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A cognitive agent performing in the real world needs to learn relevant concepts

about its environment (e.g., objects, color, and shapes) and react accordingly.

In addition to learning the concepts, it needs to learn relations between

the concepts, in particular spatial relations between objects. In this paper,

we propose three approaches that allow a cognitive agent to learn spatial

relations. First, using an embodied model, the agent learns to reach toward

an object based on simple instructions involving left-right relations. Since the

level of realism and its complexity does not permit large-scale and diverse

experiences in this approach, we devise as a second approach a simple visual

dataset for geometric feature learning and show that recent reasoning models

can learn directional relations in di�erent frames of reference. Yet, embodied

and simple simulation approaches together still do not provide su�cient

experiences. To close this gap, we thirdly propose utilizing knowledge bases

for disembodied spatial relation reasoning. Since the three approaches (i.e.,

embodied learning, learning from simple visual data, and use of knowledge

bases) are complementary, we conceptualize a cognitive architecture that

combines these approaches in the context of spatial relation learning.

KEYWORDS

spatial relation learning, deep neural networks, hybrid architecture, embodied

language learning, distant supervision, frame of reference

1. Introduction

Spatial concepts and relations are essential for agents perceiving and acting in the

physical space. Because of the ubiquitous nature of spatial concepts and relations, it is

plausible from a developmental point of view to believe that they are “among the first to

be formed in natural cognitive agents” (Freksa, 2004). Endowing an artificial cognitive

agent with the capability to reliably handle spatial concepts and relations can thus be

regarded as an important task in AI and, in particular, in deep learning, which has

become a predominant paradigm in AI (LeCun et al., 2015).

In this paper, we present three different but complementary approaches to spatial

relation learning with deep neural networks and propose a way to integrate them. In the

first approach, a robotic agent collects experiences in its environment, learning about

space in an embodied way. This approach allows the agent to ground the embodied
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experience similar to how humans would do and help the agent

learn more accurate linguistic concepts suitable for human-

robot interaction (Bisk et al., 2020). In such a learning setup,

however, the variety of experiences is limited due to multiple

factors such as exploration costs, limited complexity of explored

environments, robot limitations in sensory, processing, and

physical capabilities, which are not only present in the real

physical environments, but also to a lesser extent in simulated

environments. To increase the variety of experiences, further

approaches are required.

The second approach utilizes computer-generated large-

scale image data for spatial relation learning. An immediate

advantage of this approach is that data generation is cheaper

than in the first approach, such that training a large model with

millions of samples is possible. This allows learning of complex

relations, which can depend on different frames of reference.

However, concerning detail, the simplified sensory input is

insufficient for embodied multimodal learning. Furthermore,

concerning variety, the number of automatically generated

relations is still not on par with the variety of relations

encountered in the real world.

In the third approach, a diverse and large amount of

structured data from knowledge bases is used, which can

be manually curated, crowd-sourced, or extracted from text

resources on the web. This kind of data reflects human

knowledge and experiences in unlimited domains beyond any

specific scenarios. A limitation of this approach is that it accesses

primarily semantic information from which spatial relations

need to be inferred1 and they often do not involve directional

relations2.

These different, complementary approaches of data access

have fostered the development of distinct tasks and of distinct

classes of models: typical embodied models process sequences

of multimodal data and output actions for robot control;

models using disembodied image data are frequently used for

classification; models using disembodied data from knowledge

bases process symbolic information and are often used for

inference and reasoning. We argue that all three approaches,

although not directly compatible, are necessary to solve real-

world tasks that involve spatial relation learning (cf. Figure 1).

In this paper, we provide an example model for each of the three

approaches. Moreover, we sketch a concept for their integration

into a unified neural architecture for spatial relation learning.

Our contributions in this paper can be summarized

as follows:

1 For example, “the cup holds a drink” has the implicit spatial meaning

that the drink is inside the cup (cf. Collell et al., 2018).

2 According to Collell and Moens (2018), the spatial relations left

and right comprise only <0.1% of the well-known visual genome

dataset (Krishna et al., 2017).

FIGURE 1

Spatial relations between objects can be obtained in di�erent
ways. Consider the instruction to the robot: “Take the cup to the
left of the fruit bowl to water the plant.” Prior embodied
experiences are needed for grounding the instruction in the real
world. From its camera image, the robot can infer that there are
cups on the table, but it needs to resolve “to the left of the
fruit bowl” to use the correct cup. To infer that the plant, which
is not in the robot’s field of view, is on the windowsill, the robot
can use prior knowledge, e.g., retrieved from a knowledge base,
since it is a typical location for a plant.

1. We test an embodied language learning model on a

realistic scenario with a 3D dataset including spatial

relations (Section 3).

2. We present a new image data set and evaluate state-of-the-art

models on spatial relation learning (Section 4).

3. We propose a way to apply a relation learning approach

that uses data from knowledge bases to learning spatial

relations (Section 5).

4. We provide a concept for integrating the three approaches

and discuss further extension possibilities (Section 6).

2. Related work

In this section, we discuss previous work that is relevant for

this paper, where we discuss models for spatial relation learning

and embodied language learning. We introduce datasets that

involve spatial relations and contrast them with the Qualitative

Directional Relation Learning (QDRL) dataset that we propose

in this paper.

2.1. Embodied learning models

For embodied learning, an embodied agent (e.g., a robot)

needs to act using its whole body or parts thereof (e.g., arms,

hands, etc.) in an environment. As we are interested in spatial

relation learning within the scope of this paper, and since it is a

subset of language learning, in this part, we refer to the models

that learn language in an embodied fashion. Specifically, we
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focus on embodied language learning with object manipulation.

For a detailed and extensive review on language and robots,

please refer to Tellex et al. (2020) where NLP-based robotic

learning approaches are compared and categorized based on

their technicalities and the problems that they address.

Early robotic language learning approaches focused on

mapping human language input to formal language which

could be interpreted by a robot (Dzifcak et al., 2009; Kollar

et al., 2010; Matuszek et al., 2012, 2013). Dzifcak et al. (2009)

introduced an integrated robotic architecture that parsed natural

language directions created from a limited vocabulary in order

to execute actions and achieve goals in an office environment

by using formal logic. Similarly, Kollar et al. (2010) proposed an

embodied spatial learning system that learned how to navigate

in a building according to given human language input by

mapping the natural language directions into formal language

clauses and grounding them in the environment to find the

most probable paths. Further, Matuszek et al. (2013) introduced

an approach that could parse natural language commands

to a formal robot control language (RCL) in order to map

directions to executable sequences of actions depending on the

world state in a navigation setup. Moreover, Matuszek et al.

(2012) put forward a joint multimodal approach that flexibly

learned novel grounded object attributes in the scene based

on the linguistic and visual input using an online probabilistic

learning algorithm. These early works were all symbolic learning

approaches, while we are interested in neural network-based

learning approaches in this paper.

As embodied language learning usually involves executing

actions according to language input or describing those actions

using language, it generally requires not only language and

visual perception but also proprioception. Recently, numerous

studies have been reported in which different objects are

manipulated by a robot for embodied language learning (Hatori

et al., 2017; Shridhar and Hsu, 2018; Yamada et al., 2018;

Heinrich et al., 2020; Shao et al., 2020). Hatori et al. (2017)

present a multimodal neural architecture which is composed of

object recognition and language processing modules intended

to learn the mapping between object names and actual objects

as well as their attributes such as color, texture, or size for

moving them to different boxes, especially in cluttered settings.

Shridhar and Hsu (2018) introduce the INGRESS (interactive

visual grounding of referring expressions) approach that has

two streams, namely self-reference (describing the object with

inherent characteristics in isolation) and relation (describing the

object according to its spatial relation to other objects), and

that can generate language expressions from input images to be

compared with input commands to locate objects in question to

pick them with the robotic arm. Yamada et al. (2018) propose

the paired recurrent autoencoders (PRAE) model, which fuses

language and action modalities in the latent feature space via

a shared loss, for bidirectional translation between predefined

language descriptions and simple robotic manipulation actions

on objects. Heinrich et al. (2020) propose a biologically inspired

crossmodal neural network approach, the adaptive multiple

timescale recurrent neural network (adaptive MTRNN), which

enables the robot to acquire language by listening to commands

while interacting with objects in a playground environment.

Shao et al. (2020) put forward a robot learning framework that

combines a neural network with reinforcement learning, which

accepts a linguistic instruction and a scene image as input and

produces a motion trajectory, trained to obtain concepts of

manipulation by watching video demonstrations from humans.

2.2. Spatial relation learning datasets

Spatial relation learning can be understood as a subproblem

of visual relationship detection (VRD) (Lu et al., 2016; Krishna

et al., 2017) that has as its task predicting the subject-predicate-

object (SPO) triples from images. As the SPO triples are often

biased toward frequent scenarios (e.g., a book on a table),

datasets such as the UnRel Dataset (Peyre et al., 2017) and

the SpatialSense dataset (Yang K. et al., 2019) were proposed

to reduce the effect of the dataset bias. A task that is more

general than visual relation detection and implicitly requires

spatial relation learning is visual question answering (VQA),

whose goal is to answer questions on a given image (Antol et al.,

2015; Goyal et al., 2017; Wu et al., 2017).

Existing datasets for VRD and VQA do not distinguish

between different frames of reference, which aggravates not

only the difficulty of spatial relation prediction but also the

difficulty of analyzing the performance of the models. To

overcome the limitations of the existing datasets, in Section 4

we propose the Qualitative Directional Relation Learning

(QDRL) dataset for analyzing the model performance on

spatial relation learning in different frames of reference. Similar

to the existing visual reasoning datasets CLEVR (Johnson

et al., 2017), ShapeWorld (Kuhnle and Copestake, 2017), and

SQOOP (Bahdanau et al., 2019), QDRL is a generated dataset

that allows for controlled evaluations of themodels. But different

from the former three datasets, whose spatial relations are

exclusively based on an absolute frame of reference, QDRL also

allows us to test model performance concerning intrinsic and

relative frames of reference.

2.3. Spatial relation learning models

One of the early approaches to learning spatial relations

is the connectionist model proposed in Regier (1992), which

was developed as a part of the L0 project (Feldman et al.,

1996). As an early connectionist model it is characterized

by its involvement of several hand-engineered components,

e.g., the object boundaries and orientations of the objects are

preprocessed and not learned from data. In Collell and Moens
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(2018), the authors propose a model that predicts the location

and the size of an object based on another object that is

in relation to it. The model uses bounding boxes and does

not distinguish between left and right for location and size

prediction. For general VRD and VQA problems, most models

rely on the cues from the language models they employ and

use the bounding box information (Wu et al., 2017; Lu et al.,

2019; Tan and Bansal, 2019). Contrary to the VRD and VQA

models, models for visual reasoning such as FiLM (Perez et al.,

2018) and MAC (Hudson and Manning, 2018) do not rely on

bounding boxes or pretrained language models. Furthermore,

these two models do not assume any task-specific knowledge,

which is for example exploited by neuro-symbolic approaches

or neural module networks (Andreas et al., 2016; Yi et al., 2018).

3. Embodied spatial relation learning

Having a body and acting in the environment is essential

for cognition as human cognition relies upon having embodied

context-dependent sensorimotor action capabilities in the

environment, i.e., perception and action are inseparable in

experienced cognition (Varela et al., 2017), since humans

perceive the world through a variety of sensors and act in

the world with their motor functions (Arbib et al., 1986).

Similarly, machines cannot truly infer truemeanings fromwords

without experiencing the real world with vision, touch, and

other sensors (Arbib et al., 1986). Therefore, embodiment is

also a necessary condition in spatial relation learning: by having

an embodied agent situated in the environment we can learn

grounded meanings of spatial relations such as left or right.

A simple robotic scenario generally involves a robot

manipulating a few objects on a table. The robot may either

execute actions according to given commands in textual/audio

form or translate actions to commands. This requires a

crossmodal architecture that involves multiple modalities like

vision, language, and proprioception. Using multiple modalities

helps for the case of spatial relation learning since seeing the

object to be manipulated (vision), grounding commands that

are associated with actions (language) and registering joint angle

trajectories (proprioception) are all different interpretations of

the world. For example, when executing a command such as

“push the left object,” both seeing the objects on the table

and moving the arm of the robot in the correct trajectory with

learned joint angles support learning the position “left.”

3.1. A bidirectional embodied model

A bidirectional embodied model, such as the PRAE (paired

recurrent autoencoders; Yamada et al., 2018), is attractive to

approach grounding of language, since it is able to both

execute simple robot actions given language descriptions and

FIGURE 2

Bidirectional embodied model.

FIGURE 3

The NICO robot (Kerzel et al., 2017) in the simulation
environment (Özdemir et al., 2021). (Left) NICO is sliding the
right cube. (Right) NICO is pulling the left cube. In both
segments, NICO’s field of view is shown in the top right insets.

to generate language descriptions given executed and visually

perceived actions. In our recent extension of the model in a

robotic scenario (Özdemir et al., 2021), schematically shown

in Figure 2, two cubes of different colors are placed on a

table at which the NICO robot (Kerzel et al., 2017) is seated

to interact with them (see Figure 3). Given proprioceptive

and visual input, the approach is capable of translating robot

actions to textual descriptions. The proposed Paired Variational

Autoencoders (PVAE) extension allows to associate each robot

action with eight description alternatives, and provides one-

to-many mapping, by using Stochastic Gradient Variational

Bayes (SGVB).

The model consists of two autoencoders: a language and

an action VAE. The language VAE learns descriptions while

the action VAE learns joint angle values conditioned on the

visual input. After encoding, the encoded representations are

used to extract latent representations by randomly sampling

from a Gaussian distribution. A binding loss brings the two

VAEs closer by reducing the distance between two latent

variables. Additionally, we introduced a channel-separated

CAE (convolutional autoencoder), for the PVAE approach,

for extracting visual features from the egocentric scene

images (Özdemir et al., 2021). The channel separation refers

to training the same CAE once for each RGB channel and
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concatenating the features extracted from the middle layer of

the CAE for each color channel to arrive at the combined visual

features. The PVAE with channel-separated CAE visual feature

extraction outperforms the standard PRAE (Yamada et al.,

2018) in the one-to-many translation of actions into language

commands. The approach is significantly more successful in

the case of three color alternatives per cube and also with six

color alternatives compared to PRAE. Our findings suggest that

variational autoencoders facilitate better one-to-many action-

to-description translation and address the linguistic ambiguity

between an action and its probable descriptions in the simple

scenario shown in Figure 3. Moreover, channel separation in

visual feature extraction leads to a more accurate recognition of

object colors.

3.2. Embodied spatial relation learning
dataset

The previously mentioned works on bidirectional

autoencoders do not experiment with the models’ spatial

relation learning capabilities. The instructions that the model

processes are composed of three words with the first word

indicating the type of action (push, pull, or slide), the second the

cube color (six color alternatives) and the last the speed at which

the action is performed (slowly or fast). The command “slide

yellow slowly” and “pull pink fast” are example descriptions

used for the model (cf. Figure 3). Therefore, the corpus

includes 36 possible sentences (3 action × 6 color × 2 speed)

without the alternative words and 288 possible sentences are

created by replacing each word with an alternative (36 × 23).

Moreover, the dataset consists of 12 action types (e.g., push left,

pull right etc.) and 12 cube arrangements (e.g., pink-yellow,

red-green etc.), thus of 144 patterns (12 action type × 12

arrangement).

We extend this corpus by adding “left“ or “right“

as a new term to each description. Therefore, above example

descriptions become “slide right yellow slowly” and “pull

left pink slowly,” respectively—the descriptions are composed

of four words.3 Color words may also be omitted so that the

model needs to rely on the spatial specification. For simplicity,

the cubes are placed on two fixed positions and the two cubes on

the table are never of the same color. We have trained the model

with the modified descriptions using the same hyperparameters

as in Özdemir et al. (2021) for 15,000 iterations with a learning

rate of 10−4 and batch size of 1004.

3 The use of left and right can involve reference objects that are

not explicitly mentioned. For example, “slide right yellow slowly” implies

that there is a reference object in the scene (e.g., the pink cube in Figure 3)

and the yellow object is—as seen by the agent—to the right of the

reference object.

TABLE 1 Performance of PVAE on bidirectional translation.

Translation type Evaluation measure Train (%) Test (%)

Action→Language Description accuracy↑ 100 100

Language→Action nRMSE↓ 0.53 0.55

Green background indicates good performance.

3.3. Results of the PVAE model

To translate actions to descriptions, we use the action

encoder and language decoder: given joint angle values and

visual features, we expect the model to produce the correct

descriptions. For the bidirectional aspect of PVAE, we also test

the language-to-action translation capability. For this task, we

give as input one of the eight alternative descriptions for each

pattern (action-description-arrangement combination) and we

expect the model to predict the corresponding joint angle values.

To that end, we use the language encoder and action decoder of

PVAE. Both tasks are evaluated using the same trained model.

The results are as follows:

• PVAE is able to translate from actions to descriptions with

100% accuracy for all 144 patterns, including 108 training

and 36 test patterns (see Table 1). This matches the results

reported in Özdemir et al. (2021).

• The predicted joint angle values are tightly close to the

original values, as can be seen in Figure 4 with qualitative

results and in Table 1 with average quantitative results in

terms of the normalized root-mean-square error (nRMSE)

between the original and predicted joint trajectories.

Therefore, we expect the robot to execute correct actions

according to the given instructions.

It is arbitrary to describe an action with both the relative

position and color of the object being manipulated in this

scenario due to the cube arrangements. However, when two

cubes of the same color are present on the table, adding relative

position information into descriptions is necessary to avoid

confusion—we do not test this since the dataset (Özdemir

et al., 2021) does not involve two cubes of the same color

simultaneously on the table. Furthermore, we can also be sure

that the same action-to-description translation performance

could be achieved by removing the color term from the

descriptions as the position information of the object can be

extracted through proprioception only, i.e., joint angle values,

without the need for the vision modality. This is because the

position of the cube being handled can be inferred from the

4 For more details on the hyperparameters and dataset details please

refer to Özdemir et al. (2021).
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FIGURE 4

Examples of original and predicted joint angle trajectories for four di�erent actions. The predicted values are generated by PVAE, given language
descriptions and conditioned on visual input. Solid lines show the ground truth, while the dashed lines, which are often hidden by the solid lines,
show the predicted joint angle values. The titles denote the action types, e.g., “PULL-R-SLOW” means pulling the right object slowly. The
ground truth action trajectories with joint angle values were generated with an inverse kinematics solver in the simulation
environment (Özdemir et al., 2021).

proprioception as action types include the position (left or right)

rather than the color of the cube.

For practical reasons, we do not simulate the robot with

predicted joint angle trajectories. Due to certain subtleties

in object manipulation (contact point etc.), there may be

divergences in the simulated kinematics where the objects are

moved toward compared to original trajectories. Note further

that, compared to a human of the same size, the armmovements

of our robot (i.e., the NICO robot; Kerzel et al., 2017) are

more constrained due to fewer degrees of freedom, short arms,

self-obstruction by the limbs, and by its inflexible trunk. We,

therefore, set up only a simple scenario with left-right relation

in the robot’s egocentric frame of reference. In the following

section, we tackle more complex spatial problems with multiple

frames of reference.

4. Spatial relation learning using
image data

Investigating how well neural networks learn the geometric

features underlying different spatial relations is an important

step toward building robust deep learning models for learning

spatial relations. In this section, we propose a new dataset

that we call the Qualitative Directional Relation Learning

(QDRL) dataset, which allows for testing the performance

of deep learning models on directional relational learning

tasks. We evaluate the performance of representative end-to-

end neural models on the QDRL dataset concerning different

frames of reference and their generalizability to unseen

entity-relation combinations (also known as compositional

generalizability).

4.1. Directional relation learning

Humans adopt different strategies when giving instructions

to robots, where different frames of reference play a

role (Tenbrink et al., 2002). There are three kinds of frames of

reference according to Levinson (1996). In an absolute frame

of reference, the location of an entity is given by a fixed frame

of reference shared by all entities (cf. Figure 7). In an intrinsic

frame of reference, each object determines the reference frame

given by its orientation (cf. Figure 7). In a relative frame of

reference, the direction between two entities determines the

frame of reference for locating another third entity (cf. Figure 7).

In this section, we evaluate two deep learning models,

FiLM (Perez et al., 2018) and MAC (Hudson and Manning,

2018). Schematically, Figure 5 shows that they take as input

a raw RGB image and a question as a sequence of strings.

These are turned into vectors v and q using a convolutional

neural network (CNN) and a recurrent neural network (RNN),
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FIGURE 5

Spatial relation learning model.

respectively. They produce a text answer as output, which here

reduces to true or false. The two models differ in how they

process v and q. As generic visual reasoningmodels they are fully

differentiable and do not assume any task-specific knowledge

(e.g., bounding boxes or the structure of the question).

The FiLM network processes v through a sequence of

ResNet (He et al., 2016) blocks where the output values before

the final ReLu activation function in each block are affinely

transformed. The parameters for the affine transformations

are obtained from the question vector q through a linear

transformation. This way, FiLM allows the question to modulate

what information passes through each ResNet block function,

which helps sequential reasoning.

The main idea of the MAC network is to model a reasoning

process by keeping a sequence of control operations and a

recurrent memory, where the control operations decide what

information to retrieve from the image, and the memory retains

information relevant for each reasoning step.

4.2. The qualitative directional relation
learning dataset

The Qualitative Directional Relation Learning (QDRL)

dataset we propose consists of (image, question, answer) triples5.

Here, the question is a simple statement about the spatial relation

between the objects in the image and is of the form (head,

relation, tail), e.g., (rabbit, left_of, cat). The answer can be

either true or false and depends on the adopted frame

of reference, and the distribution of the truth values of the

answers is balanced, such that no bias can be exploited. The

image is of size 128× 128 with a black background and contains

non-overlapping entities of size 24 × 24. As entities we chose

face emojis that have clear front sides and facilitate detecting

orientations. The samples are generated as follows. First, a fixed

number n of emoji names are randomly chosen from 38 possible

emoji names. Then a head entity h, a tail entity t, a relation r

5 The code for reproducing the results in this section can be

downloaded from https://github.com/knowledgetechnologyuhh/QDRL.

and an answer a are randomly selected so as to form an (h, r, t)

question triple and the ground-truth answer a. To prepare a

corresponding image, the n entities are randomly rotated and

placed in the image until the constraint [(h, r, t), a] is satisfied.

An example with ground truth answers concerning different

frames of reference is given in Figure 6.

As directional relations we use {above, below, left_of,

right_of} for absolute and intrinsic frames of reference

and {in_front_of, behind, left_of, right_of} for a

relative frame of reference. Examples of the directional relations,

where frames of reference are taken into consideration, are given

in Figure 7.

The QDRL dataset encourages a neural network model to

learn the (oriented) bounding box of the reference entity as it

induces the decision boundaries for different relations, where the

kind of bounding box a model has to learn depends on the given

frame of reference. In an absolute frame of reference, amodel has

to learn the axis-aligned bounding box of the reference entity.

In an intrinsic frame of reference, a model has to additionally

learn the orientation of the reference entity and the bounding

box that is aligned to that orientation. In a relative frame bsof

reference, a model has to determine the centers of the reference

entity and the source entity that “sees” the reference entity and

align the bounding box to the direction from the center of the

source entity to the center of the reference entity.

4.3. Experiments on the QDRL dataset

In this section, we evaluate the performance of the FiLM

and the MAC networks on the QDRL dataset with respect

to different frames of reference and their compositional

generalizability, i.e., their generalizability to unseen entity-

relation combinations. To this end, we train the two models

on 1,000,000 (image, question, answer) triples and validate

on 10 10,000 (image, question, answer)-triples, where we

vary the following parameters for each experiment: (i) frame

of reference and (ii) for absolute and intrinsic frames

of reference the number of entities in each scene (∈

{2, 5}).

In addition to the standard validation set, to test how the

models generalize compositionally, we hold out a subset S

of 18 entities from the 32 entities appearing in the training

set and make sure that every question in the training set

involves at least an entity that is not in S. We then create a

dataset consisting of 10,000 (image, question, answer) triples

exclusively with the entities from S and call it the compositional

validation set. This way it is guaranteed that the set of

questions in the training set has no overlap with the set of

the questions in the compositional validation set. This allows

us to test whether a model is able to learn to disentangle

entities and relations as well as to learn the syntactic structures,
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FIGURE 6

An example of a QDRL dataset sample. Given an image, in an absolute and an intrinsic frame of reference a question about the image is a triple
(entity1, relation, entity2), and in a relative frame of reference, a question about the image is a quadruple (entity1, relation, entity2, entity3).
As can be seen in the ground truth answers to the question, di�erent frames of reference (FoR) lead to di�erent answers.

FIGURE 7

The three frames of reference according to Levinson (1996). (Left) In an absolute frame of reference, the location of an entity is given by a fixed
frame of reference shared by all entities (above is fixed to the north, here, of the cat). (Middle) In an intrinsic frame of reference, an object has its
own frame of reference given by its orientation (here, the cat is oriented toward the northeast). (Right) In a relative frame of reference, the
direction given by two entities (here, the direction from the rabbit to the cat) determines the frame of reference for locating another third entity
(here, dog).

such that they can deal with unseen combinations of entities

and relations.

All model hyperparameters, except for the number of FiLM

blocks (∈ {2, 4, 6}) and theMAC cells (∈ {2, 8}) that we optimize,

are taken fromBahdanau et al. (2019). For training, we choose 32

as the batch size and apply early stopping based on the model’s

performance on the validation set.

4.4. Results by FiLM and MAC models

In Table 2, we report the accuracy results of the experiments.

From the table, we can observe the following.

• Learning directional relations in an intrinsic frame of

reference and a relative frame of reference is more

challenging than in an absolute reference, which intuitively

makes sense as the models have the extra burden to learn

the orientations.

• All models achieve relatively high performance on the

validation set, which indicates that both FiLM and MAC

have sufficient capacity to learn the training distribution.

• Regarding the compositional generalization set, for the

FiLM model the difficulty of the tasks increases in the

order of absolute, intrinsic, and relative frame of reference,

whereas the MAC model is not affected by the frames

of reference, and consistently outperforms the FiLM

model. The performance gap between MAC and FiLM is

significant in the case of relative frames of reference.

• The MAC model shows overall a smaller gap between the

performances on the validation set and the compositional

validation set. Even though MAC does not perform better

than FiLM on the validation set, its performances on the

compositional validation set are consistently better than

those of FiLM.

These results demonstrate the good ability of neural networks to

learn spatial relations in diverse frames of reference. However,

due to the simplicity of the simulated dataset, it will be necessary

to test the models’ capabilities on more realistic 3D data (cf.

Section 3). Since it is difficult to model the prior knowledge

about spatial relations in the real world, in the following section

we will consider the possibility of making use of existing

knowledge bases.
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TABLE 2 Accuracies of FiLM and MAC networks on the QDRL dataset.

FoRa # Entsb
FiLM MAC

Valc Compd Val Comp

Absolute
2 0.996 0.912 0.985 0.929

5 0.996 0.933 0.992 0.958

Intrinsic
2 0.979 0.882 0.973 0.927

5 0.978 0.862 0.967 0.937

Relative 3 0.978 0.745 0.978 0.975

aFrame of reference. b# Entities. cValidation set. dCompositional validation set. Green

background indicates good performance, red indicates worse performance.

5. Spatial relation learning using
knowledge bases

People have created several large-scale commonsense

knowledge bases to store relational knowledge about objects

in structured triples (Speer et al., 2017; Ji et al., 2021; Nayak

et al., 2021), such as (person, riding, horse) and (plant,

on, windowsill). Intuitively, relational triples in commonsense

knowledge bases store expected prior relations between

objects, which can provide useful disembodied learning signals

for relation detectors. Combined with object detectors, the

relation detectors can produce structured graph representations

of the scene, which can be useful for robots to obtain

a deep understanding of the environment and perform

subsequent interactions.

To leverage commonsense knowledge bases for visual

relation detection, we have proposed the visual distant

supervision technique in Yao et al. (2021). Visual distant

supervision aligns commonsense knowledge bases with

unlabeled images to automatically create distantly labeled

relation data, which can be used to train any visual relation

detectors. The underlying assumption is that the relations

between two objects in an image tend to be the same as their

relations in the knowledge bases. As shown in the example in

Figure 8, since the object pair (bowl, cup) is labeled with relation

beside in knowledge bases, an image with object pair (bowl,

cup) will have beside as a candidate relation for the pair.

In this way, visual distant supervision can train visual relation

detectors without any human-labeled relation data, achieving

strong performance compared to semi-supervised relation

detectors that utilize several seed human annotations for each

relation (Chen et al., 2019).

However, the assumption of distant supervision inevitably

introduces noise in its automatic label generation, such as

the relation label beside for the object pair (bowl, plant)

in Figure 8. The reason is that distant supervision only

depends on object categories for relation label generation,

without considering the complete image content or spatial

layout. To alleviate the noise in distant supervision, we have

proposed a denoising framework that iteratively refines the

probabilistic relation labels based on the EM optimization

method (Yao et al., 2021). When human-labeled relation data is

available, pretraining on distantly labeled data can also bring in

improvements over fully supervised relation detectors.

Despite its effectiveness in learning relations, distant

supervision is not always useful for spatial relation learning

(e.g., there is no prior knowledge about whether a cup with

water should be to the left or to the right of the fruit

bowl in Figure 8). However, some relations have implicit spatial

information, which can potentially be useful for spatial relation

learning. For example, the relation riding implies the spatial

relation on, where this implication can be obtained from

linguistic knowledge bases, such as WordNet (Fellbaum, 1998).

Based on the implications, relation representations learned via

distant supervision can be transferred to help spatial relation

learning. Effectively leveraging distant supervision for spatial

relation learning is, therefore, an important research problem.

6. Concept of an integrated
architecture

The previous sections presented complementary models

for spatial reasoning: a model to collect embodied, but

costly, experiences; a model for plentiful, but oversimplifying,

simulations; and a knowledge base enriched, but disembodied,

technique. To achieve the intelligent behavior of an AI agent,

the merits of such models must be combined. However,

neural models mostly cannot be trivially combined by using

a modular setup with well-defined interfaces. Since our

models have overlapping functionality, their combination

needs to be designed in the architecture and by joint

training of the architecture components. In the area of

multi-task learning, there have been recent attempts to

tackle multiple datasets and tasks, combining multiple

inputs and outputs, by a single model (Kaiser et al., 2017;

Pramanik et al., 2019; Lu et al., 2020). The conjecture is

that while multiple tasks are concurrently learned, learning

one task can help the others. To transfer knowledge or

skills, parts of the neural architecture are shared between

the tasks.

Figure 9 shows a concept for our proposition that follows a

bidirectional model architecture (cf. Section 3), which enables

tasks in two directions: The task to act, given language

instructions, is best performed by embodied learning in a

realistic 3D simulation (green arrows indicate the direction

of the information flow). The task to produce language

descriptions, given (visual) sensor input (red pathway), lends

itself to using simulated visual data containing geometric

relations that can be easily produced in large quantities (cf.
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FIGURE 8

Visual distant supervision (Yao et al., 2021) retrieves plausible relations between the detected objects (only a selection of bounding boxes and
relations is shown). Correct relation labels are highlighted in bold and green thick arrows.

FIGURE 9

Concept of an integrated architecture for spatial relationship learning. Our presented models cover only input-to-output. The loop closure with
the environment depicted here indicates an extension, such as dialogue with a human. Smaller loops on the decoders indicate low-level
feedback-driven behaviors such as reaching a target object or producing a sentence.

Section 4). The representations on the central part benefit

from joint training by forming a joint abstract representation

of entities, which are independent of the input modality. The

bidirectionality of the model ensures compatibility with both

directions, while a large overlap in the joint central part should

ensure that extensive spatial relation learning on large datasets

can help the other tasks.

Disembodied knowledge (cf. Section 5), e.g., from a

knowledge base, enters the model as another input (blue arrows

in Figure 9). The recognition of concepts, given language and

sensor input, will activate related disembodied knowledge to

help to finish the task, which can be achieved by first retrieving

related relational triples from the knowledge base, and then

obtaining enhanced representations of the language and sensor
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input with the retrieved knowledge. For example, when a robot

is asked to “fetch the cup,” related relational triples will be

retrieved, such as (cup, on, table), represented into embeddings,

and integrated into the representation of the instruction so

that the robot will expect to find the cup on the table first

(see also Figure 1).

A practical methodology to incorporate disembodied

knowledge into an integrated model is using a graph neural

network (GNN) (Gori et al., 2005; Liu and Zhou, 2020).

The disembodied knowledge is represented in the form of a

graph structure where nodes capture the concepts and edges

capture the existing relations between the nodes. Nodes hold

a vector, while interactions over the edges are represented as

neural networks, which share weights in case of same relation

types. To compute a target function, vectors on each node

are iteratively updated. The structure of the GNN can be

derived from knowledge bases such as ConceptNet or Visual

Genome, and the structure will be typically sparse, i.e., only

a small proportion of node pairs will be connected. The

trainable GNN parameters, including the input and readout

connections that connect the GNN layer to the main neural

model architecture (blue arrows in Figure 9), can be trained

as part of the integrated architecture. This requires a dataset,

in which the model function can benefit from the GNN,

such as commonsense reasoning (Talmor et al., 2019). In our

integrated model, the graph neural network would first need

relevant nodes activated, which correspond to items from the

visual input or to words from the language input. Such a

mapping could be established by supervised pretraining. The

GNN converts commonsense knowledge regarding object-to-

object relations, which is encoded in its structure, to be used

by the distributed representations of our neural model. Thereby

the external knowledge gets fused with representations obtained

from the instruction and visual signals in order to enhance

spatial reasoning (Yang J. et al., 2019).

While our models are trained in a supervised way from pairs

of input and output vectors, interacting with the environment

means that actions are iteratively performed by an embodied

learning agent (Figure 9 shows the environment in the loop).

There are many approaches to train the action policy of an agent,

including supervised learning (Shah et al., 2021), imitation

learning (Chevalier-Boisvert et al., 2019; Chaplot et al., 2020;

Shridhar et al., 2021), and reinforcement learning (Hermann

et al., 2017; Chaplot et al., 2018; Li et al., 2021). Among these

approaches, reinforcement learning is most versatile because

it does not require human-labeled data for all situations, but

the agent can learn its action policy by interacting with the

environment and only occasionally receiving rewards (purple

dashed arrow in Figure 9). The reward function is typically

designed manually based on the domain knowledge of the target

task, or it can be an intrinsic reward function (Pathak et al.,

2017).

7. Discussion

7.1. Integrating reinforcement learning

Our bidirectional model is trained in a supervised

fashion to perform physical actions in a continuous 3D

space (Section 3). However, small deviations from a teacher

trajectory could lead to failure, for example, in grasping an

object. Reinforcement learning (RL), in contrast, is sensitive

to the narrow regions in action space that distinguish

successful from non-successful actions. In Figure 9, we

therefore suggest using RL as a superior method for the

physical actions.

Goal-conditioned RL is advisable for cases where the agent’s

goal not only depends on the state of the environment,

but where the goal is also conditioned on further input,

such as its internal state (Dickinson and Balleine, 1994),

or on language input as in our model. Goal-conditioned

RL furthermore underlies hierarchical RL, where a higher-

level module dynamically sets goals for a lower-level module,

and hindsight experience replay (HER), where a future

state in any trajectory is set as a goal in hindsight. With

the availability of abundant high-quality trajectories, Lynch

and Sermanet (2021) use an imitation learning approach,

where the agent uses HER to learn from crowd-sourced

trajectories, where the goal representation is paired with

language input, in order to realize a flexible language-to-

action mapping.

While RL is established for learning physical actions

and suitable for general use (Silver et al., 2021), its use

for language learning is yet emergent (Röder et al., 2021;

Uc-Cetina et al., 2021). Regarding language as a sequence

production problem, our language decoder could benefit from

the availability of high-quality forward models, such as the

Transformer language model. Such a language model could

be used as a forward model in a model-based RL algorithm,

as done by the decision transformer (Chen et al., 2021)

and the trajectory transformer (Janner et al., 2021). However,

such open-domain language models are difficult to use in a

visual context to achieve specified goals. In order to define

terminal goals in RL for language learning in specific domains,

simple visual guessing game scenarios were devised (Das

et al., 2017; Zhao et al., 2021). The generated language can

be further augmented for high-quality dialogue by rewarding

certain properties like informativity, coherence, and ease of

answering (Li et al., 2016), which works in open domains,

or by other scores (e.g., BLEU or ROUGE) that compare to

human-generated text (Keneshloo et al., 2020). The contrast

between domain-specific scenarios, which allow to guide RL

language learning via rewards, and open-domain sophisticated

language models, reflects the contrast between embodied and

simulated learning, which allows control over spatial relations,
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and the use of knowledge bases with their open-domain

information.

A challenge for deep RL is that its many parameters

are trained from sparse and often binary reward feedback.

Therefore, unsupervised or supervised pretraining of model

components, such as for sensory preprocessing, or for end-to-

end components as described in Sections 3 and 4, can render

deep RL efficient.

7.2. Curriculum learning

For machine learning tasks that span multiple levels of

difficulty, curriculum learning has been shown to be efficient for

a variety of models (Elman, 1993; Bengio et al., 2009).

In one of our experiments on the QDRL dataset

(cf. Section 4) we observed that pretraining the FiLM

model first on scenes in an intrinsic frame of reference with

two objects and then fine-tuning it on scenes in a relative frame

of reference with three objects helped the model to achieve

about 0.9 accuracy on the compositional validation set, instead

of 0.745 accuracy without the pretraining (cf. Table 2). This

large increase in performance could be attributed to the fact

that scenes in an intrinsic frame of reference are easier to

learn as the relations involve only two objects, while at the

same time helping a model to learn the concept of orientation.

Fine-tuning on scenes in a relative frame of reference thus

requires only modifying the concept of orientation, i.e.,

orientation is determined by two objects instead of intrinsically

(cf. Figure 7).

A specific spatial relation between objects arises

when one object occludes another, i.e., when one object

is behind another from the observer’s point of view.

In the task of robotic object existence prediction by

occlusion reasoning (Li et al., 2021), a robot needs to

reason whether a target object is possibly occluded by a

visible object. Curriculum learning has proven essential

for the successful training of the proposed model. We

found that training the model from scratch on data

containing all types of scenes is hard. In the curriculum

training strategy, the model is sequentially trained on

four types of scenes with increasing difficulty. First, the

model is trained on scenes with only one object. Then

the model is trained on scenes with two objects but

all of them are visible. Next, the model is trained on

scenes with two objects with occlusion. In the end, the

model is trained jointly on all possible scenes. After the

curriculum learning, the obtained model is able to tackle

all types of scenes well. Curriculum learning has also

been proven useful in other works on embodied learning

(Wu et al., 2019; Yang W. et al., 2019).

Models that use knowledge graphs can also benefit

from gradually increasing levels of difficulty. For example,

to decompose the prediction of a complex scene graph,

Mao et al. (2019) propose to first predict easy relations

that models are confident with, and then better infer

difficult relations based on the easy ones. Zhang et al.

(2021) leverage relation hierarchies in knowledge bases,

and propose to first learn the coarse-grained relations

that are distant in relation hierarchies, and then

distinguish the fine-grained relations that are nearby in

relation hierarchies.

7.3. Architecture extension possibilities

The combined model concept considers recurrent networks

such as LSTMs to be used as the action and language encoders

and decoders, following the bidirectional embodied model

architecture presented in this paper. Pretrained Transformer-

based language models like BERT (Devlin et al., 2019) do not

have language grounded in the environment because they are

trained exclusively on textual data—they are unimodal, with no

visual or sensorimotor information considered. However, spatial

reasoning requires visual and/or sensorimotor perception to

make sense of whether an object is to the left or right of another.

Therefore, in order to make use of a pretrained language model

via transfer learning, we leave adopting a BERT model as a

language encoder/decoder and fine-tuning it as part of future

work. Integrating a language model in this manner should

endow our combined model with commonsense knowledge

without having to lose its spatial reasoning capabilities.

Learning spatial relations requires reasoning about the

frame of reference. In Section 4, the task was to learn

spatial relations when frames of reference are given. A more

challenging scenario would be when frames of reference

are not given explicitly but need to be inferred. We often

encounter this scenario in real-world conversations: some

people tend to take the perspective of others, whereas some

tend to use the egocentric perspective. This gives rise to

ambiguities, which need to be resolved in a dialogue through

questions and answers.

Existing works have demonstrated that commonsense

knowledge graphs can effectively facilitate visual relation

learning. However, knowledge graphs are typically introduced

to train a relation predictor to produce scene graphs for

downstream tasks. To leverage the symbol-based scene

graphs in downstream tasks, graph embedding models are

usually needed, which makes the overall procedure expensive

and cumbersome. In the future, knowledge graphs can be

directly integrated into the representations of pretrained

vision-language models during pretraining, helping the

models to better learn objects and their relations. The

knowledge in pretrained vision-language models can then

be readily used to serve downstream tasks through simple

fine-tuning.
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8. Conclusion

In this paper, we have investigated multiple approaches for

spatial relation learning. We have shown that an embodied

bidirectional model can generate physical actions from language

descriptions and vice versa, involving simple left/right relations.

We have then shown on a new simple visual dataset that recent

visual reasoning models can learn spatial relations in multiple

reference frames, with the MACmodel outperforming the FiLM

model. Since it is unrealistic for a robot to learn exhaustive

world knowledge through interaction, or through simple visual

datasets, we have considered using the relations from knowledge

bases to infer likely spatial relations in a current scene. A

practical limitation that has become apparent in our study

is that different datasets are needed to learn complementary

aspects of spatial reasoning, which hampers the development

of a single joint model. This limitation may be overcome

by developing more comprehensive datasets, or by devising

integrated modular architectures. Finally, we have presented a

concept of such an integrated architecture for combining the

different models and tasks, which still requires implementation

and validation in the future. We furthermore discussed their

extension possibilities, which can serve as a basis for intelligent

robots solving tasks in the real world that require spatial relation

learning and reasoning.
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