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Flexible, goal-directed behavior is a fundamental aspect of human life.

Based on the free energy minimization principle, the theory of active

inference formalizes the generation of such behavior from a computational

neuroscience perspective. Based on the theory, we introduce an output-

probabilistic, temporally predictive, modular artificial neural network

architecture, which processes sensorimotor information, infers behavior-

relevant aspects of its world, and invokes highly flexible, goal-directed

behavior. We show that our architecture, which is trained end-to-end to

minimize an approximation of free energy, develops latent states that can

be interpreted as a�ordance maps. That is, the emerging latent states signal

which actions lead to which e�ects dependent on the local context. In

combination with active inference, we show that flexible, goal-directed

behavior can be invoked, incorporating the emerging a�ordance maps. As a

result, our simulated agent flexibly steers through continuous spaces, avoids

collisions with obstacles, and prefers pathways that lead to the goal with high

certainty. Additionally, we show that the learned agent is highly suitable for

zero-shot generalization across environments: After training the agent in a

handful of fixed environments with obstacles and other terrains a�ecting its

behavior, it performs similarly well in procedurally generated environments

containing di�erent amounts of obstacles and terrains of various sizes at

di�erent locations.

KEYWORDS

a�ordances, active inference, goal-directed control, simulation, free energy principle,

model-predictive control, cognitive maps, event-predictive cognition

1. Introduction

We, as humans, direct our actions toward goals. But how do we select goals and how

do we reach them? In this study, we will focus on a more specific version of the latter

question: Given a goal and some information about the environment, how can suitable

actions be inferred that ultimately lead to the goal with high certainty?
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The free energy principle proposed in Friston (2005) serves

as a good starting point for an answer. It is sometimes regarded

as a “unified theory of the brain” (Friston, 2010) because

it attempts to explain a variety of brain processes such as

perception, learning, and goal-directed action selection, based

on a single objective: to minimize free energy. Free energy

constitutes an upper bound on surprise, which results from

interactions with the environment. When actions are selected in

this way, we also refer to it as active inference. Active inference

basically states that agents infer suitable actions by minimizing

expected free energy, leading to goal-directed planning.

One limitation of active inference-based planning is

computational complexity: Optimal active inference requires

an agent to predict the free energy for all possible action

sequences potentially far into the future. This soon becomes

computationally intractable, which is why so far mostly simple,

discrete environments with small state and action spaces have

been investigated (Friston et al., 2015). How do biological

agents, such as humans, deal with this computational explosion

when planning behavior in our complex, dynamic world?

It appears that humans, and other animals, have developed

a variety of inductive biases that facilitate processing high-

dimensional sensorimotor information in familiar situations

(Butz, 2008; Butz et al., 2021). Affordances (Gibson, 1986), e.g.,

encode object- and situation-specific action possibilities. By

equipping an active inference agent with the tendency to infer

affordances, then, inference-based planning could first focus on

afforded environmental interactions, significantly alleviating the

computational load when considering interaction options.

In this study, we model these conjectures by means of

an output-probabilistic, temporally predictive artificial neural

network architecture. The architecture is designed to focus on

local environmental properties, from which it predicts action-

dependent interaction consequences via latent state encodings.

We show that, through this processing pipeline, affordance

maps emerge, which encode behavior-relevant properties of the

environment. These affordance maps can then be employed

during goal-directed planning. Given spatially local visual

information, the resulting latent affordance codes constrain the

considered environmental interactions. As a result, planning

via active inference becomes more effective and enables, e.g.,

the avoidance of uncertainty while moving toward a given goal

location. We, furthermore, show that the architecture exhibits

zero-shot learning abilities (Eppe et al., 2022), directly solving

related environments and tasks within.

2. Foundations

This section introduces the theoretical foundations of our

study. We first specify our problem setting and notation. We

then introduce the free energy principle and show how we can

perform active inference-based goal-directed planning with two

different algorithms. Subsequently, we combine the theory of

affordances with the idea of cognitive maps and arrive at the

concept of affordance maps. We propose that the incorporation

of affordance maps can facilitate goal-directed planning via

active inference.

2.1. Problem formulation and notation

We consider problems in which an agent interacts with its

environment by performing actions a and in turn receiving

sensory states s. The sensory states might reveal only parts of

the environmental states ϑ , which, therefore, are not directly

observable, i.e., we are facing a partially observable Markov

decision process 1. In every time step t, an agent selects and

performs an action at , and receives a sensory state (often called

observation) of the next time step st+1.

Model-based planning, such as active inference, requires a

model of the world to simulate actions and their consequences.

We use a transition model tM that predicts the unfolding motor-

activity-dependent sensory dynamics while an agent interacts

with its environment. In order to deal with partial observability,

the transition model can be equipped with its own internal

hidden state ht . Its purpose is to encode the state of the

environment, including potentially non-observable parts. Given

a current sensory state st , an internal hidden state ht , and an

action at , the transition model computes an estimate of the

sensory state s̃t+1 in the next time step and a corresponding new

hidden state ht+1:

(s̃t+1, ht+1) = tM(st , ht , at) (1)

Refer to Figure 1 for a depiction of how environment, agent,

transition model, and action selection relate to each other.

2.2. Toward free energy-based planning

The free energy principle starts formalizing life itself, very

generally, as having an interior and exterior, separated by some

boundary (Friston, 2013). For life to maintain homeostasis, this

boundary, protecting the interior, needs to be maintained. It

follows that living things need to be in specific states because

only a small number of all possible states ensure homeostasis.

The free energy principle formalizes this maintenance of

homeostatic states by means of minimizing entropy. But how

can entropy be computed? One possibility is given by the

presence of an internal, generative model m of the world. In

1 In Markov decision processes, usually, the environment additionally

returns a reward in each time step, which is to be maximized by the

agent. Here, we do not define a reward function but instead plan in a

model-predictive, goal-directed manner.
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FIGURE 1

Depiction of a (partially observable) Markov decision process. An agent interacts with its environment by sending actions a and receiving

consequent sensory states s. Partial observability here implies that the sensory state s does not encode the whole environmental state ϑ . Rather,

certain aspects remain hidden for the agent and must be inferred from the sensory state. To deal with this, our agent utilizes a transition model

tM with its own internal hidden state h. It predicts sensory states s̃, which aid the action selection algorithm to produce appropriate actions. In

order to stay in tune with the environment and to predict multiple time steps into the future, the transition model also receives observed and

predicted sensory states (dashed arrows).

this case, we can regard entropy as the expected surprise about

encountered sensory states given the model (Friston, 2010). In

other words: Living things must minimize expected surprises.

This implies that all living things act as if they strive to

maintain a model of their environment over time in some way

or another. Surprise, however, is not directly accessible to a living

thing. In order to compute the surprise corresponding to some

sensory input s, it is necessary to integrate over all possible

environmental states ϑ that could have led to that input (Friston,

2009). We can see this in the formal definition of surprise for a

sensory state s (Friston et al., 2010):

− log p(s | m) = − log

∫

ϑ
p(s,ϑ | m) dϑ (2)

where m is the model or the living thing itself, and ϑ are

all environmental states, including states that are not fully

observable to the living thing. The consideration of all these

states is infeasible. Thus, according to the free energy principle,

living things minimize free energy, which is defined as follows

(Friston et al., 2010):

FE(s, h) = Eq(ϑ |h)[− log p(s,ϑ | m)]
︸ ︷︷ ︸

energy

−Eq(ϑ |h)[− log q(ϑ | h)]
︸ ︷︷ ︸

entropy

(3)

where E denotes the expected value and q is an approximate

posterior over the external hidden state ϑ given internal hidden

state h. Since here all parameters are accessible, this quantity

is computable. Rewriting it shows that free energy can be

decomposed into a surprise and a divergence term:

FE(s, h) = − log p(s | m)
︸ ︷︷ ︸

surprise

+D[q(ϑ | h) || p(ϑ | s,m)]
︸ ︷︷ ︸

divergence

(4)

where D denotes the Kullback-Leibler divergence. Since the

divergence cannot be less than zero, free energy is an upper

bound on surprise, our original quantity of interest.

Given a generative model of the world, surprise corresponds

to an unexpected, inaccurate prediction of sensory information.

In order to minimize free energy, an agent equipped with

a generative world model, thus, has two ways to minimize

the discrepancy between predicted and actually encountered

sensory information: (i) The internal world model can be

adjusted to better resemble the world. In the short term, this

relates to perception, while in the long term, this corresponds to

learning. (ii) The agent can manipulate the world via its actions,

such that the world better fits its internal model. In this case, an

agent chooses actions that minimize expected free energy in the

future, pursuing active inference.

2.2.1. Active inference

When the free energy principle is employed as a process

theory for action selection, it is called active inference. The name

comes from the fact that the brain actively samples the world

to perform inference: It infers actions (also called control states)

that minimize expected free energy (EFE), i.e., an upper bound

on surprise in anticipated future states. This is closely related to

the principle of planning as inference in the machine learning
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and control theory communities (Botvinick and Toussaint, 2012;

Lenz et al., 2015). According to Friston et al. (2015), a policy π

is evaluated at time step t by projecting it into the future and

evaluating the EFE at some time step τ > t.

EFE(π , t, τ ) = D[Ep(hτ |ht ,π)[p(s
τ | hτ )] || p(sτ | m(τ ))]

︸ ︷︷ ︸

predicted divergence from desired states

+β · Ep(hτ |ht ,π)[H[p(sτ | hτ )]]
︸ ︷︷ ︸

predicted uncertainty

, (5)

where t is the current time step, τ > t is a future time

step, and β is a new hyperparameter that we introduce. This

formula equates EFE with a sum of two components. The

first part is the Kullback-Leibler divergence, which estimates

how far the predicted sensory states deviate from desired ones.

The second part is the entropy of the predicted sensory states,

which quantifies uncertainty. We introduce β to weigh these

components. It enables us to tune the trade-off between choosing

actions that minimize uncertainty and actions that minimize

divergence from desired states. To calculate the EFE for a whole

sequence of T future time steps, we take the mean of the EFE

over this sequence:

EFE(π , t) =
1

T

t+T
∑

τ=t+1

EFE(π , t, τ ) (6)

Based on this formula, policies can be evaluated and the policy

with the least EFE can be chosen:

π t = argmin
π

EFE(π , t) (7)

Intuitively speaking, active inference-based planning agents

choose actions that lead to desired sensory states with high

certainty.

2.2.2. Planning via active inference

On the computational level, active inference tells us to

minimize EFE to perform goal-directed planning. Thus, it

provides an objective to optimize actions. However, it does not

specify how to optimize the actions on an algorithmic level.

We, thus, detail two planning algorithms that can be employed

for this kind of action selection. In both algorithms, we limit

ourselves to a finite prediction horizon T with fixed policy

lengths. In order to evaluate policies, both algorithms employ

a transition model tM and “imagine” the execution of a policy:

(s̃τ+1, hτ+1) =







tM(st , ht , at), if τ = t

tM(s̃τ , hτ , aτ ), if t < τ < t + T
(8)

For active inference-based planning, we can compute the EFE

for the predicted sequence and optimize the actions using one of

the planning algorithms. After a fixed number of optimization

cycles, both algorithms return a sequence of actions. The first

action can then be executed in the environment.

Gradient-based active inference

Action inference (Otte et al., 2017; Butz et al., 2019) is

a gradient-based optimization algorithm for model-predictive

control. Therefore, it requires the transition model tM

to be differentiable. The algorithm maintains a policy π ,

which, in each optimization cycle, is fed into the transition

model. Afterward, we use backpropagation through time to

backpropagate the EFE onto the policy. We obtain the gradient

by taking the derivative of the EFE with respect to an action

aτ from the policy. After multiple optimization cycles, the

algorithm returns the first action of the optimized policy.

Evolutionary-based active inference

The cross-entropy method (CEM, Rubinstein, 1999) is

an evolutionary optimization algorithm. CEM maintains the

parameters of a probability distribution and minimizes the

cross-entropy between this distribution and the distribution

that minimizes the given objective. It does so by sampling

candidates, evaluating them according to EFE, and using the

best performing candidates to estimate the parameters of

its probability distribution for the next optimization cycle.

Recently, CEM has been used as a zero− order optimization

technique for model-based control and reinforcement learning

(RL) (Chua et al., 2018; Hafner et al., 2019b; Pinneri et al., 2020).

In such a model-predictive control setting, CEM maintains a

sequence of probability distributions and candidates correspond

to policies. After multiple optimization cycles, the algorithm

returns the first action of the best sampled policy.

2.3. Behavior-oriented predictive
encodings

In theory, given a sufficiently accurate model, active

inference enables an agent to plan goal-directed behavior

regardless of the complexity of the problem. In practice,

however, considering all possible actions and consequences

thereof quickly becomes computationally intractable. To

counteract this problem, it appears that humans and other

animals have developed a variety of inductive learning biases

to focus the planning process by means of behavior-oriented,

internal representations. Here, we focus on biases that lead

to the development of affordances, cognitive maps, and, in

combination, affordance maps.

2.3.1. A�ordances

Gibson (1986) defines affordances as what the environment

offers an animal: Depending on the current environmental
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context, affordances are possible interactions. As a result,

affordances fundamentally determine how animals behave

depending on their environment. They constitute behavioral

options from which the animal can select suitable ones in order

to fulfill its current goal. To give an example, imagine a flat

surface at the height of a human’s knees. Given the structure

underneath is sufficiently sturdy, it is possible to sit on the

surface in a way that requires relatively little effort. Therefore,

such a surface is sit-upon-able: It offers a human the possibility

to sit on it in an effortless way.

In this study, we use amore general definition of affordances.

We define affordance as anything in the environment that locally

influences the effects of the agent’s actions. These definitions

differ with respect to the set of possible actions. Gibson’s

definition entails that certain actions are possible only in certain

environmental contexts: For example, sitting down is only

possible in the presence of a chair. In this study, we assume

that every action is possible everywhere in the environment, but

that the effects differ depending on the environmental context:

Sitting down is also possible in the absence of a chair, but the

effect is certainly different.

The theory of affordances explicitly states that to (visually)

perceive the environment is to perceive what it affords.

Animals do not see the world as it is and derive their

behavioral options from their perspective. Rather, Gibson (1986)

proposes that affordances are perceived directly, assigning

distinct meanings to different parts of the environment.

From an ecological perspective, it appears that vision may

have evolved for exactly this purpose: to convey what

behaviors are possible in the current situation. First, however,

an animal needs to learn the relationship between visual

stimuli and their meaning for behavior. This is non-trivial:

Similar visual stimuli can mean different things, or the

other way round. Furthermore, visual input is rich such

that the animal needs to effectively focus on the behavior-

relevant information.

2.3.2. Cognitive maps

The concept of cognitive maps was introduced in Tolman

(1948). Tolman showed that after exploring a given maze, rats

were able to navigate toward a food source regardless of their

starting position. He concluded that the rats acquired a mental

representation of the maze: a cognitive map. Place cells in the

hippocampus seem to be a promising candidate for the neural

correlate of this concept (O’keefe and Nadel, 1978). These cells

tend to fire when the animal is at associated locations. Visual

input acts as stimuli, but also the olfactory and vestibular senses

play a role. Together, place cells constitute a cognitive map,

which the animal appears to use for orientation, reflection,

and planning (Diba and Buzsaki, 2007; Pfeiffer and Foster,

2013).

2.3.3. A�ordance maps

Cognitive maps are well-suited for flexible navigation and

goal-directed planning. However, to improve the efficiency of

the planning mechanisms, it will be useful to encode behavior-

relevant aspects, such as the aforementioned affordances, within

the cognitive map. Accordingly, we combine the theory of

affordances with cognitive maps, leading to affordance maps.

Their function is to map spatial locations onto affordance codes.

Similar to cognitive maps, their encoding depends on visual

cues. In contrast to cognitive maps’ traditional focus on map-

building, though, affordance maps signal distinct behavioral

options at particular environmental locations. As an example,

consider a hallway corner situation with corridors to your right

and behind you. An affordance map would encode successful

navigation options for turning to the right or turning around.

Regarding affordances for spatial navigation specifically, Bonner

and Epstein (2017) showed that these are automatically encoded

by the human visual system independent of the current task and

propose a location in the brain where a neural correlate could be

situated.

2.4. Related neural network models

Ha and Schmidhuber (2018) used a world model to facilitate

planning via RL. Their overall architecture consists of a vision

model which compresses visual information, a memory module,

and a controller model, which predicts actions given a history of

the compressed visual information. Their vision model is given

by a variational autoencoder, which is trained in an unsupervised

manner to reconstruct its input. Therefore, and in contrast to

ours, their vision model is not trained to extract meaningful,

behavior-oriented information. Hence, we would not regard the

emerging compressed codes as affordance codes.

Affordance maps were used before in Qi et al. (2020) to

aid planning. The authors put an agent into an environment

(VizDoom) with hazardous regions that were to be avoided.

The agent moved around in its environment and collected

experiences of harm or no harm, which were backprojected

onto the pixels of the input to the agent’s visual system, thereby

performing image segmentation. The authors then trained a

convolutional neural network (CNN) on the resulting data of

which the output was utilized by the A* algorithm for planning.

In contrast to ours, their architecture was not trained in an end-

to-end fashion, meaning that the resulting affordance codes were

not optimized to suit their transition model.

3. Model

We now detail the proposed architecture, which learns a

transition model of the environment with spatial affordance

encodings. The architecture predicts a probability density
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function over changes in sensory states given the current sensory

state and action as well as potentially an internal hidden state.

This action-dependent transitionmodel of the environment thus

enables active inference-based planning. We first specify the

architecture, then detail the model learning mechanism, and

finally, turn to active inference.

3.1. A�ordance-conditioned inference

Our model adheres to the general notion introduced above

(cf. Equation 1). Our model consists of three main components:

a transition model tM , a vision model vM , and a look-up map ω

of the environment. The model with its different components is

illustrated in Figure 2.

Our system learns a transition model tM of its environment.

It receives a current sensory state st and action at and predicts

a consequent sensory state s̃t+1. If the environment is only

partially observable, the transition model can furthermore

receive an internal hidden state ht and predict a consequent

ht+1. Focusing on motion control tasks, we encode the sensory

state by a two-dimensional positional encoding pt , where the

transition model continues to predict changes in positions

1p̃t+1 given the last positional change 1pt , potentially hidden

state ht , and current action at . To enable the model to consider

the properties of different regions in an environment during

goal-directed planning, though, we introduce an additional

contextual input ct , which is able to modify the transition

model’s predictions (cf. Butz et al., 2019, for a related approach

without map-specificity). In each time step, the transition model

tM thus additionally receives a context encoding vector ct , which

should encode the locally behavior-relevant characteristics of the

environment.

This context code is produced by the vision model vM ,

which receives a visual representation vt of the agent’s current

surroundings in the form of a small pixel image. The vision

model is, thus, designed to generate vector embeddings that

accurately modify the transition model’s predictions context-

dependently.

The prediction of the transition model can, thus, be

formalized as follows:

(1p̃t+1, ht+1) = tM(ct = vM(vt),1pt , ht , at) (9)

The visual information vt can be understood as a local view of

the environment surrounding the agent. Thus, vt depends on the

agent’s location pt . To enable the model to predict vt for various

agent positions, e.g., for “imagined” trajectories while planning,

the system is equipped with a look-up map ω to translate

positions pt into local views of the environment vt . We augment

the model with the ability to probe particular map locations,

translate the location into a local image, and extract behavior-

relevant information from the image. Intuitively speaking, this

is as if the network can put its focus of attention on any location

on the map and consider the context-dependent behavioral

consequences at the considered location. As a result, the

system is able to consider behavioral consequences dependent

on probed environmental locations. In the future study, the

learning of completely internal maps may be investigated

further.

The consequence of this model design is that the context

code ct will tend to encode local, behavior-influencing aspects

of the environment, i.e., affordances. The context is, therefore, a

compressed version of the environment’s behaviorally-relevant

characteristics at the corresponding position. Therefore, the

incorporation of the affordance codes can be expected to

improve both the accuracy of action-dependent predictions and

active inference-based planning. This connection between active

inference and affordances can further be described as follows

(Friston et al., 2012): The desired sensory state encoded as a

prior lets the agent expect to reach the target. If the agent then is

in front of an obstacle e.g., different affordances compete with

each other, which is in line with the affordance competition

hypothesis (Cisek, 2007): fly around or crash into the obstacle.

Since flying around the obstacle best explains the sensory input

in light of the prior, the action corresponding to this affordance

is chosen by the agent.

3.2. Uncertainty estimation

The free energy principle is inherently probabilistic and

therefore active inference requires our architecture to produce

probability density functions over sensory states. We implement

this in terms of a transition model tM that does not predict

a point estimate of the change in sensory state in the

next time step, but rather the parameters of a probability

distribution over this quantity. We choose the multivariate

normal distribution with a diagonal covariance matrix (i.e.,

covariances are set to 0). The output of the transition model is

then given by a mean vector µ1p̃t+1 and a vector of standard

deviations σ1p̃t+1 . We, thus, replace 1p̃t+1 with θ1p̃t+1 : =
(µ1p̃t+1 , σ1p̃t+1 ).

3.3. Training

We train both components of our architecture jointly in an

end-to-end, self-supervised fashion to perform one-step ahead

predictions on a pregenerated data set via backpropagation

through time. The gradient flow during training is depicted in

Figure 2. Inputs consist of the sensor-action tuples described

above. The only induced target is given by the change in

position in the next time step 1pt+1. This target signal

is compared to the output of the transition model tM by
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FIGURE 2

A�ordance map architecture: Based on the current position pt , the architecture performs a look-up in an environmental map ω. The vision

model vM receives the resulting visual information vt and produces a contextual code ct . The transition model tM utilizes this context ct , the last

change in the position 1pt , an action at , and its internal hidden state ht to predict a probability distribution over the next change in position.

During training, the loss between predicted and actual change in position is backpropagated onto tM (red arrows) and further onto vM (orange

arrows) to train both models end-to-end. During planning, the map look-up is performed using position predictions. For gradient-based active

inference, EFE is backpropagated onto the action code at (red and green arrows). For planning with the cross-entropy method, at is modified

directly via evolutionary optimization.

the negative log-likelihood (NLL)2, which approximates free

energy assuming no uncertainty in our point estimate h of

environmental state ϑ (refer to Equation 1). Due to end-to-

end backpropagation, the vision model vM is trained to output

compact, transition model-conditioning representations of the

visual input.

While we use the NLL as the objective during training

here, we make use of the expected free energy during goal-

directed control. In future study, one could utilize full-blown

FE also during training in probabilistic architecture. However,

there is a close relationship between NLL and FE due to

the Kullback-Leibler divergence: In Appendix 6, we show that

minimizing NLL is equivalent to minimizing the Kullback-

Leibler divergence up to a constant factor and a constant. Thus,

through NLL-based learning, we can approximate learning

through FE minimization.

3.4. Goal-directed control

We perform goal-directed control via gradient- and

evolutionary-based active inference as described in Section 2.2.1.

Usually, in order to predict multiple time steps into the future

2 Refer to Appendix 4 for a description of how to compute gradients

when the objective is given by the NLL in a multivariate normal

distribution.

given a policy, the transition model tM receives its own output

as input. Since our architecture predicts the parameters of a

normal distribution, we use the predicted mean as input in

the next prediction time step. The model incorporates visual

information v from locations corresponding to the predicted

means. Therefore, the model does not blindly imagine a path

but simultaneously “looks” at, or focuses on, predicted positions,

incorporating the inferred affordance code c into the transition

model’s predictions.

In order to compare the predicted path to the given target

and to look up the visual information, we need absolute

locations.We, thus, take the cumulative sum and add the current

absolute position. To compute EFE along a predicted path we

also need to consider the SDs at every point. For that, we

first convert SDs to variances, compute the cumulative sum,

and convert them back to SDs. We then can compute the EFE

between the resulting sequence of probability distributions over

predicted absolute positions and the given target according to

Equation (5). To do so, we encode the target with a multivariate

normal distribution as well, setting the mean to the target

location and the SD to a fixed value. We can, thus, optimize the

policy via the gradient- or evolutionary-based EFEminimization

method introduced in Section 2.2.2 above3.

3 Appendix 2 summarizes the particular adjustments we applied to

these algorithms.

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.881673
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Scholz et al. 10.3389/fnbot.2022.881673

FIGURE 3

The simulation environment we use in our experiments. It

resembles a confined space in which a vehicle (green) can move

around by adjusting its throttles (blue). Its goal is to navigate

toward the target (red). Depending on the experiment, obstacles

or di�erent terrains (black) are present, which a�ect the vehicle’s

sensorimotor dynamics.

4. Experiments and results

To evaluate the abilities of our neural affordance map

architecture, we first introduce the environmental simulator

and specify our evaluation procedure in general. The individual

experimental results then evaluate the system’s planning abilities

to avoid obstacles and regional uncertainty as well as to

generalize to unseen environments. With respect to the

affordance codes c, we show emerging affordance maps and

examine disentanglement.

4.1. Environment

The environment used in our experiments is a physics-based

simulation of a circular, vehicle-like agent with a radius of 0.06

in a 2-dimensional space with an arbitrary size of 3× 2 units. It

is confined by borders, which prevent the vehicle from leaving

the area. The vehicle is able to fly around in the environment by

adjusting its 4 throttles, which are attached between the vertical

and horizontal axes in a diagonal fashion. They take values

between 0 and 1 resembling actions and enable the vehicle to

reach a maximum velocity of approximately 0.23 units per time

step within the environment. Therefore, at least 13 time steps are

required for the vehicle to fly from the very left to the very right.

Due to its mass, the vehicle undergoes inertia and by default, it

is not affected by gravity. Refer to Figure 3 for a depiction of the

environment and an agent. It is implemented as anOpenAI Gym

(Brockman et al., 2016).

The environment can contain obstacles, which block the

way. Friction values are larger when the vehicle touches obstacles

or borders. Furthermore, the environment can comprise

different terrains, which locally change the sensorimotor

dynamics. Force fields pull the agent up or downward. If the

vehicle is inside a fog terrain, the environment returns a position

that is corrupted by Gaussian noise. Two values from a standard

normal distribution are sampled and added to each coordinate.

This implies a SD of approximately 1.414 on the difference

between positions from two consecutive time steps within the

fog4.

The environment outputs absolute positions, the change

in the positions, and allows probing of the map at arbitrary

positions. Therefore, and apart from the noisy positions in

fog terrains and the map having a lower resolution than the

environment itself, the environment used in our experiments is

fully observable. This makes the incorporation of the internal

hidden state h in the transition model tM obsolete. In the future,

we plan to test our architecture on environments that are only

partially observable.

4.2. Model and agent

The vision model vM is given by a CNN, which produces

the context activations c. We always evaluate contexts of sizes

0, 1, 3, 5, and 8. Since the environment in our experiments is

almost fully observable, we drop the internal hidden state h and

use a multilayer perceptron (MLP) as our transition model tM .

It consists of a fully connected layer followed by two parallel

fully connected layers for the means and standard deviations,

respectively. For each setting, we train 25 versions of the same

architecture with different initial weights on a pregenerated data

set and report aggregated results. Refer to Appendix 2 for more

details on the model and training hyperparameters, how the

visual input v is constructed, how the data set is generated, and

the training procedure.

Active inference performance is evaluated after performing

100 goal-directed control runs per setting for 200 time steps.

For each trained architecture instance, we consider 4 distinct

start and target positions corresponding to each corner of the

environment. The start position is chosen randomly with a

uniform distribution over a 0.2×0.2 units square with a distance

of 0.1 units to the borders. The target position is chosen in

the same way in the diagonally opposite corner. We consider

the agent to have reached the target when its distance to the

target falls below 0.1 units. The prediction horizon always has

a length of 20. For active inference based planning (Equation 5),

the target is provided to the system as a Gaussian distribution

with SD 0.1. We reduce the SD of the target distribution to 0.01

once the agent comes closer than 0.5 units. The two different

SDs can be seen as corresponding to, e.g., smelling and seeing

4 Since
√
12 + 12 =

√
2 ≈ 1.414.
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the target, respectively. Refer to Appendix 2 for more details

on the hyperparameters. All hyperparameters were optimized

empirically or with Hyperopt (Bergstra et al., 2013) via Tune

(Liaw et al., 2018).

In order to get an idea about the nature of the emerging

affordance codes c, we plot affordance maps by generating

position-dependent context activations via the vision model

vM for each possible location in the environment. That is,

in the affordance maps shown below, the x- and y-axes

correspond to locations in the environment while the color

of each dot represents the context activation at that position.

For this, we performed a principal component analysis (PCA)

on the resulting context activations in order to reduce the

dimensionality to 3 and then interpreted the results as RGB

values.

4.3. Experiment I: Obstacle avoidance

The first of our experiments examine our architecture’s

ability to avoid obstacles during active inference through the

use of affordance codes. As a baseline experiment, we consider

context size 0, disabling information flow from the vision model

vM to the transition model tM . With context sizes larger than 0,

however, the transition model can be informed about obstacles

and borders via the context.

We train the architecture on the environment depicted in

Figure 3, where black areas resemble obstacles. One-hot encoded

visual information v has one channel only for the obstacles

and borders. We perform goal-directed control in the same

environment we train.

Figure 4 shows the results. Context codes of increasing

dimensionality lead to smaller validation losses (Figure 4A),

indicating their utility in improving the transition model’s

accuracy. The affordance map (Figure 4B) shows that obstacles

are encoded differently from the rest of the environment.

Areas where free flight if possible are encoded with a context

code that corresponds to olive green. In contrast, areas where

it is only possible to fly upward, to the left, or downward

e.g., are encoded with a context code that corresponds to

the color orange. Light green, on the other hand, represents

areas where the only movement to the left is blocked. The

affordance map reveals that different sides of the obstacles

are encoded similarly to the corresponding sides of the

environment’s boundary. Moreover, we find gradients in the

colors when moving away from borders or obstacles, indicating

that the context codes not only encode directions but also

distances to impassable areas. This confirms that the emerging

context codes constitute behavior-relevant encodings of the

visually perceived environment. We evaluate goal-directed

planning in terms of prediction error (Figure 4C) and mean

distance to the target (Figure 4D). For evolutionary-based

active inference, we find improvement in both metrics with

increasing context sizes. For gradient-based active inference,

we find improvement in the prediction error but deterioration

of the mean distance to the target with increasing context

sizes. Gradient-based outperforms evolutionary-based active

inference with context size 0. With larger context sizes,

evolutionary-based active inference performs better. Figure 5

shows two example trajectories for context sizes 0 and 8.

A context size of 8 allows the agent to incorporate local

information about the environment, resulting in past and

planned trajectories that bend around obstacles. With context

size 0, however, it can be seen that the agent flew against one

obstacle and plans its trajectory through another one.

4.4. Experiment II: Generalization

In this experiment, we examine how well our architecture

is able to generalize to similar environments. In Experiment

I (Section 4.3), we trained in a single environment. Once

the architecture is trained, we expect that our system should

be able to successfully perform goal-directed control in other

environments as well, given we provide the corresponding visual

input. The local view on the map essentially allows us to change

the position and size of obstacles without expecting a significant

deterioration in performance.

We reuse the trained models from Experiment Section

4.3 and apply them for goal-directed control in two

additional environments (refer to Figure 6). We only consider

evolutionary-based active inference.

Figure 7 shows the results. Prediction error and mean

distance to the target (Figures 7C,D) indicate improvement with

increasing context size. Furthermore, we find slightly worse

performance in the environment with 2 obstacles, while slightly

better performance is achieved in the environment with 12

obstacles. We believe this is mainly due to the fact that the

environment with 2 obstacles blocks the direct path much more

severely. Thus, overall these results indicate that (i) the system

generalized well to similar environments and (ii) incorporating

context codes is beneficial for performance optimization.

4.5. Experiment III: Behavioral-relevance
of a�ordance codes

Affordances should only encode visual information if it is

relevant to the behavior of an agent. Is our architecture able to

ignore visual information for creating its affordance maps, if this

information has no effect on the agent’s behavior? Furthermore,

affordances should encode different visual information with

the same behavioral meaning similarly. To investigate our

architecture in this regard, we perform an experiment similar

to Experiment I (Section 4.3), but with two additional channels

in the cognitive map. The first channel encodes the borders and
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FIGURE 4

Results for Experiment I–Obstacle avoidance (Section 4.3). For each setting, the results are aggregated over 25 di�erently initialized models

which each performed 4 goal-directed control runs for 200 time steps. The box plots show the medians (horizontal bars), quartiles (boxes), and

minima and maxima (whiskers). Data points outside of the range defined by extending the quartiles by 1.5 times the interquartile range in both

directions are ignored. EB is short for evolutionary- and GB for gradient-based active inference. (A) Validation loss during training. It is the

negative log-likelihood of the actual change in position in the transition model’s predicted probability distribution. Shaded areas represent SDs.

(B) Exemplary a�ordance map for context size 8. To generate this map, we probed the environmental map at every sensible location, applied the

vision model to each output, performed dimensionality reduction to 3 via PCA, and interpreted the results as RGB values. (C) Prediction error

during goal-directed control. It is the negative log-likelihood of the actual change in position in the transition model’s predicted probability

distribution. (D) Mean distance to the target during goal-directed control.

upper obstacles, the second channel encodes the lower obstacles,

and the third channel encodes meaningless information, which

does not affect the behavior of the agent. Figure 8 shows the

corresponding environment. We compare the results from this

“hard condition” to the results of Experiment I (Section 4.3),

which we refer to as the “easy condition.” We only consider

evolutionary-based active inference.

Figure 9 shows the results. We do not find a significant

difference between the two conditions. The developing

affordance map (Figure 9B) is qualitatively similar to the one

obtained from Experiment I (Section 4.3): neither do significant

visual differences between the encodings of the different

obstacles remain, nor do traces of the meaningless information.

Appendix 3 exemplarily shows how this affordance map

develops over the course of training. Finally, also performance

in terms of prediction error and mean distance to the target

stays similar to Experiment I when analyzing goal-directed

control (Figures 9C,D).

4.6. Experiment IV: Uncertainty avoidance

Active inference considers uncertainty during goal-directed

control. In this experiment, we examine the architecture’s ability

to avoid regions of uncertainty during planning. We consider

a run a success if the agent reached the target and was at no

point inside a fog terrain. As mentioned above, we introduce an

additional hyperparameter β , which scales the influence of the

entropy term on the free energy (refer to Equation 5). Here, we
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FIGURE 5

Example trajectories from Experiment I–Obstacle avoidance (Section 4.3 with evolutionary-based active inference. The agent (green) flies

toward the target (red) with obstacles (gray) in its way. The black line behind the agent shows its past trajectory and the line in front its planned

trajectory. Circles in front of the agent show the predicted uncertainty in the sensory states. With context size 0, the agent cannot incorporate

information about the environment and, therefore, plans through and flies against the obstacles. With context size 8, the agent can successfully

plan its way around and, therefore, avoid obstacles.

FIGURE 6

Additional environments used during goal-directed control in Experiment II–Generalization (Section 4.4). Black areas represent obstacles.

set β to 10 to foster avoidance of uncertainty. We only consider

evolutionary-based active inference.

We train the architecture on the environment depicted

in Figure 3, this time black areas indicate fog terrains

instead of obstacles. The cognitive map consists of two

channels: one channel for fog terrains and one channel for

the borders.

Figure 10 shows the results. We find that the context

encoding clearly improves the validation loss (Figure 10A).

The affordance map (Figure 10B) shows that free areas,

borders, and fog are encoded differently. The prediction

error (Figure 10C) improves when the context is computed,

while the ratio of successful runs (Figure 10D) stays relatively

close to 1.

4.7. Experiment V: Disentanglement

In our final experiment, we examined the architecture’s

ability to combine previously learned affordance codes.

We trained each architecture instance in four different

environments. The environments are constructed as shown

in Figure 3, black areas resembling obstacles in the first, fog

terrains in the second, force fields pointing upward in the third,
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FIGURE 7

Results from Experiment II–Generalization (Section 4.4). For each setting, the results are aggregated over 25 di�erently initialized models which

each performed 4 goal-directed control runs for 200 time steps. The box plots show the medians (horizontal bars), quartiles (boxes), and minima

and maxima (whiskers). Data points outside of the range defined by extending the quartiles by 1.5 times the interquartile range in both directions

are ignored. “Original” refers to the environment from Experiment I (Section 4.3). (A) Exemplary a�ordance map for context size 8 from the

environment with 2 obstacles. To generate this map, we probed the environmental map at every sensible location, applied the vision model to

each output, performed dimensionality reduction to 3 via PCA, and interpreted the results as RGB values. (B) Exemplary a�ordance map for

context size 8 from the environment with 12 obstacles. (C) Prediction error during goal-directed control on all three environments. It is the

negative log-likelihood of the actual change in position in the transition model’s predicted probability distribution. (D) Mean distance to the

target during goal-directed control in all three environments.

and force fields pointing downward in the fourth environment.

Accordingly, the cognitive map consists of four channels—one

channel for each of the aforementioned properties. We evaluate

the architecture of procedurally generated environments. In

each environment, a randomly chosen amount of between 6

and 10 obstacles, fog terrains, force fields pointing downward,

and force fields pointing upward with randomly chosen radii

between 0.1 and 0.5 are placed at random locations in the

environment. All obstacles and fog terrains have a minimum

distance of 0.15 units from each other, ensuring that the agent

is able to fly between them—thus prohibiting dead ends.

Furthermore, all properties have a minimum distance of 0.15 to

each border, again to avoid dead ends. Patches of size 0.4 × 0.4

units are left free in the corners such that start and target

positions are not affected. We generate environments with two

different conditions. In the first condition (easy), force fields

are handled similarly to obstacles and fog terrains in the way

that they have a minimum distance of 0.15 units to all other

obstacles, terrains, and force fields. This means that properties

do not overlap. In the second condition (hard), force fields can

overlap with each other, obstacles, and fog terrains. We only

consider evolutionary-based active inference. In addition to the

context sizes from before, we also evaluate the architecture for

context sizes 16 and 32.

Figure 11 shows the results. Larger context sizes lead

to smaller validation losses (Figure 11A). The affordance

map computed on an environment containing all properties

(Figure 11B) shows that the network has learned to encode the

distinct areas indeed with distinct encodings. The encoding also

incorporates boundary directions, thus encoding the properties
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FIGURE 8

One of the environments (hard condition) used in Experiment

III–Behavioral-relevance of a�ordance codes (Section 4.5).

Black and gray circles represent obstacles. They look di�erent

from the agent but have the same influence on behavior (i.e.,

path blockage). Green circles are as well seen by the agent but

represent the open area and, therefore, mean the same as the

white background behaviorally.

relative to the free space from which the agent may enter

the area (refer to, e.g., the borders of the environment). As

expected, the agent always performs better in the easy condition

(Figures 11C,D). In both conditions, performance improves

with increasing context size.

5. Discussion

In this article, we have connected active inference with

the theory of affordances in order to guide the search for

suitable behavioral policies via active inference in recurrent

neural networks. The resulting architecture is able to perform

goal-directed planning while considering the properties of the

agent’s local environment. This chapter provides a summary

of our architecture’s abilities, compares it to related study, and

eventually presents possible future study directions.

5.1. Conclusion

Experiment I (Section 4.3) showed that our proposed

architecture facilitates goal-directed planning via active

inference. Both the validation loss as well as performance during

goal-directed control revealed an advantage of incorporating

affordance information, i.e., using a context size larger than 0.

The affordance maps confirmed that the architecture is able to

infer relationships between environmental features and their

meaning for the agent’s behavior: Depending on the direction of

and the distance to the next obstacle, different codes emerged.

We assume that a context size larger than 1 allows an easier

encoding of the direction of and distance to the obstacles

in relation to the agent. Evolutionary-based active inference

outperforms gradient-based active if a context is used. This is

due to the fact that gradient-based active inference relies on the

gradients being backpropagated through the predicted sequence

of sensory states. These gradients cannot be backpropagated

through the context codes, since these depend on the visual

information which the model acquires via a look-up in the

environmental map. Therefore, vital information is missing

during gradient-based active inference in order to optimize the

policy accordingly. Experiment II (Section 4.4) showed that

once the relationship between environmental features and their

meaning was learned, this knowledge can be generalized to other

environments with similar, but differently sized and positioned

obstacles of different amounts. Experiment III (Section 4.5)

showed that our architecture is able to map properties of the

environment that are encoded differently visually but have

the same influence on behavior onto the same affordance

codes. This matches our general definition of affordances,

namely an affordance encoding locally behavior-modifying

properties of the environment. In the future, we plan to evaluate

our architecture in environments where the connection to

task-relevancy is more concrete. An example would be a key

that needs to be picked up by the agent in order for a door to

be encoded as passable. Experiment IV (Section 4.6) showed

that our architecture is able to avoid regions of uncertainty

(fog terrains) during planning via active inference. Experiment

V (Section 4.7) emphasized our architecture’s generalization

abilities but also showed that the learned affordances are

not disentangled. If properties of the environment do not

overlap and with a sufficiently large context size, the agent

can successfully reach the target without touching regions of

uncertainty nearly all the time. This is less so if properties do

overlap. We propose that an additional regularization that

may foster a disentanglement or factorization of the learned

affordances could lead to a fully successful generalization to

arbitrary combinations of previously encountered properties.

Our notion of affordances admittedly slightly differs from

the original definition in Gibson (1986). In this study, we

assume that every action is possible everywhere, but that only

the effects differ depending on the environmental context. This

was certainly the case in the environment we used in our

experiments. We think that this is also often the case in the

real world—particularly when actions are considered on the

lowest level only, i.e., muscle movements. When increasing

behavioral abstraction, though, this might not necessarily be the

case any longer. For example, the high-level, composite action

of driving a nail into a wall clearly is not possible in every

environmental context. In the future, we want to investigate how

our architecture can be expanded to flexibly and hierarchically

process event-like structures (Zacks and Tversky, 2001; Zacks

et al., 2007; Butz et al., 2021; Eppe et al., 2022). In order to foster

these event structures, inductive biases as in Butz et al. (2019)

and Gumbsch et al. (2021) might be necessary, which assume

that most of the time agents are within ongoing events and that
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FIGURE 9

Results from Experiment III–Behavioral-relevance of a�ordance codes (Section 4.5). For each setting, the results are aggregated over 25

di�erently initialized models which each performed 4 goal-directed control runs for 200 time steps. The box plots show the medians (horizontal

bars), quartiles (boxes), and minima and maxima (whiskers). Data points outside of the range defined by extending the quartiles by 1.5 times the

interquartile range in both directions are ignored. “Easy” refers to the environment from Experiment I, “hard” refers to the condition with upper

and lower obstacles encoded di�erently and additional meaningless information. (A) Validation loss during training. It is the negative

log-likelihood of the actual change in position in the transition model’s predicted probability distribution. Shaded areas represent SDs. (B)

Exemplary a�ordance map for context size 8 from the environment with 2 obstacles. To generate this map, we probed the environmental map at

every sensible location, applied the vision model to each output, performed dimensionality reduction to 3 via PCA, and interpreted the results as

RGB values. (C) Prediction error during goal-directed control. It is the negative log-likelihood of the actual change in position in the transition

model’s predicted probability distribution. (D) Mean distance to the target during goal-directed control.

event boundaries characterize transitions between events. Such

event models may thus set the general context. The proposed

vision model may then be conditioned on this context to

enable accurate, event-conditioned action-effect predictions. As

a result, the event-conditioned model would learn to encode

when the action result that is associated with a particular event-

specific affordance can be accomplished.

We treat the context size in our experiments as a

hyperparameter, which needs to be set by the experimenter.

Our results show that when the context size is too small, the

system is unable to learn all environmental influences on action

effects. Larger context sizes, on the other hand, tend to decrease

prediction error. Improvement does not only depend on the

context size, but also the computational capacity of the vision

and transition models. What context size is necessary for a

certain number of possible environmental interactions remains

an open question for future research. One possible direction

here is to let the model adapt the context size on demand. In

this case, the computational capacity of the vision and transition

models need to be adapted as well, which poses a challenge.

Furthermore, the transition model may infer, if equipped with

recurrences to deal with partial observability, information that

would otherwise be immediately available via the vision module.

This leads to competition during learning, which needs to be

studied further.

Even though our architecture was successful in solving

the presented tasks, it clearly has some limitations. First,

our model computes affordance codes directly from visual
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FIGURE 10

Results from Experiment IV–Uncertainty avoidance (Section 4.6). For each setting, the results are aggregated over 25 di�erently initialized

models which each performed 4 goal-directed control runs for 200 time steps. The box plot shows the medians (horizontal bars), quartiles

(boxes), and minima and maxima (whiskers). Data points outside of the range defined by extending the quartiles by 1.5 times the interquartile

range in both directions are ignored. The bar plots show the means, where black lines represent the SDs. (A) Validation loss during training. It is

the negative log-likelihood of the actual change in position in the transition model’s predicted probability distribution. Shaded areas represent

SDs. (B) Exemplary a�ordance map for context size 8. To generate this map, we probed the environmental map at every sensible location,

applied the vision model to each output, performed dimensionality reduction to 3 via PCA, and interpreted the results as RGB values. (C)

Prediction error during goal-directed control. It is the negative log-likelihood of the actual change in position in the transition model’s predicted

probability distribution. (D) The ratio of successful runs. A run was successful if the agent was closer to the target than 0.1 units in at least one

time step and did not touch fog in any time step.

information. Since it is not able to memorize which affordances

are where it constantly needs to perform look-ups on the

environmental map. Second, our proposed architecture solves

the considered tasks in a greedy manner. During planning,

we compare the predicted sensory states to a fixed desired

sensory state over the predicted trajectory. Ourmodel, therefore,

prefers actions that lead closer to the target only within the

prediction horizon. This can be problematic if we consider

e.g., tool use. Imagine an environment with keys and doors.

Here, it might be necessary to temporarily steer away from

the target in order to pick up a key and eventually get

closer to the target after unlocking and passing through the

door. Without further modifications, our agent would not

make such a detour deliberately. In the future study section

below, we make suggestions on how these limitations may

be overcome.

Reinforcement learning (RL) (Sutton and Barto, 2018) is

another popular approach for solving POMDPs. Therefore, in

future study, it would be interesting to see how an RL agent

performs in comparison to our agent. A central aspect of our

architecture is the look-up in the environment which makes the

emergence of affordancemaps possible.While certainly possible,

it is not straight-forward how this would be implemented in a

classical RL agent. Classical RL agents do not predict positional

changes which are necessary for the look-up. Furthermore, it was

shown that RL agents struggle with offline learning (Levine et al.,

2020) and generalization to similar environments (Cobbe et al.,

2019).
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FIGURE 11

Results from Experiment V–Disentanglement (Section 4.7). For each setting, the results are aggregated over 25 di�erently initialized models

which each performed 4 goal-directed control runs for 200 time steps. The box plot shows the medians (horizontal bars), quartiles (boxes), and

minima and maxima (whiskers). Data points outside of the range defined by extending the quartiles by 1.5 times the interquartile range in both

directions are ignored. The bar plot shows the means, where black lines represent the SDs. “Easy” refers to the condition where obstacles and

terrains do not overlap, “Hard” refers to the condition where, force fields can overlap with each other, obstacles, and fog terrains. (A) Validation

loss during training. It is the negative log-likelihood of the actual change in position in the transition model’s predicted probability distribution.

Shaded areas represent SDs. (B) Exemplary a�ordance map for context size 8. This environment contains all four properties (obstacle in the

upper left, for terrains in the upper right, force field pointing downward in the lower left, and force field pointing upward in the lower right). It

was not used during goal-directed control. To generate this map, we probed the environmental map at every sensible location, applied the

vision model to each output, performed dimensionality reduction to 3 via PCA, and interpreted the results as RGB values. (C) Prediction error

during goal-directed control. It is the negative log-likelihood of the actual change in position in the transition model’s predicted probability

distribution. (D) The ratio of successful runs. A run was successful if the agent was closer to the target than 0.1 units in at least one time step and

did not touch fog in any time step.

5.2. Future study

In this study, we trained our architecture on previously

collected data and only afterward performed goal-directed

control. Alternatively, one could perform goal-directed control

from the very beginning and train the architecture on inferred

actions and the corresponding encountered observations in

a self-supervised learning manner. This should increase

performance since the distribution of the training data for the

transition model then more closely matches the distribution

of the data encountered during control. In this case, the

exploration-exploitation dilemma needs to be resolved: How

should the agent decide whether it should exploit previously

acquired knowledge to reach its goal or instead explore the

environment to gain further knowledge that can be exploited in

later trials? The active inference mechanism (Friston et al., 2015)

generally provides a solution to this problem, although optimal

parameter tuning remains challenging (Tani, 2017).

Future study could also examine to what extent it is

possible to fully memorize affordances akin to a cognitive map.

A straightforward approach would be to train a multi-layer

perceptron that maps absolute positions onto affordance codes,

in which case translational invariance is lost. Alternatively, a

recurrent neural network that receives actions could predict
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affordances in future time steps conditioned upon previously

encountered affordances. Additionally, the transition model

could be split into an encoder, which maps sensory states onto

internal hidden states, and a transition model, which maps

internal hidden states and actions onto the next internal hidden

states. The introduction of an observation model that translates

internal hidden states back into sensory states would then enable

the whole planning process to take place in a hidden state space

akin to PlaNet (Hafner et al., 2019b) and Dreamer (Hafner et al.,

2019a).
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