoidance strategy for the wave glider based

on the improved artificial potential field and collision prediction

model. Ocean Eng. 206, 107356. doi: 10.1016/j.oceaneng.2020.

107356

Xu, B., Liu, Y., Shan, W., and Wang, G. (2014). Error analysis and compensation

of gyrocompass alignment for SINS onmoving base.Math. Problems Eng. 2014,

1–18. doi: 10.1155/2014/373575

Yilmaz, B. M., Tatlicioglu, E., Savran, A., and Alci, M. (2021). Self-adjusting fuzzy

logic based control of robot manipulators in task space. IEEE Trans. Ind.

Electron. 69, 1620–1629. doi: 10.1109/TIE.2021.3063970

Yilmaz, N. K., Evangelinos, C., Lermusiaux, P., and Patrikalakis, N. M. (2008).

Path planning of autonomous underwater vehicles for adaptive sampling

using mixed integer linear programming. IEEE J. Ocean. Eng. 33, 522–537.

doi: 10.1109/JOE.2008.2002105

Yin, X., Sun, Y., and Wang, C. (2013). Positioning errors predicting method of

strapdown inertial navigation systems based on PSO-SVM.Abstract Appl. Anal.

2013, 1401–1429. doi: 10.1155/2013/737146

Zafar, M., Anjum, M., and Hussain, W. (2021). LTA∗: local tangent

based a∗ for optimal path planning. Auton. Robots 45, 209–227.

doi: 10.1007/s10514-020-09956-3

Zhang, F., and Knoll, A. (2016). Systematic error modeling and bias estimation.

Sensors 16, 729. doi: 10.3390/s16050729

Zhang, F., Simon, C., Chen, G., Buckl, C., and Knoll, A. (2013). “Cumulative

error estimation from noisy relative measurements,” in 16th International IEEE

Conference on Intelligent Transportation Systems (ITSC 2013) (The Hague),

1422–1429.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wang, Cheng, Yang, Pan and Zhang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 March 2022 | Volume 16 | Article 821991

https://doi.org/10.1007/s00371-019-01714-6
https://doi.org/10.3390/s20123560
https://doi.org/10.1007/s11721-019-00162-1
https://doi.org/10.1109/ACCESS.2019.2918703
https://doi.org/10.1109/LRA.2020.3010485
https://doi.org/10.1017/S0373463319000584
https://doi.org/10.1109/JOE.2010.2052691
https://doi.org/10.1007/s10514-019-09864-1
https://doi.org/10.1049/el.2018.6680
https://doi.org/10.1109/JOE.2013.2278891
https://doi.org/10.11591/ijra.v8i4.pp277-292
https://doi.org/10.1007/s10514-015-9536-y
https://doi.org/10.1109/IROS45743.2020.9341377
https://doi.org/10.1109/JOE.2017.2771898
https://doi.org/10.1109/TSMCB.2012.2227720
https://doi.org/10.1007/978-981-16-2336-3_12
https://doi.org/10.1016/j.oceaneng.2020.107356
https://doi.org/10.1155/2014/373575
https://doi.org/10.1109/TIE.2021.3063970
https://doi.org/10.1109/JOE.2008.2002105
https://doi.org/10.1155/2013/737146
https://doi.org/10.1007/s10514-020-09956-3
https://doi.org/10.3390/s16050729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Path Planning in Localization Uncertaining Environment Based on Dijkstra Method
	1. Introduction
	2. Methodological Background
	3. Path Planning Method Based on Dijkstra
	3.1. Improved Dijkstra
	3.2. Global Iteration Strategy

	4. Simulation
	4.1. Implementation Details
	4.2. Analysis

	5. Discussion
	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


