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The AUV (Autonomous Underwater Vehicle) navigation process relies on the interaction

of a variety of sensors. The side-scan sonar can collect underwater images and obtain

semantic underwater environment information after processing, which will help improve

the ability of AUV autonomous navigation. However, there is no practical method to

utilize the semantic information of side scan sonar image. A new convolutional neural

network model is proposed to solve this problem in this paper. The model is a standard

codec structure, which extracts multi-channel features from the input image and then

fuses them to reduce parameters and strengthen the weight of feature channels. Then, a

larger convolution kernel is used to extract the features of large-scale sonar images more

effectively. Finally, a parallel compensation link with a small-scale convolution kernel is

added and spliced with features extracted from a large convolution kernel in the decoding

part to obtain features of different scales. We use this model to conduct experiments on

self-collected sonar data sets, which were uploaded on github. The experimental results

show that ACC and MIoU reach 0.87 and 0.71, better than other classical small-order

semantic segmentation networks. Furthermore, the 347.52 g FOLP and the number of

parameters around 13m also ensure the computing speed and portability of the network.

The result can extract the semantic information of the side-scan sonar image and assist

with AUV autonomous navigation and mapping.

Keywords: side-scan sonar, segmentation, CNN, large kernel, multi-channel

1. INTRODUCTION

As interest in the underwater has increased in recent years, the autonomous navigation capabilities
of AUVs, the primary vehicle for underwater exploration, have received widespread attention from
the scientific and industrial communities. Allotta et al. (2016) present an innovative navigation
strategy designed explicitly for AUVs based on the Unscented Kalman Filter (UKF) because of
the problem that GPS cannot be used underwater. Similarly, Shao et al. (2016) Adaptive Extended
Kalman Filter (AEKF) algorithm to AUV is applied to solve the problem that the Kalman Filter
noise covariance matrix is complicated to determine. They put forward their solutions to the
problem of error accumulation in inertial navigation. However, their research ideas are relatively
limited, and they do not consider using other sensors for assistance. Song et al. (2020) a neural
network-based AUV navigation method for fast-changing Environments, employs the neural
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network to predict pitch angles accurately to compensate for
accumulated errors in INS. The author uses the neural network
Angle prediction method to compensate for the accumulated
error well. However, the prediction result is still far from the
ideal value because the neural network design is relatively simple.
Franchi et al. (2020) means to develop an underwater navigation
system that does not rely on a DVL. Instead, an algorithm is
developed to obtain linear velocity based on forward-looking
sonar. Song et al. (2016) use side-scan sonar images for
image registration to improve the accuracy of AUV navigation.
They all use sonar sensors to obtain additional environmental
information to compensate for navigation accuracy, which is
better than relying solely on inertial navigation. However, the
processing method of sonar data is rough, and all the image
information is not thoroughly used. Yang et al. (2019) designed a
neural network to extract features of side-scan sonar images and
perform terrain matching to assist AUV navigation. Their model
has dramatically improved accuracy compared with previous
work and can effectively extract image features for similarity
judgment. However, their limitation lies in using ROI scanning to
extract local features without establishing a more extensive range
of global feature matching. Siantidis (2016) used the particular
target detected in the side-scan sonar image to assist SLAM
loopback detection and improve the autonomous navigation
capability of AUV. However, he uses the method to manually
design the feature extraction algorithm to search the target, which
leads to low detection accuracy. Petrich et al. (2018) presented the
development and experimental validation of a side-scan sonar-
based self-localization algorithm for AUVs. It was shown that
multimodal feature extraction yields diverse feature maps that
lend themselves to robust feature matching. However, they only
used the acoustic echo characteristics of the side-scan sonar, not
the image information.

After the development of AUV navigation technology, the
current mainstream direction has changed from the simple
dependence on inertial navigation and filtering algorithms to
the combination of multi-sensor information and intelligent
algorithm. Therefore, as an idiomatic sensor with high
underwater accuracy, side-scan sonar has also received more
attention (Reed et al., 2003; Acosta and Villar, 2015). As an
imaging sonar, the side-scan sonar can receive acoustic signals
reflected from underwater targets and, after analysis, image
objects on sonar images according to the distance between
reflected objects and sonar (Zhang et al., 2019). The sonar
image obtained in this way has the characteristics of low
resolution, fuzzy target area, complex edge information, and
noise interference, which brings difficulties to the accurate
segmentation of the target area of the sonar image (Wang
et al., 2022). So sonar image recognition largely depends
on professionals’ specially designed filtering algorithms and
artificial judgment. However, the underwater environment is
complex, and there are many interference factors, so it is
challenging to design a filtering algorithm that can play a
good role. In addition, artificial judgment also consumes
a lot of time and energy. It is necessary to design an
algorithm model that can extract features and identify them by
itself.

In recent years, image classification and segmentation models
based on deep learning have made great progress, among
which VGG-Net (Simonyan and Zisserman, 2014), GoogLeNet
(Szegedy et al., 2014), and Resnet (He et al., 2015) based on
the convolutional neural network have achieved good results
in classification tasks of many camera image data sets. Image
segmentation models based on FCN (Long et al., 2015), U-Net
(Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), and other
models have also attracted the attention of many researchers.
The detection and segmentation model based on deep learning
can extract features and classify results by itself, which helps
to alleviate the difficulty of feature extraction algorithm design
and reduce the level of human participation in the recognition
process. Therefore, there has been more and more research on
underwater sonar image recognition and segmentation using
deep learning models in recent years.

Song et al. (2017) proposed a side-scan sonar image target
detection method based on the FCN model (FCNs). They use
deep CNN, which is derived from FCN, to segment images of SSS
into three parts: highlight areas with objects, regions of shadow,
and sea-bottom reverberation areas, then use MRF to post-
process the results. However, there is no innovation in the model,
and the validation index of the experimental part is relatively
single, which makes the results of the reference significance is
low. Chen and Summers (2017) proposed an unsupervised CNNs
model for synthetic aperture sonar image segmentation. The
method demonstrates a semi-supervised method for utilizing
unlabeled or weakly labeled imagery for joint training with
few densely labeled images for semantic segmentation. Wu
et al. (2019) proposed a practical convolutional neural network
structure (ECNet) for target region segmentation of side-scan
sonar images. The ECNet consists of an encoder network to
capture context, a corresponding decoder network to restore full
input-size resolution feature maps from low-resolution ones for
pixel-wise classification, and a single stream deep neural network
with multiple side-outputs to optimize edge segmentation. Its
disadvantage is that the sonar image data size is small. Moreover,
it only targets the task of binary classification. It does not
involve large-scale images and multi-classification closer to the
actual situation. Huo et al. (2020) proposed a semisynthetic
data generation method for producing sonar images of airplanes
and drowning victims, which uses optical images as input,
and combines image segmentation with intensity distribution
simulation of different regions, then use the CNN model to
complete the classification task. However, the network is more
inclined to identify specific targets rather than the whole segment.
At the same time, it has strict requirements on the clarity
and Angle of the target. The segmentation result is established
in a data set that has been accurately marked, which reduces
the robustness of the model. Zhou et al. (2020) proposed a
sum-modified Laplacian energy filtering with a CNN model for
image fusion of side-scan sonar. This paper proposes a sum-
modified Laplacian energy filtering and improved dual-channel
pulse coupled neural network for image fusion of side-scan sonar
in non-subsampled contourlet transform. However, the author
also points out that the proposed frequency-based segmentation
criterion is not perfectly applicable to all sonar images, proving
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the limitations of the artificial feature extraction algorithm for
global feature extraction. Ding et al. (2017) used SAILFISH AUV
to collect 180*36 Pixels side-scan sonar images and classify them
using ERF. Li et al. (2019) designed a real-time sonar image
segmentation algorithm based on ENet and MRF. Petillot et al.
(2002)implemented real-time pipeline detection using AUV with
side-scan sonar and multi-beam echo-sounder. McConnell et al.
(2022) used an AUV equipped with side-scan sonar to construct
an underwater obstacle grid similar to an aerial map by using the
CNN network and realized AUV underwater SLAM based on it.
Yin et al. (2021) Studied the underwater SLAMmission based on
AUV, Monocular camera, STEREO Camera, Single-beam sonar,
multi-beam sonar, side-scan sonar, and Laser. The conclusion
is that acoustic devices still hold a great advantage, but optical
sensors can be considered a supplement to accuracy. Połap et al.
(2022) proposed an algorithm based on a neural network to
achieve Object signaling, low-quality areas detection, and seabed
line extraction tasks. This network is also aimed at sonar images’
small target recognition task and does not involve the large-
scale downstream task. Zhu et al. (2017) proposed a model to
extract target features by a convolutional neural network (CNN)
operating on sonar images and then classified by a support vector
machine (SMV) that is trained based on manually labeled data.
The network model is relatively simple and based on the matched
filter designed manually to improve the network performance,
which also leads to the insufficient feature extraction ability of
the network.

It can be found that current relevant studies mainly
focus on the target detection of small-scale sonar images,
and there are not too many studies focusing on large-scale
background segmentation tasks. At the same time, it is seldom
involved in multi-classification tasks, which are primarily binary
classification tasks with the help of manually designed feature
extraction algorithms. This paper proposes a CNN model
that aims at side-scan sonar image segmentation to address
these questions. Due to the difficulty obtaining sonar image
data, the designed neural network model needs to control
the depth and number of parameters to avoid over-fitting.
Meanwhile, as the color richness of the sonar image is not
as good as that of the camera image, it is relatively simple.
The information contained in different color channels should
be considerably different. Feature extraction focusing on a
single channel should be helpful to improve classification
accuracy.

The main contributions of this paper are as follows:

(1) We used the AUV developed and manufactured to collect
the actual side-scan sonar data in the lake area, established a
data set, manually annotated the data, and conducted network
training for multi-classification background segmentation.

(2) We separate the RGB channels of the input image for feature
extraction and then concatenate them after the multi-layer
network. Then we increased the convolution kernel size to
7 × 7, which proved effective in sonar images with a larger
size. Finally, we add a parallel feature extraction channel
using a small convolution kernel and concatenate the output
features of different levels with the output of the decoder to

compensate for the insufficient feature extraction problem of
large convolution checking small targets.

(3) We use our test set to test the network model’s performance
and compare our model’s performance with that of several
other classic segmentation networks. At the same time, we
experiment with the influence of different model modules on
the performance, and the conclusion is that our model has a
good segmentation effect.

The rest of this paper is organized as follows. In Section 2,
the related works are introduced. In Section 3, our model is
described in detail. The experiments on the sonar image dataset
are implemented in Section 4, and the conclusion is described in
Section 5.

2. RELATED WORK

In this section, the source of design ideas, which are principles of
CNNs, the structure of U-net, and the effect of the size of kernel
size, are introduced.

2.1. Principles of CNNs
Neural network models with CNN have been completed by
Lecun and Bottou (1998) and carried forward by AlexNet
(Technicolor et al., 2012). The classical CNN structure generally
comprises the convolution layer, the pooling layer, and the
activation function layer. The data only flow in two directions:
forward and backward. The image first passes the convolution
layer inside the network after entering the network model
in the forward direction. After each convolution layer, the
image becomes a feature graph of higher dimensions. After the
pooling layer, the image size becomes smaller, equivalent to a
parameter reduction and further feature extraction. Finally, the
activation function layer ensures the non-linearity of a multi-
layer network, and the last layer of network output generally
uses an activation function to map the image features to the
classification category. After the network outputs the results,
it will carry out backpropagation according to the quality of
the output results (generally, the loss function such as cross-
entropy is used to judge). In the backpropagation process, the
network parameters will implement gradient descent, improving
the network parameters in the direction that can improve the
model effect.

2.2. U-Net and FCN
There are many excellent models for semantic segmentation
tasks, such as DeepLabV3 (Chen et al., 2017), hrnet (Wang
et al., 2020), Transformer (Strudel et al., 2021), etc. However,
the original design concept of the segmentation model comes
from FCN, which first proposed to use the full convolution layer
instead of the full connection layer as the activation function
of output results and transform the output results of the neural
network from a simple one-dimensional probability vector to
a two-dimensional probability matrix, that is, segmentation
accurate to the pixel level. FCN proposed restoring image size
by deconvolution operation and adopted skip Layer operation.
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FIGURE 1 | (A) FCN model with VGG as backbone, (B) skip layer of FCN: FCN-32s means output image is recovered by up-sampling directly, which has the lowest

precision because of the lack of feature fusion. FCN-16s merge the feature map extracted from the last network with the feature map extracted from the previous layer

before the output image is recovered. FCN-8s merge one more feature map than 16s, which has the highest precision.

This method of concatenating high-dimensional and low-
dimensional features profoundly influenced the subsequent
semantic segmentation model. The FCN network structure and
skip layer are shown in Figure 1.

After FCN, another model with strong influence is U-Net.
U-Net model has been improved based on FCN but makes its
design abandoned to use the VGG network as the backbone.
Instead, a four-layer symmetrical codec structure is designed, and
concatenate link is added between each layer of codec structure.
Not using deep networks as backbone seems to be an effective
measure to avoid overfitting in small datasets. Even at present,
U-Net still has many application scenarios in a small sample
environment, such as medical image segmentation. The U-net
network structure is shown in Figure 2.

2.3. The Effect of Convolution Kernels Size
After GoogLeNet Inception V2 (Ioffe and Szegedy, 2015)
proposed the idea of using multiple small-size convolutional
kernels instead of large-size convolutional kernels to reduce the
number of parameters while keeping the size of the receptive
field unchanged, the mainstream semantic segmentation models
do not use large-size convolutional check images for feature
extraction. Instead, multiple 3 × 3 convolution kernels are
stacked to achieve a similar effect. However, Ding et al. (2022)
proposed a new idea by RepLKNet in CVPR 2022. Stacking small
convolutional kernels to replace large convolutional kernels only
maintains the consistency of the superficial receptive fields, but
the features extracted from the two are different. The utility
of large convolutional kernels in large images is significantly
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FIGURE 2 | U-Net model: classical symmetric codec structure with feature concatenate.

FIGURE 3 | The change of receptive field caused by the change of convolution kernel size: these images are the results of a study by RepLKNet. The first two

pictures are compared and superimposed with multiple small convolution checks for the improvement of receptive field, which shows that there is not much effect.

The last two pictures are the effect caused by increasing the size of the convolution kernel, which can be seen as significant.

stronger than stacking small convolutional kernels, shown in
Figure 3.

Furthermore, the problem of parameter explosion caused by a
large convolution kernel can be avoided by depthwise separable

convolution. Depthwise separable convolutionmeans splitting an
ordinary convolution into depthwise and pointwise convolution.
This operation has been well used in the DeepLab series and can
effectively reduce the number of parameters.
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FIGURE 4 | Typical conv with depthwise conv. (A) Typical conv, (B) depthwise processing, and (C) pointwise processing.

3. METHOD

The design ideas of our model are derived from U-NET and
RepLKNet, and we adopt a coding-decoding structure similar
to U-NET, as well as the large convolution kernel and Re-
parameterizing mentioned in RepLKNet, but improve it for our
downstream tasks. First, instead of directly inputting the whole
image into the network, we split the RGB three channels of the
original image and input them into the network, respectively
to extract features. The network can find the color channel
containing the most information in the sonar image with a
relatively single overall color and focus on its weight. Then we
use large convolution kernels for feature extraction, add channels
with small convolution kernels in parallel for compensation, and
finally output image segmentation results.

3.1. Noise Reduction Filter
The side-scan sonar image noise disturbance is serious compared
with the camera image, so the training process needs noise
filtering. Gaussian filter is often used for denoise of side-scan
sonar images, whose implementation depends on the Gaussian
template window, divided by the Gaussian function according to
the distance between the elements in the window and the center
element obtained. The expression is as follows:

Hij =
1

2πσ 2
e
−

x2+y2

2σ2 (1)

But the Gaussian filter equation belongs to the isotropic diffusion
equation, it may destroy edge features. So we use Perona-Malik
diffusion equation to substitute Gauss equation:















∂u
∂t = div[g(|∇u|)∇u]

u(x, y, 0) = u0(x, y), (x, y) ∈ R

g(∇u) = 1

1+ |∇u|2

k2

(2)

K is constant. The size of the diffusion coefficient of the diffusion
equation is determined from the gradient of the image: |∇u|,
which is used to judge whether it is an image edge.

3.2. Depthwise Separable Convolution
The concept of depthwise separable convolution was first
proposed by MobileNet (Howard et al., 2017), which is shown in
Figure 4. It puts forward a new idea: the standard convolution
operation is decomposed into two processes: Depthwise and

Pointwise. Assuming that an input image with a size of 12
× 12 × 3 is taken as the input, convolution is carried out
with a convolution kernel of 5 × 5 × 3, and 128 channels of
output results are expected to be obtained, the total number of
parameters of this convolution operation is 9,600.

In contrast, the Depthwise process is used first. Three 5× 5×
1 convolutions are used to convolution the three channels of the
input image, respectively, and then superposition to obtain the
output result of 8 × 8 × 3. Then comes the Pointwise process,
that is, 128 convolution kernels, which have the size of 1× 1× 3,
are used to convolve the feature graph of 8 × 8 × 3 for channel
expansion. Finally, the output result with the same size as the
conventional convolution is obtained, but the parameter number
of depth separable convolution is only 5 × 5 × 3 + 1 × 1 × 3 ×
128 = 469.

Depth separable convolution reduces the number of
parameters by increasing the number of network layers, which
does not necessarily play a positive role in the network of small
convolution kernels. However, for large convolution kernels,
this operation is essential. In addition, it is noted in the article
of RepLKNet that current deep learning frameworks such as
PyTorch do not support DW convolution very well, so the author
of RepLKNet designed a more efficient implementation based on
PyTorch (Ding, 2022) [The authors claim that the MegEngine
(Megengine, 2020) framework based implementation is more
efficient. However, we have not used it in this article and the
network architecture is still PyTorch based].

3.3. Multi-Scale Feature Fusion
At present, feature fusion technology of different scales is
an indispensable part of the semantic segmentation model,
such as skip layer of FCN, concatenate structure of U-Net,
ASPP module using dilated convolution in Deeplab. Article of
RepLKNet proposed a structural re-parameterization method. In
the training process, a parallel feature extraction channel using a
smaller convolution kernel with 3 × 3 is constructed for a large
convolution kernel (e.g., 31 × 31). After training, it is added to
the large convolution kernel through linear transformations. In
this way, the large convolution kernel can capture small-scale
features and improve network performance. In essence, it is still
a multi-scale feature fusion method.

Since we do not have a large amount of training data like
the RepLKNet model, we cannot use super large convolution
kernels (e.g., 31 × 31) and a deep network structure similar to
RepLKNet. Therefore, we do not directly add the parameters
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FIGURE 5 | The structure of our model.

of small convolution kernels into large convolution kernels,
which will destroy the performance of large convolution
kernels, but adopt the concatenate method. The features

extracted from large and small convolution kernels are
combined in the decoder stage to achieve multi-scale feature
fusion.
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FIGURE 6 | The AUV was developed by the team, the acquisition process is carried out by three AUVs simultaneously.

3.4. Model Structure
The structure of our model is shown in Figure 5. The main body
is a four-layer encoder and a four-layer decoder. The data enter
the encoder after noise reduction, enter the decoder after feature
extraction of four layers, and then go through four layers of
convolution and up-sampling. Finally, the segmentation result of
the network is output after going through a full convolution layer.

The encoder part consists of four parallel feature extraction
links, three of which have the same structure, and the input of
each link is one of the RGB three channels of the original input
image. Each link contains four layers, and each layer contains two
feature extraction modules with the size of 7 × 7 convolution
kernels (DW operation has been used to replace the conventional
convolution mode, and the padding operation is carried out to
ensure the image size remains unchanged). The number of output
channels in each layer is 32, 64, 128, and 256. The output of the
last three links will concatenate and output a 768 channel heat
map.

The other independent link input is all channels of the original
input image, and each layer contains two feature extraction
modules with a 3 × 3 convolution kernel size. The conventional
convolution operation is adopted, and the number of channels
output by each layer is the same as that of the other three links.

The input of the decoder is the heat map of 768 channels,
which is reduced to 256 channels after up-sampling by
deconvolution, and then concatenated with the data of the
fourth link (the link using a small convolution kernel) to obtain
the feature map of 512 channels. Then, the feature map goes
through two feature extraction modules with the size of 7 × 7
convolution kernels. After four cycles of such operations, the final
segmentation result is output through the full convolution layer.

4. EXPERIMENT AND ANALYSIS

All experiments are conducted with Intel Core i9-10900F
CPU@2.8 GHz x 20, 64 GB RAM, NVidia Geforce 3090 GPU,
24 GB of video memory, by CUDA Toolkit 11.3, CUDNN
V8.2.1, Python 3.6, PyTorch-GPU 1.10.1, Ubuntu18.04.operating
system.

4.1. Dataset Collection
The sonar image dataset was collected by HYDRO 3060 side-
scan sonar at Qiandao Lake, Jiande, Hangzhou, China (The
unclassified portion has been uploaded to GitHub: https://
github.com/YDY-andy/Sonar-dataset). The collected sonar data
is processed by software fromXTF form towaterfall stream video,
and then the sonar data in image form is obtained through frame
by frame sampling. The sonar equipment is equipped with the
AUV developed and manufactured by our team. In addition,
THE AUV is also equipped with inertial navigation, Doppler,
GPS, and an ultra-short baseline positioning system, which
can cruise by manual remote control or follow the established
program trajectory. AUV collects all data in this paper, and the
collection process adopts a slow and constant speed cruise. The
height is 10 m underwater, and the maximum distance from the
bottom is 50 m. The AUV used for data collection are shown in
the Figure 6. The image data size is 960 × 900 pixels. Original
sonar images are shown in Figure 7.

In moving, the side-scan sonar emits sound waves to both
sides and constructs an image according to the echo intensity.
The higher the echo intensity is, the higher the target’s brightness,
such as stones and metals, while the water part and the covered
part will be presented as black parts in the image because there is
no echo.

Neural network model training needs data labeled as ground
truth, so sonar data must be marked. The LabelMe label software
developed by MIT is used as the image label tool. A total
of five categories of sonar data were labeled: (1) water; (2)
Mountain part; (3) Land; (4) Shadow part; (5) Unmarked areas
(background). Unmarked areas mainly refer to the remaining
fragment region of the image after being marked by the first four
categories. Marked images are shown in Figure 8.

4.2. Data Augmentation
Since the sonar images collected are limited and belong to a
small sample data set, the data augmentation method expands
the number of samples to prevent the model from over-fitting.
We use the following methods, which are shown in Figure 9, to
extend the data set.
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(1) Image inversion is the simplest way to augment data by
inverting the image horizontally and vertically to get new
data.

(2) Image panning. The panning distance of the image in
different directions is controlled by a random number to
generate new data (the translation distance should not be too
large; otherwise, the data availability will be damaged).

(3) Random crop. The original image was 960 × 900 pixels,
cropped to 860× 860 with a random clipping area.

Since the model itself will extract the features of the three color
channels of the original image, no color augmentation is used to

FIGURE 7 | The origin sonar image (each sonar image is cropped down the

middle into two images).

avoid damaging the color consistency of the original image. The
original data set contained 310 sonar images with a size of 960
× 900, and 1,240 sonar images with a size of 860 × 860 were
obtained after expanding the data enhancement method. Sixty
percent of them were randomly selected as training datasets, 20%
as validation datasets, and 20% as test datasets.

4.3. Verification Indicators
In order to measure the performance of the model, the number
of parameters, model complexity, required memory, and model
accuracy was used to judge. The model complexity indicator uses
FLOPs, which refer to floating-point Operations. The calculation
formula of the convolution layer FLOPs of the convolutional
network is as follows:

FLOPs = (2cink
2 − 1)HWcout (3)

cin andcout represents the number of input and output channels in
the convolution layer, and k represents the size of the convolution
kernel. The size of the output feature graph is H×W.

OA (Overall accuracy) and MIoU (Mean Intersection over
Union) will measure themodel accuracy. The calculation formula
of OA is as follows:

ACC =
TP + TN

TP + TN + FP + FN
(4)

TP, TN, FP, FN means True Positive (positive sample is judged as
a positive sample), True Negative (negative sample is judged as a
negative sample), False Positive (negative sample is misjudged as
a positive sample), False Negative (positive sample is misjudged
as a negative sample).

The calculation formula of MIoU is as follows:

MIoU =
1

k

k
∑

i=1

p ∩ g

p ∪ g
(5)

P means prediction, G means ground truth.

FIGURE 8 | (A) original image and (B) label.
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FIGURE 9 | Data augmentation. (A) Image inversion, (B) Image panning, and (C) Random crop.

TABLE 1 | Hyper-parameter.

Type Value

Num of workers 8

Batch size 3

Optimizer SGD

Learning rate 0.01

Learning policy Poly

Step size 10,000

4.4. Network Model Training
Sonar data set is used to train network parameters. The
hyperparameters used in training are shown in Table 1 (all the
hyperparameters were tested and the best ones were selected).

The loss function is the cross-entropy loss function. The training
process is shown in Figure 10.

H(p, q) = −

n
∑

i=1

p(xi)log(q(xi)) (6)

The function measures the difference between two distributions,
p(x) and q(x), which means prediction and ground truth.

4.5. Performance and Comparison
In the experiment, the quantitative analysis of segmentation
results of U-Net, FCN, and PSPNet, which are typical lightweight
networks, and our method has been conducted. The comparison
results are shown in the table, and the recovered images are
shown in Figure 11.
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FIGURE 10 | The curve of training process (drawn by Tansorboard) shows the training process of 500 epochs, but in fact the network has basically converged when

there are <200 epochs. (A) Train loss, (B) train MIoU, (C) val MIoU.

The results shown in Table 2 showed that the OA and MIOU
of our model in the dataset were 0.87125 and 0.70994, which

were the highest in all the four models. The total number of
parameters was 13,117,135, which was also the lowest among the
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FIGURE 11 | The segmentation results are shown in the figure: from left to right are the original picture, marking and training results, respectively. The colors in the

figure represent the results: blue represents water, gray represents rock, yellow represents land, black represents shadow, and white represents undifferentiated

background.

TABLE 2 | Different model performance.

Model ACC MIoU Num of para FLOPs

FCN 0.865154 0.691115 18643845 212.4G

U-Net 0.862475 0.688222 34525391 487.71G

PSPNet 0.861086 0.706046 65576517 673.94G

Ours 0.871247 0.709939 13117135 347.52G

Bold values mean the best values.

four models. FLOPs, at 347.52 g, were only higher than FCN, the
second-to-last of the four models.

We also conducted a comparison experiment of parameter
tuning for our model and resized the convolution kernel from
3 × 3 to 5 × 5 to the current 7 × 7 and then to 9 × 9 and 11
× 11. Its MIoU is shown in Table 3. It can be found that the
model parameters currently in use have the best performance,

TABLE 3 | Model performance with different kernel size.

Size ACC MIoU

3 × 3 0.852023 0.679179

5 × 5 0.860964 0.694266

7 × 7 0.871247 0.709939

9 × 9 0861946 0.692680

11 × 11 0.862763 0.687616

Bold values mean the best values.

and the convolution kernel with the size of 7 × 7 currently in
use has the best performance without increasing the amount of
data and network depth. In the RepLKNet paper, however, the
authors show that scaling up to 31 × 31 can improve network
performance, perhaps by relying on short-cut structures, which
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TABLE 4 | Model performance with different structure.

Model ACC MIoU

Prototype 0.871247 0.709939

No parallel small channels 0.834063 0.614298

No multi channels 0.845060 0.670283

Bold values mean the best values.

significantly increases network depth and increases the risk of
overfitting. In addition, even if DW convolution is adopted,
the rapid increase of parameters will bring difficulties to devise
transplantation. Therefore, we believe that the scale of the 7 × 7
convolution kernel is an appropriate parameter setting.

The decoder uses a 3 × 3 deconvolution operation to
restore the image. The experiment proves that the size of the
deconvolution convolution kernel does not influence the final
result, so the most straightforward 3× 3 scale is adopted.

We also tried feature fusion which is not applicable to parallel
small convolution kernel lines, shown in Table 4, and MIoU
plummeted to about 0.61. In addition, MIoU is reduced to about
0.67 when the whole image is extracted as a whole instead of
the RGB three-channel feature extraction method. Therefore, it
can be concluded that feature fusion operations of convolution
kernels of different sizes and the RGB three-channel feature
extraction method are essential.

A series of experimental results show that multi-scale feature
acquisition channels are significant in networks with limited
depth (in small data sets, large depth networks are prone to
overfitting), which is whymany networkmodels now always have
a dimension of expansion in depth and width. At the same time,
the combination of channel dimension and scale dimension can
better enhance the segmentation accuracy of the network. For the
sequence information, the feature of time dimension can also be
added to form the feature fusion of space, time, and color. Sonar
images belong to the waterfall video capture results, which have
the potential to add time dimension features. We will consider
introducing a sequential neural network for feature extraction in
subsequent studies.

5. CONCLUSION

AUV navigation has not only relied on inertial navigation but
also improved its accuracy through the joint action of various
sensors. However, most current studies have not fully utilized
the semantic information of images collected by side-scan

sonar. This study proposes a deep learning model for image
segmentation of side-scan sonar. The model adopts the codec
structure to extract the features of the RGB three channels of
the image, and finally, the fusion is carried out. The weight
assignment of specific channels in sonar images with single-color
information is considered emphatically. At the same time, large
convolution kernels were used to increase the receptive field,
and small convolution kernels were added for feature fusion to
ensure the richness of the feature scale. We show that the model
has low computational cost and flexibility in the sonar image
segmentation problem. The experimental results show that our
model has certain advantages in many indicators. It can provide
semantic segmentation results of side-scan sonar images in AUV
navigation to assist location matching. In the future, we will
consider adding channel fusion between multiple channels and
adding shortcut modules to increase the convolution kernel’s
size further.
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