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It appears that the free energy minimization principle conflicts with quantum

cognition since the former adheres to a restricted view based on experience

while the latter allows deviations from such a restricted view. While free energy

minimization, which incorporates Bayesian inference, leads to a Boolean

lattice of propositions (classical logic), quantum cognition, which seems to

be very dissimilar to Bayesian inference, leads to an orthomodular lattice of

propositions (quantum logic). Thus, we address this challenging issue to bridge

and connect the free energyminimization principlewith the theory of quantum

cognition. In this work, we introduce “excess Bayesian inference” and show that

this excess Bayesian inference entails an underlying orthomodular lattice, while

classic Bayesian inference entails a Boolean lattice. Excess Bayesian inference

is implemented by extending the key idea of Bayesian inference beyond

classic Bayesian inference and its variations. It is constructed by enhancing the

idea of active inference and/or embodied intelligence. The appropriate lattice

structure of its logic is obtained from a binary relation transformed from a

distribution of the joint probabilities of data and hypotheses by employing a

rough-set lattice technique in accordance with quantum cognition logic.

KEYWORDS

free energy minimization, quantum cognition, Bayesian inference, rough set, lattice

theory

Introduction

Cognitive predictive behaviors that are found in brain function, biological

information processing, and cognitive sciences have been recently described and

explained using the free energy minimization principle (Friston et al., 2006; Friston and

Kiebel, 2009a,b). However, related cognitive phenomena such as sensory illusions (e.g.,

due to ambiguity such as in the Necker cube), the conjunction fallacy (e.g., “Linda’s

fallacy”), the order effect in questionnaire responses, context-dependent decision-

making, and the “Guppy effect” in complex concept conjunction and disjunction

have been recently described and explained by using quantum cognition principles

(Khrennikov, 2001, 2010, 2021; Aerts, 2009; Aerts et al., 2012, 2013, 2019; Busemeyer

and Bruza, 2012; Haven and Khrennikov, 2013; Asano et al., 2015; Bruza et al., 2015;

Dzhafarov et al., 2016; Ishwarya and Kumar, 2020a,b). Moreover, recent developments
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in quantum measurement theory provide a general

mathematical framework that can accommodate the question

order effect and the response replicability effect as well as their

combinations. Thus, the generalization of theWang–Busemeyer

quantum-cognition postulates for quantum-like modeling of

decision-making and psychology is achieved. An up-to-date

discussion of these recent developments and an introduction to

this “theory of quantum instruments” can be found in Ozawa

and Khrennikov (2021).

It has come to our attention through a reviewer’s suggestion

that in a recent publication (Zhang, 2021a,b), a newly

proposed analytical quantum computing paradigm, called

“quantum intelligence” (QI), aims at elucidating the notion of

causality concerning the underlying logic of the phenomena

under scrutiny.

Predictive algorithms and coding that deal with large

problems, i.e., problems that require too much computation

to obtain an optimal solution, meet the seriously challenging

problem of reducing the search area for the solutions to make

their implementation manageable or even possible. Bayesian

inference is one of the most powerful techniques that can solve

this problem (Arecchi, 2003, 2011). Moreover, it is well known

that Bayesian inference can be accurately formulated as an

instance, or a case of the free energy minimization principle

(Friston et al., 2006; Friston, 2010). The efficacy of Bayesian

inference is because it only focuses on an a priori probability

distribution assumed by the already given or realized events.

These events have been “experienced,” “realized,” or “recorded,”

as given, but there is no requirement that all events from such

an a priori distribution have been “realized.” The relevant events

could all, in principle, be hypothetical. In the context of the

free energy principle, the prior distribution is implemented

by a generative model of the action of the environment on a

Markov blanket. As this action is generated outside the Markov

blanket, by the dynamics of the environment, it is unobservable

“in principle,” i.e., under this prior. Therefore, such actions

are duly ignored; obviously, this inherent aspect of Bayesian

inference helps to reduce the search space. This is the essence

of Bayesian inference.

Furthermore, an embodied mind and/or intelligence (Varela

et al., 1991; Varela, 1997) can augment and complement

the process of Bayesian inference in biological information

processing and even overcome some of its drawbacks (Seth

and Friston, 2016; Allen and Friston, 2018; Seth and Tsakiris,

2018; Yon et al., 2019; Walsh et al., 2020). For example, let

us assume that you are familiar only with the front face of

your preferred singer, say through some photos. Now imagine

that you encounter that singer on a street in a town; then,

you would naturally be impelled to move your body to try

to see the front face. Since you have experienced more front-

face photos than photos from other angles, Bayesian inference

would ignore the face data that have been experienced less often,

and this would make the relation between the singer in the

street and the familiar front-face image retrieved by memory

stronger; eventually, this would result in the recognition that

this person is indeed your preferred singer, provided that the

match is close enough. This is a result of the fact that you cannot

identify the face seen from an angle (because of uncertainty,

missing data, or the frame problem), which implies that there

is a disadvantage to Bayesian inference. Moving your body

to see the front face of the singer implies that action-motion

control and determining the correct placement of the body can

address this disadvantage of Bayesian inference. This is called

active or embodied inference. Therefore, since embodiment

complements and reinforces Bayesian inference, one can state

that a stubbornly predictive coding is stably generated in the

brain. These ideas are also implemented in robotics (Linson

et al., 2018; Çatal et al., 2021).

While Bayesian inference seems to be flexible and to

be far from rigorous logical thinking, it entails nothing but

classical logic, or in other words, Boolean algebra, in which

any phenomenon can be explained by a combination of atomic

propositions taking the values yes or no and subject to the law

of excludedmiddle (i.e., classical logical reductionism). Bayesian

inference itself is not flexible in its logic, but it is a flexiblemethod

to determine within a predictive area what can be assessed and

accepted by classical Boolean algebra (Arecchi, 2003, 2011; Gunji

et al., 2017, 2020). In that sense, an image encoded inside the

brain and an object existing outside of the brain must have a

one-to-one correspondence through predictive coding.

In contrast, quantum cognition focuses on the other side

of brain-function phenomena and/or cognition (Khrennikov,

2001, 2021; Aerts, 2009; Aerts et al., 2012, 2013, 2019; Haven

and Khrennikov, 2013; Asano et al., 2015; Bruza et al.,

2015). Quantum cognition describes and explains cognition,

apprehension, comprehension, perception, and decision-

making by using the basic formalism and conceptual logical

and mathematical framework of quantum mechanics. It is

not concerned with the physical basis of quantum processes

in the brain’s microscopic dynamics, and it does not apply

quantum mechanics to macroscopic phenomena such as

cognition and perception. This is why the quantum cognition

community argues in favor of quantum mechanics being

properly utilized only as a mathematical tool to model cognitive

phenomena. Quantum logic, on which quantum cognition

is based, fundamentally differs from Boolean logic (Boolean

algebra). While Boolean logic has the structure of a rather

simple complemented distributive lattice, quantum logic has the

structure of a non-distributive lattice, i.e., a more complicated

orthomodular lattice. This more complex structure implies that

the cognition of multiple events entails a kind of resonance. This

means that these multiple events interfere with each other due to

the non-distributive nature of their logical evaluation, resulting

in mutual or multi-interdependence. Resonance typically

implies a non-linear interdependence (here in evaluating

probabilities); distributive lattices have linear dependencies for
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their propositions and hence no resonance-type effects. The

distributive law guarantees the independence of its reduced

atomic events or, in other words, atomic propositions. In

contrast, a non-distributive lattice guarantees the emergence

of interactions among reduced atomic events, which entails

resonance-like aspects for the probability of independent events.

This can explain cognitive illusions such as the conjunction

fallacy, in which the joint probability of the occurrence of events

A and B is larger than that of the occurrence of A.

Quantum logic (i.e., an orthomodular lattice) results from

a property of Hilbert space for the operators in quantum

mechanics. While there is no fundamental physical reason

to assume Hilbert space in a macroscopic universe, classical

mechanics can still be formulated in a Hilbert space framework,

as Koopman and Von Neumann proposed in the 1930s.

However, this results in an operational probabilistic theory

endowed with a classical Boolean algebra, which is complete as

a lattice. The dependence on the Hilbert space framework for

quantum cognition was considered a problem, or at least an

inconvenience, in assigning meaning to the related operators

and spaces. Quantum logic has been exemplified by Dirac’s

famous 3-polarizer experiment, but recently (Zhang, 2021a),

an analysis for bipolar crisp and fuzzy sets has provided new

insights into the old question. Indeed, as is well known, fuzzy

set theory models vagueness by membership measures, while

rough sets model incomplete information by bounding it with

a lower and an upper approximation. Therefore, it would be

very interesting to consider our previous work on rough set

approximation and quantum cognition (Gunji and Haruna,

2010; Gunji et al., 2016; Gunji and Nakamura, 2022a,b) in this

new light in future investigations. This could prove instrumental

in taking further steps toward a deeper understanding of the

interrelation of Bayesian inference and causal inference.

However, it has been recently verified that quantum logic, or

orthomodular lattices, can be constructed without Hilbert space.

First, this was achieved (Gunji et al., 2016) by the extension

of Arecchi’s idea of inverse Bayesian inference (Arecchi, 2003,

2011), and then it was achieved by the idea of ambiguity

between what is inside and outside of a context (Gunji and

Haruna, 2022; Gunji and Nakamura, 2022a,b). It can be achieved

with respect to “rough set” lattices—a kind of special coarse-

graining operation on regular sets—based on a binary relation.

Quantum logic without Hilbert space has also been achieved

by using category theory (Heunen and Vicary, 2019). This

implies that there is now a clear and reasonable foundation

by which quantum logic structures can readily be applied to

macroscopic phenomena. Now, we can turn to the following

questions that arise:

How are Bayesian inference and quantum cognition

interrelated in macroscopic world phenomena?

While classic Bayesian inference leads to Boolean logic,

in which classical logical reductionism holds, quantum logic

can never be compatible with classical logical reductionism.

Does this imply that the coexistence of Bayesian inference and

quantum logic in a macroscopic setting entails an antinomy?

How is Bayesian inference, which can be cast in a free-

energy-principle form, interrelated with quantum logic or

orthomodular lattices? If a datum is not related to the prior,

then there is no context or its probability is recorded as zero.

In other words, the probability of an event outside the context

is almost zero. Thus, the underlying logic leads to a Boolean

lattice. In contrast, quantum logic (or an orthomodular lattice)

allows for contextuality since it accepts the non-zero probability

of an event even outside the originally set context. We show here

that such a non-zero probability of an event outside the original

context can be obtained from an “excessive Bayesian procedure”

or, in other words, an “extended Bayesian inference”. This entails

a variation of the so-called “Bayesian-Inverse-Bayesian” non-

linear loop (Gunji et al., 2016; Basios and Gunji, 2021). It

might seem paradoxical, but upon closer examination, it is

not. Although a one-to-one correspondence is enforced within

the context, the non-zero probability of an event outside the

given context can still be readily obtained. Stubborn predictive

coding is resistant to change, and seemingly paradoxically, it

not only affords but also actually gives rise to the possibility of

considering other “outsider” events in addition to the events

inside the context. This results in an instance of quantum logic.

This article is organized as follows: First, we show the

relationship between the free energy minimization principles—

Bayesian inference and Boolean algebra. Second, we implement

an excess Bayesian procedure and demonstrate how the

relationship between the datum and hypothesis is changed

through this procedure. Third, we show that the excess

Bayesian procedure entails an orthomodular lattice as a quasi-

disjoint union of Boolean algebras. Therefore, in conclusion,

we establish that this implies that quantum cognition and the

free energy principle are connected to each other via an excess

Bayesian procedure.

Quantum cognition, orthomodular
lattice (quantum logic), and free
energy minimization

Quantum cognition, which is a new trend in cognitive

science, is based on the notion of probability in quantum

mechanics. Since any state of an event is defined as a vector

of complex numbers, the probability of an event is expressed

as the norm of the vector, as in quantum mechanics. Since

the effect of quantum entanglement plays an essential role in

calculating the joint probability, quantum cognition can explain

various cognitive illusions. However, quantum cognition uses

quantum mechanics not as a physical foundation of cognition

but as information theory.

The orthomodular lattice is directly obtained from quantum

mechanics; a lattice is an ordered set that is closed with respect to
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binary operations,meet and join (Appendix A). Given a complex

number linear space, an element of an ordered set is defined by

a set of vectors, and the order relation is defined by inclusion.

For any set of vectors, a set of vectors that are orthogonal to

the vectors is defined as an orthocomplement of them. Themeet

of sets of vectors is defined by their intersection, and the join

of sets is defined by the composition of the orthocomplement

of their union. Thus, an ordered set can be verified as an

orthocomplemented lattice. Since a linear vector space is

equipped with a Hilbert space, an orthocomplemented lattice is

verified as an orthomodular lattice. If inclusion is regarded as a

sequence of premises and consequences and meet and join are

regarded as logical conjunction and disjunction, respectively, an

orthomodular lattice is reformalized as quantum logic.

While quantum cognition and the orthomodular lattice were

originally derived from quantum mechanics equipped with a

Hilbert space, it has been verified that an orthomodular lattice

can be obtained without a Hilbert space, and various cognitive

illusions can be explained by subjective probability defined in

an orthomodular lattice without a Hilbert space. This implies

that quantum cognition may be established by an orthomodular

lattice alone, without a Hilbert space.

Free energy minimization is a theory by which cognitive

brain function is systematically explained, and it is based on

Bayesian inference. The term free energy originates from the

fact that the upper bound of the cost function that reveals the

difficulty in predicting the sensory input is called variational

free energy. First, we spell out how free energy minimization

is related to Bayesian inference and how it is disconnected

from quantum cognition. It is well known that the free energy

minimization principle implies Kullback–Leibler divergence

between the a priori probability and the a posteriori probability

under the minimization of predictive error (Friston and Kiebel,

2009a,b). It is expressed as

min
(

KLD
[

p (u) ‖ p (u|s)
]

− ln p (s)
)

(1)

Where, KLD
[

p (x) ‖ q (x)
]

=
∑

i p (xi) log
p(xi)
q(xi)

is the

Kullback–Leibler divergence between the two given probability

distributions, p, q, and the random variable is x, while s is the

given datum that has been experienced, and lnp (s) is the surprise

resulting from a given experience (i.e., the predictive error),

which is minimized. It is easy to see that KLD
[

p (x) ‖ q (x)
]

= 0

if, and only if, p (x) = q (x) almost everywhere.

Thus, the minimizing procedure (1) implies that the a

priori probability coincides with the a posteriori probability.

Here, we show that this procedure is nothing other than classic

Bayesian inference. Since probability changes over time in

Bayesian inference, let us introduce time as a suffix for the

probability. The variables d and h represent the datum and

hypothesis, respectively. The probability of datum d at time step

t is represented by Pt
(

d
)

, and that of hypothesis h at time step

t is represented by Pt
(

h
)

.

The conditional probability Pt
(

h|d
)

represents the

probability of h under the experience of d. Since hypothesis h is

the probability distribution of the data, hypothesis h is expressed

in terms of the likelihood of data as Pt
(

d|h
)

.

From the definition of the conditional probability of A given

B, expressed as P (A|B), we have P
(

d
∣

∣h
)

=
P(d,h)
P(h)

and P
(

h
∣

∣d
)

=

P(d,h)
P(d)

, so one obtains via Bayes’ theorem that

P
(

h
∣

∣d
)

P
(

d
)

= P
(

d
∣

∣h
)

P
(

h
)

(2)

This is consistent with non-Bayesian probability theory

when there is no iteration over time. However, because

P
(

d
)

=
∑

k P
(

d|hk
)

P
(

hk
)

, and because we do have an iterative

procedure over time in our case, with a time step t, we obtain for

Pt
(

h
)

the following expression:

Pt
(

h
∣

∣d
)

=
Pt

(

d|h
)

Pt
(

h
)

∑

k P
t
(

d|hk
)

Pt
(

hk
) (3)

One might regard the calculation using Equation 3 as

Bayesian inference, yet this is not a genuine Bayesian inference

just because it is consistent with ordinary probability theory. The

essence of Bayesian inference is that it allows us to compute,

starting from a given a priori probability, a resulting a posteriori

probability such that

Pt+1 (

h
)

= Pt
(

h|d
)

(4)

This is the goal of free energy minimization. The probability

of the hypothesis h under a specific experience d is generalized

as the probability of the hypothesis independent of experience.

The relation between data and hypotheses is analogous

to the relationship between objects outside the brain

and their representations (or “images”) inside the

brain. Let us consider a set of hypotheses and data,

H =
{

h1, h2, . . . , hN
}

,D =
{

d1, d2, . . . , dN
}

. A one-to-

one correspondence between hypotheses and data is expressed

by using the likelihood of a hypothesis and the probability of

this hypothesis. The likelihood is expressed as

Pt
(

di
∣

∣hj
)

∼ 1.0,
(

i = j
)

;Pt
(

di
∣

∣hj
)

∼ 0.0,
(

i 6= j
)

. (5)

This one-to-one correspondence between hypotheses and

data implies Pt
(

h
)

j =
1
N .

Therefore, the joint probability of a hypothesis is

expressed as

Pt
(

di, hj
)

= Pt
(

di
∣

∣hj
)

Pt
(

hj
)

∼
1

N
,
(

i = j
)

; Pt
(

di, hj
)

∼ 0.0,
(

i 6= j
)

. (6)

The joint probability between a hypothesis and data is

transformed into a binary relation R ⊆ H × D such that
(

h, d
)

∈ R if Pt
(

d, h
)

> θ ; otherwise,
(

h, d
)

/∈ R,.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.910161
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Gunji et al. 10.3389/fnbot.2022.910161

FIGURE 1

A diagonal relation and its corresponding lattice, which is a

Boolean lattice. The lattice is shown here as a Hasse diagram, in

which the elements of the lattice (a subset of D) are represented

by black circles, and if one element is smaller than another

element (i.e., one set is included in the other) and no element

exists between them, then they are connected by a line, and the

larger one is shown above the smaller one.

This results in a diagonal relation, as shown in Figure 1. This

construction of a binary relation can be generalized to any joint

probability between a hypothesis and data. In Figure 1, H =
{

h1, h2, . . . , h7
}

,D =
{

d1, d2, . . . , d7
}

, and from Equation 6,

Pt
(

di, hi
)

∼ 0.143; Pt
(

di, hj
)

∼ 0.0. Thus, given θ = 0.1, we

obtain
(

di, hi
)

∈ R ⊆ D×H for i = 1, 2, . . . , 7 and
(

di, hj
)

/∈ R

for i 6= j.

Now, given a binary relation between a hypothesis and data,

one can estimate a logical structure with respect to a lattice (see

Appendix A). There are several ways to construct a lattice from

a binary relation, where a concept is defined as a fixed point with

respect to certain defined operations. This has the result that a

concept is expressed as a pair of a subset of the hypotheses, H,

and a subset of the data, D. Since such a concept formulation

for a rough set lattice is consistent with the “concept” discussed

in cognitive linguistics, we apply the rough set lattice formalism

and theory for a binary relation.

Given a set of hypotheses H, a set of data D, and a relation

R ⊆ H×D, two operations, the upper and lower approximations

(Appendix B) are defined as follows. For ∀X ⊆ D, the upper

approximation of X with respect to a hypothesis is defined by

H∗ (X) = {T ∈ H|s ∈ X, sRT} (7)

For ∀Y ⊆ H, the lower approximation of Y with respect to the

data is defined by

D∗ (Y) = D− {s ∈ D|T ∈ H − Y , sRT} (8)

where H − Y represents the complement of Y in the set H.

A collection of fixed points of the composition of the two

operations (7) and (8) is called a rough set lattice (Yao, 2004;

Gunji and Haruna, 2010; see Appendix-B) and is described as

L =
{

X ⊆ D
∣

∣D∗

(

H∗ (X)
)

= X
}

(9)

As shown in Appendix A, a lattice is defined by an ordered set

that is closed with respect to specific binary operations,meet and

join. In a rough set lattice, L is a subset of the power set of D and

is closed with respect to join and meet. While there are other

methods for constructing a lattice from a binary relation, such

as the lattice of formal concept analysis that was developed to

deal with cognitive memory (Kumar et al., 2015; Shivahare and

Cherukuri, 2017), we used a rough set lattice for reasons based

on cognitive linguistics.

In the ideal case of a diagonal relation, as shown in Figure 1,

one obtains a Boolean lattice (Appendix A) of a rough-set lattice.

First,D∗

(

H∗
(

{di}
))

= D∗

(

{hi}
)

= {di} for any i = 1, 2, . . . , 7.

Thus, a singleton set of any element of D satisfies Equation 9

and is an element of a rough set lattice. Since a Boolean lattice

is expressed as a power set of D, any subset of D is an element

of L. This is easy to verify since for any subset of D, such as

X = { di, dj, . . .},

D∗

(

H∗ (X)
)

= D∗

(

{hi, hj, . . .}
)

(10)

and since for any k ∈ {1, 2, ..., N} ,
(

hk, dk
)

∈ R, and
(

hs, dk
)

/∈

R,
(

s 6= k
)

. Indeed, for any subset of D,

D∗

(

{hi, hj, . . .}
)

= D−
{

s ∈ D|T ∈
{

hi, hj, . . .
}

, sRT
}

= D−
{

di, dj, . . .
}

=
{

di, dj, . . .
}

(11)

where
{

di, dj, . . .
}

is the complement of
{

di, dj, . . .
}

.

This implies that for any X ⊆ D,

D∗

(

H
∗
(X)

)

= X (12)

Therefore, L is the same as the power set of D, and meet

is defined by intersection while join is defined by union. A

Boolean lattice is a classical set-theoretic logic, and any concept

within this logic, as defined above, can be expressed as a

combination of logical atoms (i.e., the next least element of D),

which in turn implies that any such concept can be reduced

to atoms. This is why the Boolean lattice is simply classical

logical reductionism. In the Hasse diagram of Figure 1, all

elements of the rough set lattice defined by the power set of

D =
{

d1, d2, . . . , d7
}

are represented by black circles. The least

element is the empty set, and the elements, called atoms, just

above the least element are {d1},
{

d2
}

, . . . , {d7}. Then, the

elements just above the atoms are all combinations of atoms,

such as
{

d1, d2
}

,
{

d1, d3
}

, ...,
{

d2, d3
}

, . . . , {d6, d7}. The

lattice contains all subsets of D, and the top element (i.e., the

greatest element) is D.

A Boolean lattice is mathematically defined as a distributive

complemented lattice.Meet and join constitute distributive laws

for any element of the Boolean lattice. A complemented lattice

implies that for any element there is at least one complement of

it such that the meet of the element and its complement is the

least element of the lattice, and their join is the greatest element

of the lattice. In a Boolean lattice, for any element of the lattice,
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FIGURE 2

Snapshots of the joint probability between data and hypotheses. The probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black. By following the thick arrow, the binary relation R is obtained. The pale blue cells represent the domain in the

relation, which is ignored by Bayesian inference.

there is a unique complement called the orthocomplement (see

Appendix A).

Now, instead of an ideal diagonal relation, let us consider

a binary relation between hypothesis and datum through

Bayesian inference. Given an ideal diagonal relation as an initial

condition, a specific sequence of data, d ∈ DE ⊆ D, is

given to obtain a decision-making system based on Bayesian

inference. Figure 2 shows some snapshots, in the form of a

heatmap, of the joint probabilities of hypotheses and data.

In Figure 2, H =
{

h1, h2, . . . , h10
}

,D =
{

d1, d2, . . . , d10
}

,

and initially, Pt=0
(

di|hi
)

= 0.8, and in the case of i 6=

j, Pt=0
(

dj|hi
)

= 1−0.8
9 = 0.022. The probability of

each hypothesis is such that Pt=0
(

h
)

= 0.1. The temporal

development follows Equations 3, 4, where specific data, d in

Pt
(

h
∣

∣d
)

, are given at each time. In the top row in Figure 2,

a specific d is randomly given from a subset of D such as

D −
{

d8, d9, d10
}

=
{

d1, d2, . . . , d7
}

. Since the probability of

d is calculated cumulatively, as time proceeds, the probability

converges to the actual situation: Pt
(

d8
)

= Pt
(

d9
)

=

Pt
(

d10
)

=0.0, and Pt
(

ds
)

=1/7=0.14 with s 6= 8, 9, 10.

If at time step t, dswith s 6= 8, 9, 10 is given, Pt
(

h
∣

∣ds
)

=

Pt(ds|h)Pt(h)
∑

k P
t(ds|hk)Pt(hk)

is calculated for any h. From this, Pt+1
(

h
)

=

Pt
(

h|ds
)

is obtained by Equation 9. Finally, Pt+1
(

d, h
)

is

calculated by Pt+1
(

d
)

Pt+1
(

h
)

. Each matrix of Figure 2 is

obtained as a heatmap, in which if Pt+1
(

d, h
)

≥ 0.01, the cell

is painted black; if 0.01 > Pt+1
(

d, h
)

≥ 0.008, it is painted

pink; if 0.008 > Pt+1
(

d, h
)

≥ 0.002, it is painted orange; if

0.002 > Pt+1
(

d, h
)

≥ 0.0006, it is painted pale yellow; and

otherwise, it is painted white.

It is easy to see that data that have not been experienced

or realized and their corresponding hypotheses are ignored

through Bayesian inference. Therefore, a binary relation

R is readily obtained for any di ∈ DE,
(

hj, di
)

∈

R,
(

i = j
)

;
(

hj, di
)

/∈ R,
(

i 6= j
)

, as shown in the right row of

Figure 2. Henceforth, we call any such relation a sub-diagonal

relation since a full diagonal relation holds only for a subset

of D.

A rough set lattice corresponding to a sub-diagonal relation

is also a Boolean lattice, the same as the lattice shown in Figure 1.

It is easy to see that for any X ⊆ DE, D∗

(

H∗ (X)
)

= X, and

for any Y ⊆ DE, D∗

(

H∗ (Y)
)

= D∗ (∅) = ∅. Therefore,

D∗

(

H∗ (X ∪ Y)
)

6= X ∪ Y , which implies that a rough-set

lattice for a sub-diagonal relation on DE is the power set of DE.

Obviously, this is nothing more than a Boolean lattice by itself.

The diagonal relation that entails a Boolean lattice also implies a

one-to-one correspondence between objects and representations

(or “images”), which is actually the basis for decision-making

based on classical logical reductionism. When a decision-maker

searches for an optimal solution through Bayesian inference,

the domain in which the one-to-one correspondence holds is

restricted to a small part of a whole binary relation. That small

area results in a sub-diagonal relation, which helps the decision-

makers avoid redundant searches. In other words, Bayesian

inference is essentially the core of “stubborn empiricism.” While

many researchers claim that predictive coding in the brain

is flexible and plastic, with respect to search strategies in a

changeable environment, Bayesian inference itself sticks to a

“stubborn” optimization process.
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Excess Bayesian inference and
quantum logic

Compared to Bayesian inference, or its equivalent free

energy minimization, quantum cognition claims remarkably

better flexibility and deviates from classical optimization in

terms of decision-making processes. One of the most intriguing

examples is the so-called “guppy effect,” which shows the essence

of the conjunctive fallacy: given two events that are independent

of each other, the joint probability of the two events occurring

simultaneously is smaller than the probability of every single

event (Aerts et al., 2012). The probability of an unknown person

being male, represented by P
(

male
)

, is 1
2 , and the probability

that the person is born in March, P
(

March
)

, is 1
12 . Therefore,

since the probability that the person is male and is born inMarch

is P
(

male ∧March
)

= 1
24 , we have

P
(

male ∧March
)

<P
(

male
)

, P
(

male ∧March
)

<P
(

March
)

(13)

The guppy effect contradicts this situation. If someone is

asked to give an example of a fish, most likely, the person

will respond with tuna, mackerel, or a similar example, and

the probability that the person will give the example of a

guppy, the popular pet fish that gave its name to this effect

in the original publication, is very small. The probability of

recalling the datum “guppy” when the prompt “fish” is given is

represented by Pguppy
(

fish
)

. Analogously, if someone is asked to

give an example of a pet, the person might respond with a cat

or a dog, and probability of recalling Pguppy
(

pet
)

is very small.

However, if specifically asked to recall a pet fish, the person could

recall the guppy with high probability, and this implies

P
(

pet ∧ fish
)

> P
(

fish
)

, P
(

pet ∧ fish
)

> P
(

pet
)

(14)

This is the guppy effect.

In quantum cognition, quantum mechanics is used as the

basis of information theory. An event is defined as a vector

in Hilbert space, and the probability of an event is defined

by the square of the norm of its vector. The guppy effect, in

which a joint probability is larger than the probability of a single

event, can be explained by the entanglement of events. Thus, we

arrive at the realization that the probabilities of events are not

independent of each other and are in fact an interaction among

events. Their “entanglement” can occur through an effect outside

the diagonal relation that results from classic Bayesian inference.

The difference between Bayesian inference and quantum

cognition is clearly shown in terms of lattice theory. As

mentioned previously, Bayesian inference entails a Boolean

lattice. In quantum mechanics, one can define a set of vectors,

X, as an element of a lattice, and an orthocomplement of X,

represented by X⊥, is defined by the set of vectors whose inner

product with any vector of X is zero (i.e., the two vectors are

orthogonal to each other). Meet, again, is defined here by the

intersection, and join is defined by the orthocomplement of the

union. In Hilbert space, the resulting lattice is known to be an

orthomodular lattice (Appendix A), which is essentially what

quantum logic is. As mentioned previously, it has been recently

demonstrated that quantum logic (an orthomodular lattice) can

be constructed without a Hilbert space using category theory

and/or lattice theory.

Since an orthomodular lattice is a non-distributive lattice,

not all events and phenomena can be explained by a

combination of logical atoms. In other words, the orthomodular

lattice conflicts with the classical logical reductionistic approach

supported by classical Boolean lattice theory. It can indeed

accommodate flexible and plastic inference processes and

interactions of thoughts concerning multiple events. In that

sense, an orthomodular lattice or quantum logic not only

conflicts with Boolean lattice theory but also surpasses it.

Thus far, we have obtained a lattice from a binary

relation between data and hypotheses, and we have shown

that Bayesian inference entails a Boolean lattice. Moreover, as

has been clearly seen, Bayesian inference plays an essential

role in human decision-making. Therefore, any other decision-

making process that should be added to the Bayesian inference

process must preserve and accommodate Bayesian inference

itself. However, since decision-making based on quantum logic

conflicts with decision-making based on Bayesian inference,

these two decision-making processes might seem to be in

conflict with each other. Therefore, the problem that arises is to

determine what kind of process entailing quantum logic could

be added to the basic Bayesian process.

Here, we define the excess Bayesian process, by which the

tendency to stick to experience based on Bayesian inference is

enhanced rather than canceled. The excess Bayesian process is

defined by the detection of data that have been experienced

and actually contracts the universe of discourse based on

experience. Since the probability of a specific datum that is not

observed decreases to almost 0.0 through Bayesian inference,

only the joint probabilities of specific pairs of datums and

hypotheses remain, which is called the effective domain. The

excess Bayesian process regards the effective domain as a set

consisting of all joint probabilities and modifies the likelihood

function of the hypothesis so that it is contained in the effective

domain. Therefore, the joint probability in the effective domain

is divided by the summation of those joint probabilities in the

effective domain. This is defined below, and the algorithmic

representation is shown in Appendix C. While excess Bayesian

inference has sometimes been referred to as inverse Bayesian

inference (Gunji et al., 2016), inverse Bayesian inference is

formalized so that it is symmetrical to Bayesian inference

(Gunji et al., 2018, 2021). Since Bayesian inference uses a

set of hypotheses to infer the environment by changing the

probability of the hypotheses, the hypotheses are required to be

sufficiently different from each other that each is sensitive to the

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.910161
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Gunji et al. 10.3389/fnbot.2022.910161

environment. Therefore, each hypothesis hi is required to have

a sharp peak in the diagonal element datum di. If the effective

domain of the data is a subset of the set of all data, the likelihood

of a hypothesis must be contained in the effective domain. This

is simply an extension of Bayesian inference, and that is why

it is called an excess Bayesian process. Therefore, we formulate

the abovementioned excess Bayesian process as follows: Given a

joint probability, Pt
(

di, hj
)

, i = 1, 2, . . . ,N; j = 1, 2, . . . ,N, a

binary relation is obtained by a given threshold value θ :

(

hj, di
)

∈ Rt , ifPt
(

di, hj
)

> θ;
(

hj, di
)

/∈ Rt , otherwise (15)

The detection of data is defined by taking a diagonal

element
(

hi, di
)

and considering inverting the relation either

from
(

hi, di
)

∈ Rt to
(

hi+1, di+1
)

/∈ Rt or from
(

hi, di
)

/∈ Rt

to
(

hi+1, di+1
)

∈ Rt . This is expressed as a setMtsuch that

M
t = {Mk =

(

hi, di
)

∣

∣

∣

(

(

hi, di
)

∈ Rt ∧
(

hi+1, di+1
)

/∈ Rt
)

∨
(

(

hi, di
)

/∈ Rt ∧
(

hi+1, di+1
)

∈ Rt
)}

(16)

where if Mk =
(

hi, di
)

and Mk+1 =
(

hj, dj
)

, then i < j. When

the Bayesian inference is expressed as Equations 3, 4, some

data are ignored, which decreases the probability of Pt
(

di, hj
)

when di is not found under the given circumstances. A set

M
t assigns a subset of the relation of diagonal elements. By

constructing the set Mt , we contract the universe of discourse

depending on experience. In non-Bayesian probability theory,

the following holds:

P
(

h, d
)

= P
(

h|d
)

∑

k

P
(

d, hk
)

(17)

the following equation also holds:

P
(

d
)

=
∑

k

P
(

d, hk
)

=
∑

j

P
(

dj
)

(18)

The contraction of the universe depending on experience is

implemented as follows: we assume that according to the belief

that the universe consists only of experiences, the probability of

the data that have been experienced is 1.0. That is,

P
(

d
)

=
∑

k

P
(

d, hk
)

= 1.0 (19)

Substituting Equation 19 with Equation 17 and introducing

an iterative process as before, with a given time step t, the

newly contracted universe considering the data that have been

experienced is denoted at each time step by d′, and one obtains

Pt+1 (

h, d
)

= Pt
(

h
∣

∣d
)

=
Pt

(

h, d
)

Pt
(

d
′) (20)

The probability of the contracted data, Pt
(

d′
)

, at each time

step is calculated within the contracted universe of discourse by

Equation 16, so we have

Pt
(

d
′
)

=
∑q

j=p
Pt

(

hj, d
)

(21)

where the domain of summation of Pt
(

hj, d
)

is given by

p = πMk, q = πMk+1with Mk,Mk+1 ∈ M
t , k = 1, 2,

. . . , m− 1 (22)

which assigns either the relation {
(

hi, di
)

∈ Rt} that has been

experienced or the relation {
(

hi, di
)

/∈ Rt} that has not been

experienced, where

πMk = π
(

hi, di
)

= i (23)

which assigns the index of the diagonal element. ForMm ∈ M
t ,

Mm = (hN , dN ), and then p = πMm−1, q = N. In the

excess Bayesian procedure, first, Pt
(

d
)

, as a part of the universe,

is regarded as a universe, which entails Pt
(

d
)

= 1.0, which

cancels any effect of Pt
(

d
)

. Then, in turn, the data that have been

experienced are denoted by d′, and then Pt
(

d′
)

is calculated

from the small area assigned by Equation 16. The following

mnemonic expression might help us understand the basis of the

excess Bayesian inference:

P
(

h, d
)

=
P

(

h, d
)

P
(

d
) P

(

d
)

(24)

While Equation 24 is indeed trivial, P
(

d
)

in the numerator

on the right-hand side must be regarded as 1.0, and P
(

d
)

in

the denominator on the right-hand side must be regarded as

Pt
(

d
′
)

. Thus, we obtain Equation 20.

By using Equation 22 or 23, the joint probability is obtained

by summation with respect to the hypotheses, so now it reads as:

Pt+1 (

h, d
)

= Pt
(

h
∣

∣d
)

=
Pt

(

h, d
)

Pt
(

d
′) =

Pt
(

h, d
)

∑q
j=p P

t
(

hj, d
)

(25)

Symmetrically, the joint probability is obtained by summation

with respect to the data, so now it reads as:

Pt+1 (

h, d
)

= Pt
(

d
∣

∣h
)

=
Pt

(

h, d
)

Pt
(

h′
) =

Pt
(

h, d
)

∑q
j=p P

t
(

h, dj
)

(26)

Using Equations 25, 26, not only the joint probability in the

assigned area but also the joint probability outside the assigned

area is normalized. Therefore, the effect of Bayesian inference

contributes to the area outside the originally assigned area. The

algorithmic representation of excess Bayesian inference is shown

in Appendix C.

Figure 3 shows how Equations 25, 26 play a role in

calculating the joint probability. This is a result of numerical
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FIGURE 3

Snapshots of the joint probabilities of data and hypotheses and their corresponding relation R. The articulation of the data and hypotheses with

respect to the diagonal elements is determined by Equation 22. The joint probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black. The last diagram in the sequence ordered by the arrows represents a binary relation. A black cell at (h,d)

represents (h,d) ∈ R, and a white cell represents (h,d) /∈ R.

simulation in which after the classic Bayesian process is used

in the first 30 steps, the newly introduced excess Bayesian

process, defined by Equations 25, 26, is implemented. In

Figure 3, H =
{

h1, h2, . . . , h20
}

,D =
{

d1, d2, . . . , d20
}

,

and initially, Pt=0
(

di|hi
)

= 0.8; in the case of i 6=

j, Pt=0
(

dj|hi
)

= 1−0.8
19 = 0.011. The probability of each

hypothesis is such that Pt=0
(

h
)

= 0.05. The time development

follows Equations 3, 4, where a specific data value, d in

Pt
(

h
∣

∣d
)

, is given at each time. In Figure 2, the specific d is

randomly given from a subset of D, such as D − E with

E =
({

d3, d4, d5, d6
}

∪
{

d15, d16, d17, d18, d19, d20
})

. Since

the probability of d is calculated cumulatively, as time proceeds,

the probability converges to the situation; Pt
(

du
)

= 0.0 for

du ∈ E , and Pt
(

ds
)

=1/10=0.10 for ds /∈ E. However,

Bayesian inference is adopted only for 30 time steps. If at time

step t, ds /∈ E is given, then Pt
(

h
∣

∣ds
)

=
Pt(ds|h)Pt(h)

∑

k P
t(ds|hk)Pt(hk)

is calculated for any h. From this, Pt+1
(

h
)

= Pt
(

h|ds
)

is

obtained by Equation 9. For the first 30 time steps, Pt+1
(

d, h
)

is calculated by Pt+1
(

d
)

Pt+1
(

h
)

. Each matrix in Figure 3 is

obtained as a heatmap, in which if Pt+1
(

d, h
)

≥ 0.01, the cell

is painted black; if 0.01 > Pt+1
(

d, h
)

≥ 0.008, it is painted

pink; if 0.008 > Pt+1
(

d, h
)

≥ 0.002, it is painted orange; if

0.002 > Pt+1
(

d, h
)

≥ 0.0006, it is painted pale yellow; and

otherwise, it is painted white.

In the excess Bayesian process, M
t is determined to

assign data that have been experienced. When an element

of M
t = {M1 =

(

h1, d1
)

, M2 =
(

h3, d3
)

, M3 =
(

h6, d6
)

, M4 =
(

h12, d12
)

} is chosen, one obtains

p = πMk, q = πMk+1. As shown in Figure 3, a square whose

vertices are
(

hp, dp
)

,
(

hp, dq−1
)

,
(

hq−1, dp
)

,
(

hq−1, dq−1
)

becomes the diagonal relation that is defined by

Equation 15. Squares are added due to this diagonal

relation, such as the square whose vertices are {
(

h1, d1
)

,
(

h1, d2
)

,
(

h2, d1
)

,
(

h2, d2
)

}, {
(

h3, d3
)

,
(

h3, d5
)

,
(

h5, d3
)

,
(

h5, d5
)

}, {
(

h6, d6
)

,
(

h6, d11
)

,
(

h11, d6
)

,
(

h11, d11
)

}, and

{
(

h12, d12
)

,
(

h12, d20
)

,
(

h20, d12
)

,
(

h20, d20
)

}, and consists of
(

hi, dj
)

∈ R. The above example demonstrates how the joint

probabilities of data and hypotheses in the area assigned by

the data that have been experienced and their corresponding

hypotheses are normalized by dividing those probabilities by
∑q

j=p P
t
(

hj, d
)

and
∑q

j=p P
t
(

h, dj
)

. Finally, each cell in the

relation is painted black if Pt+1
(

d, h
)

≥ 0.0006; otherwise, it is

painted white.

This normalization procedure enhances the diagonal

relationship between the data and hypotheses beyond the

experienced domain, which implies an explicit one-to-one

correspondence between the data and hypotheses. In addition,

the joint probabilities outside the diagonal relation are no longer

negligibly small values. In Bayesian inference, only a diagonal

relation is accessible as obtained, and any pair of data and

hypotheses outside a diagonal relation are necessarily ignored;

therefore, their joint probabilities almost disappear. In contrast,

during the excess Bayesian inference process, pairs of data and

hypotheses outside the diagonal relation are also enhanced, and

the corresponding joint probabilities are increased. Although

this might seem paradoxical and counterintuitive, it is indeed
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FIGURE 4

Snapshots of the joint probabilities of data and hypotheses and their corresponding relation R. The articulation of the data and hypotheses with

respect to the diagonal elements is determined by Equation 23. The joint probabilities are colored from low to high in the order of white, pale

yellow, orange, pink, and black (left). A black cell at (h,d) represents (h,d) ∈ R, and a white cell represents (h,d) /∈ R (center right).

true that overestimating one’s own experience allows alternative

possibilities to emerge outside the given experience.

We previously showed that the psychological origin of

quantum mechanics and/or quantum logic results not from a

poor choice of basis vectors but from generating a context in

which an object outside a brain is uniquely connected with a

representation inside a brain, where outside the context, the

object is connected to all images and the image is connected

to all objects (Gunji and Haruna, 2022; Gunji and Nakamura,

2022a,b). In other words, there is a one-to-one relation within

each context, and outside the context (i.e., background), objects

are connected to all representations and vice versa. Since

a one-to-one relation entails a Boolean algebra, this system

entails multiple Boolean algebras connecting via the least and

the greatest elements resulting from the background. This

is the implementation of quantum logic without a Hilbert

space. In this paper, we added another explanation for the

psychological origin of quantum logic by introducing the excess

Bayesian process.

The results from a numerical simulation of the excess

Bayesian inference are shown in Figure 3, where the domain

assigned by data that have been experienced is determined

by Equation 22, which articulates the relationship between

data that have been experienced and data that have not been

experienced, and through this articulation, it assigns the vertex

of the diagonal relation. Finally, the joint probabilities of the

data and hypotheses entail, by induction, certain binary relations

consisting of multiple diagonal relations and newly formed

relations outside the diagonal relations, where pairs
(

hi, dj
)

outside the diagonal relations remain in their corresponding

relations R.

Figure 4 shows the results from numerical simulations of

the excess Bayesian inference, where the domain assigned by

the experienced data is determined by Equations 22, 23, in

which only data that have been experienced are assigned as

articulated. Therefore, diagonal elements whose data have been

experienced constitute a diagonal relation, while those whose

data have not been experienced constitute the background

outside the diagonal relations. Similar to Figure 3, any
(

hi, dj
)

outside the diagonal relations is in R. The central diagram

in Figure 4 shows a large area consisting of cells representing
(

h, d
)

∈ R, which contains diagonal cells. In this relation,

for some d, any h is in a relation such that
(

h, d
)

∈ R,

and for some h, any d is in a relation such that
(

h, d
)

∈ R.

These pairs of
(

h, d
)

∈ R can be canceled out with respect

to a given rough-set lattice approximation because for some

d such that any h has a relation to it, D∗

(

H∗
(

{d, . . .}
))

=

D∗ (H) = D is not an element of a lattice. Thus, a d

such that any h has a relation to it and an h such that

any d has a relation to it can be mutually removed from

a relation R. The diagram on the right in Figure 4 shows

such a relation, where the redundant rows and columns have

been removed.

Figures 5, 6 show a corresponding lattice obtained from the

relation in Figure 3, where this lattice is defined by Equations 7–

9. It is easy to see that they are the same kind of orthomodular

lattices that correspond to quantum logic. Figure 5 shows

a relation between the data and the hypotheses and their

corresponding sublattices. When we focus on the 3× 3 diagonal

relation between {d21, d22, d23} and {h21, h22, h23}, the it is easy

to see that

D∗

(

H∗
(

{d21, d22}
))

= D∗

(

{h21, h22} ∪ {h21, h22, h23}
)

= D−
(

{

d21, d22
}

∪
{

d23
}

)

=
{

d21, d22
}

and that for a subset of D, X, consisting of elements belonging

to different diagonal relations, Equation 12 does not hold, since

D∗

(

H∗ (X)
)

= D.

Let us also note here that D∗

(

H∗
(

{d21, d22, d23}
))

= D.

Therefore, this 3 × 3 diagonal relation yields the power set of

{d21, d22, d23} except for
{

d21, d22, d23
}

. Thus, if the greatest

element is represented by D, the 3 × 3 diagonal relation entails

a 23-Boolean lattice. These considerations are general; therefore,

an n× n diagonal relation entails a 2n-Boolean lattice.
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FIGURE 5

Relation between data and hypotheses consisting of (2× 2) , (3× 3) , (9× 9) , (6× 6) diagonal relations and their corresponding Boolean lattices.

All relations outside the diagonal relations constitute the greatest element, which fuses all the other Boolean lattices.

FIGURE 6

Disjoint union of some Boolean lattices, the least and greatest elements of which are common to all Boolean lattices. This is obtained from the

relation shown in Figure 5.

Figure 6 shows the whole construction of a lattice

corresponding to a whole relation. Each black circle represents

an element of a (sub)lattice that is a subset of D. The greatest

element and the least element are represented by white circles,

and they are connected to the least and the greatest element

of each Boolean lattice by broken lines, which implies that the

greatest element of each Boolean lattice is the same as D and

that the least element of each Boolean lattice is the empty set.

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2022.910161
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Gunji et al. 10.3389/fnbot.2022.910161

Thus, one can say that the whole structure is a disjoint union

of multiple Boolean (sub)lattices except for the least and the

greatest element. It can be straightforwardly verified that this

is an orthomodular lattice of the kind that is well known from

quantum logic (see Appendix A).

Therefore, classical Bayesian inference gives rise to a

Boolean lattice, while excess Bayesian inference gives rise to

an orthomodular lattice. This is because classical Bayesian

inference ignores the outside of the diagonal relation, which

leads to a Boolean lattice. This implies that a decision-

maker who applies a classical logical reductionistic approach

to restricted pairs of data and hypotheses that are being

experienced ignores the pairs of data and hypotheses that

are not being experienced. In contrast, a decision-maker who

not only uses classical Bayesian inference but augments it via

an excess Bayesian inference process can enhance the basic

one-to-one correspondence between the data and hypotheses

by normalization within the domain of experience. This

leads to multiple sub-relations, which are diagonal relations

and relations that constitute the background of the diagonal

relations. If the background consists of no relation [i.e.,
(

h, d
)

/∈ R], multiple (sub)diagonal relations constitute the

one diagonal relation expressing the Boolean algebra. However,

if the background consists of relations [i.e.,
(

h, d
)

∈ R],

this same background plays a key role in constituting the

common greatest element by which multiple Boolean lattices

are fused.

Since any element except for the least and greatest elements

has a unique complement in each Boolean sublattice, any

element can be regarded as an orthocomplement. Indeed, if

an element and its orthocomplement in the lattice, such as

those shown in Figure 6, can be compared with each other and

with respect to the order, they are both in the same Boolean

lattice participating as a sublattice, and then the distributive law

holds for the element and its orthocomplement. This is why the

orthomodular law holds for that lattice. Therefore, the result

is that excess Bayesian inference can entail and accommodate

quantum logic.

Discussion and conclusion

We initially investigated the claim that the cognitive

perspective based on the free energy principle could seemingly

conflict with quantum cognition since the former tends toward

optimization by removing redundant search space and the

latter tends toward ambiguous and non-optimal decision-

making. Since the free energy principle mathematically and

formally includes classical Bayesian inference as an instance,

one can estimate via optimization techniques the distribution

of the joint probability of data and hypotheses, and this

can be expressed as a binary relation. If the data and

hypotheses are replaced by objects outside the brain and

representations (or “images”) inside the brain, respectively, and

if symmetry between objects and images is assumed, one can

logically evaluate the hidden structure between objects and

representations, “images,” with respect to a Boolean lattice

structure. In this sense, one can estimate how a Boolean

lattice (i.e., classical logic) and an orthomodular lattice (i.e.,

quantum logic) can arise from a given inference system.

We also examined how these considerations can bridge the

considerations of the free energy principle with those of

quantum cognition. After a reviewer’s comment (we thank them

for this remark), it has come to our attention that bipolar fuzzy

relations (Zhang, 1998, 2021a,b) should be considered and that

comparing our previously proposed rough set approximation

with respect to quantum cognition might enhance its scope

by enabling a way to connect Bayesian inference and causal

inference. Although this new development is beyond the

scope of the present study, we maintain an interest in future

investigations that could shed some light on the epistemological

and ontological bases of quantum cognition and cognition

at large.

Applying the free energy principle consists of minimizing

the difference between the conditional probability under

a given experience and the marginal probability via the

minimization of the prediction error. Compared to cortical

processes, in predictive coding, the former process is considered

a classical Bayesian inference that has to be interpreted

as a hierarchical top-down process, and the latter process

is interpreted as a hierarchical bottom-up process. This is

based on the premise that when new data are received and

prediction errors are detected, the prediction errors lead to

a modification of the prediction system. In other words,

top-down Bayesian inference can make a system “see” new

data through the old filters based on previous experiences.

Thus, a system is subject to unavoidably becoming stuck

in previous experience. Moreover, active inference (embodied

cognition) is also a top-down process that enhances the

Bayesian inference process. To receive data that are consistent

with previous data, the top-down process makes the body

move and act accordingly. This leads to stubborn inference

based on experience. In this sense, an active inference might

deploy a certain kind of possible excess Bayesian inference

process. In other words, the active inference is a flexible

interface based on a body between the environment and

a stubborn inference system. This has been described as

embodied intelligence.

In our work, we propose that excess Bayesian inference plays

a key role in the process of cognition, much greater than that

of active inference. This is because classical Bayesian inference

restricts the domain of joint probabilities of data and hypotheses,

while excess Bayesian inference realizes and enforces a one-

to-one correspondence between data and hypotheses beyond

the initially restricted domain. Therefore, this is called excess

Bayesian inference. Our proposed process is implemented via
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a stepwise, iterative renormalization of the joint probability at

each step divided by the sum of all joint probabilities in a

restricted domain. This renormalization is achieved with respect

to data and hypotheses independently, and these processes

are not performed simultaneously. For any data, the joint

probability is renormalized with respect to the hypotheses, and

for any hypotheses, the joint probability is renormalized with

respect to the data. Therefore, the effect of renormalization,

which is inherent in the process of excess Bayesian inference,

can influence not only the initially restricted domain but

also the domains outside the initial domain. This implies

that excess Bayesian inference can bring out non-zero joint

probabilities that are noted as significant even outside the

initially restricted domain, a potential that classical Bayesian

inference lacks.

The distribution of the joint probabilities of data and

hypotheses is expressed as a binary relation if a threshold

value is introduced to distinguish a relation from the lack

of a relation. Although Bayesian inference is expressed as a

simple diagonal relation, excess Bayesian inference is expressed

as multiple (sub)diagonal relations whose backgrounds consist

of relations. The relations between the data and hypotheses

are transformed into an algebraic structure called a lattice,

and one can estimate the differences between classical Bayesian

inference and the newly proposed excess Bayesian inference in

terms of the lattice structure, each reflecting its underlying

logical structure. Classical Bayesian inference is expressed as

a simple Boolean lattice (classical logic), and excess Bayesian

inference is expressed as an orthomodular lattice (quantum

logic). This, in turn, implies that excess Bayesian inference

can bridge the Boolean lattice structure of the classic Bayesian

inference by encompassing a wider orthomodular lattice similar

to those of quantum logic. From these considerations, we

conclude that the basis of quantum cognition results from a

radical extension of the Bayesian inference framework rather

than simply alternative versions of classic Bayesian inference

and that the free energy minimization principle can be bridged

with quantum cognition via the proposed excess Bayesian

inference scheme.
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