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A growing number of complex neurostimulation strategies promise symptom

relief and functional recovery for several neurological, psychiatric, and even

multi-organ disorders. Although pharmacological interventions are currently

the mainstay of treatment, neurostimulation o�ers a potentially e�ective

and safe alternative, capable of providing rapid adjustment to short-term

variation and long-term decline of physiological functions. However, rapid

advances made by clinical studies have often preceded the fundamental

understanding ofmechanisms underlying the interactions between stimulation

and the nervous system. In turn, therapy design and verification are largely

driven by clinical-empirical evidence. Even with titanic e�orts and budgets, it

is infeasible to comprehensively explore the multi-dimensional optimization

space of neurostimulation through empirical research alone, especially since

anatomical structures and thus outcomes vary dramatically between patients.

Instead, we believe that the future of neurostimulation strongly depends

on personalizable computational tools, i.e. Digital Neuro Twins (DNTs) to

e�ciently identify e�ective and safe stimulation parameters. DNTs have the

potential to accelerate scientific discovery and hypothesis-driven engineering,

and aid as a critical regulatory and clinical decision support tool. We outline

here howDNTswill pave theway toward e�ective, cost-, time-, and risk-limited

electronic drugs with a broad application bandwidth.

KEYWORDS

computational modeling, digital twins, neurostimulation, neuromodulation,

neurological disorders, psychiatric disorders

Introduction

Neurostimulation strategies can be represented in a three-layer structure, where (i)

electric fields are applied at selected body locations to (ii) modulate activity of certain

nervous structures, i.e. neural targets, which in turn interact with the architecture of

the nervous system to (iii) produce a physiological outcome. In much of contemporary

neurostimulation, we understand little of each layer, or how the outcomes of each

layer transitions to the next layer. In the absence of clear mechanistic understanding

critically important stimulation parameters for neurostimulation therapies are based

solely on previous empirical evidence, and on the short-term stimulation effects in

terms of the patient’s clinical improvement (Sun and Morrell, 2014). The largely

clinically-empirical therapy design, carries with it several problems including issues

relating to time- and cost-effectiveness, safety related concerns, and complications during

clinical implementation.
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Neurostimulation research is slow and
cost-intensive

Scientific advancements in neurostimulation are

intertwined with months or years of therapy optimization

in multidisciplinary expert teams to find a narrow optimum

of stimulation parameters (Capogrosso and Lempka, 2020).

To our knowledge, a comprehensive set of all parameters

that influence the therapeutic outcome of neurostimulation

have not been identified yet, but parameters certainly include

electrode location, stimulation amplitude, frequency, pulse

shape, timing, and physiological parameters of the nervous

system. As mechanisms of action are not yet fully understood,

therapy design is a Sisyphean task. Parameters differ between

individuals due to anatomical differences, and even on a person-

specific level, the optimal configuration may be changing due

to short-term fluctuations and long-term decline (McIntyre

and Foutz, 2013; Capogrosso and Lempka, 2020; Lempka et al.,

2020; Rowald et al., 2022). Therapy verification in clinical trials

is constrained by significant costs and strict, but necessary,

regulatory constraints. It is simply infeasible to comprehensively

explore and optimize the multi-dimensional design space of

neurostimulation through clinical research alone.

Therapy design does not fully address
safety concerns

Rapid research advancements often address safety concerns

by reporting adverse events, without further analysis of the

origin of potential side effects. Neurostimulation strategies

should optimally apply electric current in a body region that

limits health and comfort risks while being in direct contact

with the neural target. In practice, neural targets are often

hidden in deep and sensitive anatomical layers. Electric current

must therefore often traverse several tissue layers, including

neural substrates controlling diverse neurological functions

(Hofstoetter et al., 2018). In turn, unwanted tissue layers are

modulated by artificial stimuli and can yield unintended side

effects. Safety concerns are further amplified by requirements

for other medical implants, e.g. fixations, which can themselves

manipulate electric fields, potentially leading to local amplitude

peaks or heat deep tissue layers. Similarly, interactions between

neurostimulation devices and external electromagnetic fields

raise several safety concerns and may disrupt patient-related

outcomes. Particularly MRI-safety is a concern as regular

medical imaging assessments are advisable in patients treated

with neurostimulation devices to address several systematic

issues such as electrode migration, yet electromagnetic fields

present in MRI scanners may lead to implant movements,

tissue heating, or electromagnetic interference (Nazarian et al.,

2013). Safety claims of neurostimulation devices can fail to

address interpatient variabilities in usage, raising concerns that

interventions will cause more harm than good (McCall et al.,

2019).

Neurostimulation does not translate from
research frontier to regular care

Regardless of all obstacles, some neurostimulation strategies

have become clinically approved, including Deep Brain

Stimulation (DBS) for movement disorders and Spinal Cord

Stimulation (SCS) for neuropathic pain. Simultaneously,

obstacles faced in therapy design have seamlessly been

transferred to regular care. Clinicians are tasked to perform

stimulation optimization to identify appropriate parameters

for every patient, in addition to their regular clinical duties,

and without extensive knowledge of electric field distributions

and interactions thereof with neural structures. In turn,

clinicians are asking for patient-stratification strategies, as in

their absence clinically-available neurostimulation strategies

have been rendered treatments of last resort (Simpson, 2006).

Yet, the efficacy of neurostimulation strategies changes on a

timescale not consistently warranting specialist intervention, as

interactions between fixed electrodes and neural tissues can be

influenced by rapidly fluctuating parameters such as changes

in body position (Ross and Abejón, 2014). In the absence

of self-regulating neurostimulation systems, patients employ

manual regulating strategies, potentially resulting in suboptimal

therapy delivery (Ross and Abejón, 2014).

Computational modeling for
neurostimulation

In parallel to clinical-empirical research, computational

modeling has a rich history in neurostimulation. Computational

models aim to reduce the complexity of neurostimulation

by providing abstract and simplified representations of

neurostimulation strategies in the absence of noisy confounding

factors. In the 1980s, a combination of Finite Element Models

(FEMs) and circuit models of nerve axons were used to predict

sensory thresholds of dorsal column and dorsal root afferent

fiber pathways during SCS for pain control (Coburn, 1985;

Coburn and Sin, 1985). The same methodology continues to be

applied today for a variety of applications, including SCS for

motor control, DBS for movement disorders, and peripheral

nerve stimulation (Rattay et al., 2000; McIntyre and Foutz, 2013;

Musselman et al., 2021). A new direction has emerged in recent

years, whereby computational models account for interpatient

variability. Patient-specific computational models have shown

success in therapy design and clinical-decision making

in various neurostimulation strategies, including DBS for

movement disorders and SCS for motor control (Frankemolle
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et al., 2010; Lempka et al., 2020; Rowald et al., 2022). While yet

rarely termed digital twins in the neurostimulation literature,

patient-specific computational models attempt to represent

relevant neurological properties and processes in a digital

format that mirrors their physical counterparts in real-time, just

as the term originated in manufacturing suggests.

Digital twins in neurostimulation—i.e. DNTs—leverage

patient data including medical imaging datasets to replicate

the three-layer structure of neurostimulation strategies

(Figure 1A). DNTs employ multi-physics frameworks to

calculate the electric field distributions in the patient’s anatomy

(Figure 1B). Coupled with neural circuit models DNTs

approximate interactions between stimulation and neural

structures (Figure 1C). Approximated neural dynamics can

be projected to computational approximations of end-organs

to anticipate physiological outcomes (Figure 1D). DNTs are

still in their infancy with many approaches approximating

only parts of the multi-faceted system of neurostimulation

strategies in a rudimentary fashion. However, we believe

that the future of neurostimulation will strongly depend on

the development of novel DNTs. DNTs have the capacity to

accelerate the identification of neural targets to selectively

modulate physiological functions (see Section Computational

guidance for hypothesis-driven neurostimulation). DNT-

guidance opens the possibility to identify effective, safe, and

robust stimulation parameters efficiently and continuously

for the selective modulation of neural targets—and thus

physiological outcomes—on a per subject basis (see Section

Readying the electronic drug market with digital neuro twins).

If DNTs of the future overcome certain challenges (see Section

Open challenges in digital neuro twin modeling), we believe

they will transition neurostimulation strategies to electronic

drugs (e-drugs), that deliver specific treatments in an adjustable

and directed manner to targeted tissues and organs, thus

alleviating limitations regarding spatial and temporal aspects of

treating diseases (Vadlapatla et al., 2017).

Computational guidance for
hypothesis-driven neurostimulation

DNTs are natural candidates to dissect interactions between

neurostimulation strategies and the nervous system and may

even be useful in elucidating how these interactions relate to

physiological outcomes.

DNTs deal with patient-specific variability

Although it remains unclear howmany parameters influence

neurostimulation outcome, interpatient variability is one

important parameter. With ever-increasing medical imaging

capacities and sophisticated computer vision technologies,

interpatient variability will be an accountable parameter

and thus compensated by a model-guided neurostimulation

strategy. Already today, there are several examples of medical

imaging capacities having been incorporated to generate DNTs

accounting for patient-anatomy and even functional neural

connectivity (Frankemolle et al., 2010; Lempka et al., 2020;

Rowald et al., 2022).

Simulating neurostimulation physics
reduces uncertainty

We believe that DNTs will allow us to put evidence

relating to outcomes in perspective to hypothetical mechanisms

of action. Patient-specific FEMs enable the approximation of

electric fields in a patient’s anatomy (Frankemolle et al., 2010;

Lempka et al., 2020; Rowald et al., 2022). Replicating stimulation

parameters from clinical observations in patient-specific FEMs

reduces uncertainty in neurostimulation research by reducing

the problem from a coupled physical-physiological problem to

a predominantly physiological problem.

DNTs initiate a paradigm shift in
neurostimulation research

Patient-specific FEMs may be coupled with

electrophysiological representations of neurons to provide

a first-order approximation of the interactions between

electric fields and the nervous system. In direct comparison

with experimental outcomes, these anatomy-controlled

approximations of neurostimulation patterns reveal which

neural substrates, i.e., neural targets are activated, inhibited,

or otherwise modulated in the presence of artificially applied

electric fields. DNTs may then be employed in clinical studies

to identify stimulation parameters that will selectively elicit

the assumed mechanisms on a per-subject basis. Thus,

computationally-guided clinical research may reveal which

neural targets must be modulated in what manner to improve

patient-related outcomes.

However, it remains unclear how the identified interaction

between neural target and neurostimulation translates into

physiological outcome and what the long-term patient-related

consequences of this interaction may be. We believe these

issues may be addressable by supplementing DNTs with artificial

representations of hypothesized network architectures such

as artificial neural networks and physical representations of

physiological organs such as biomechanical models of the

musculoskeletal system. DNTs that include neural network

architectures and biomechanical models have already shown

promise in approximating circuit-level activities of SCS for the

recovery of locomotion (Formento et al., 2018).
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FIGURE 1

Three-layer neurostimulation modeling architecture, illustrating (A) extraction of patient data from monitoring systems e.g., MRI scans, (B)

approximation of electric field distributions coupled with (C) neural circuit models, and (D) physiological end-organ models e.g.,

musculoskeletal models.

Readying the electronic drug market
with digital neuro twins

Once neural targets have been identified, we believe that

DNT will play a pivotal role in the efficient identification of

effective, safe, and robust stimulation parameters.

DNTs pave the way toward e�ective and
safe e-drugs

Scientific and industrial bodies can leverage DNTs to

efficiently search stimulation parameter spaces in large and

diversified patient cohorts for Pareto-optimal solutions to

maximize the selective recruitment of neural targets in the

absence of confounding effects, such as thermal heating or the

modulation of unwanted neural structures, thus accelerating the

design and verification of neurostimulation e-drugs. Regulatory

bodies are moving toward ensuring the efficacy, safety, and

robustness of e-drugs in a virtual environment, warranting

the swift translation of e-drugs to regular care (Morrison

et al., 2018). Clinicians will benefit from personalized treatment

planning tools based on DNTs, enabling the interactive design of

subject-specific therapies.

Rapid adjustments to short-term
fluctuations and long-term decline

A major problem of classical, non-electronic

pharmacological interventions is that they usually cannot

rapidly adjust to short-term fluctuations of physiological

function. Furthermore, resistance to medication may arise over

time. Although current clinically-approved neurostimulation

strategies show promise to maintain long-term improvements in

quality of life, revision rates also remain high and technologies

for rapid adjustments to short-term fluctuations have not yet

reached the desired technology-ready status (Rolston et al., 2016;

Edwards et al., 2017). Closed-loop neurostimulation is being

actively investigated to provide solutions for rapid adjustment

of patient-related outcomes. We believe that DNTs will play a

key role in the development of closed-loop neurostimulation

strategies as adjustments of stimulation parameters for effective

and safe neurostimulation may be highly non-linear. For

each neurostimulation strategy several factors influence the

patient-related outcomes. Simple adjustments of stimulation

parameters in the absence of DNT-guidance may result in

confounding effects such as co-activation of unwanted tissues.

Thus, we believe that e-drugs of the future will incorporate

DNTs as a software component to calculate what stimulation is

needed in a moment of time to either compensate for missing

functionality or stimulate beneficial reorganization over time.

E-drugs with broad application
bandwidth

Neurostimulation strategies inherently have a broad

application bandwidth, with technologies including DBS being

clinically approved treatments for one condition i.e., movement

disorders while simultaneously being actively investigated for a

host of other disorders such as mood, memory, or sleep deficits.

Particularly the location of electrodes plays an important

role in which treatment modality a neurostimulation strategy

may be used, indicating that different neural targets must be

modulated. Recent advancements have demonstrated that

advanced concepts of classical field theory including temporal

interference can be used to achieve field focality in deep and

hidden tissues of the nervous system without the electrodes

being in direct contact with those tissues, thus paving the

way toward ubiquitous e-drugs with a broad application

bandwidth (Grossman et al., 2017). The hardware component
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of e-drugs will have the capacity to apply electric current in

a region of the human body that is cost-, time-, and risk-

limited and yet modulate a broad range of neural targets with

different stimulation parameters. The efficient identification of

stimulation parameters for different treatment modalities will be

dictated by DNTs incorporated into the software components.

Ongoing trends within the scientific and industrial community

investigating the use of digital twins to efficiently identify

personalized stimulation parameters will manifest DNTs in

the support of several neurostimulation strategies, including

non-invasive brain stimulation (Sanchez-Todo et al., 2018;

Amunts et al., 2022).

Open challenges in digital neuro
twin modeling

DNTs must be rapidly generatable with limited

expert supervision to ensure large-scale uptake in

neurostimulation research, therapy design, verification,

and clinical decision-making. Imaging sequences must be

standardized across vendors and scanners that enable the

accurate recapitulation of relevant tissues. Dedicated and

automated computational pipelines must be developed to

generate 3D models from imaging datasets, assign physical

properties, discretize the geometry, perform multi-physics

simulations, neurofunctionalize and translate the neural activity

into physiological outcome, and incorporate sensor data.

Optimization routines anticipating physiological outcomes

must be tuned to clinical-empirical outcomes and tailored to

patient-related needs. Although countless challenges associated

with those steps can be imagined, we would like to highlight key

issues that likely enable a breakthrough of DNTs.

Limited understanding of mechanisms of
action

The most important challenge of DNTs is that every

theoretical model is only as good as the understanding of the

underlying system. Unfortunately, much of the inner workings

of the nervous system, its interactions with neurostimulation

strategies, and how neural dynamics translate to physiological

outcomes remain enigmatic. It is easy to argue, that due to our

limited understanding of neuroscience and neurostimulation,

all computational models thereof are useless. Contrarily,

when attempting to replicate neurostimulation in-silico, we

often understand what we do not yet understand, which

is a critical information capable of driving experimental

research (Capogrosso and Lempka, 2020). In turn, experimental

observations will inevitably challenge the theoretical models

and thus the cycle of scientific discovery repeats. It remains

unclear, if DNTs will ever perfectly describe reality. Yet, it is

important to remember the famous aphorism of George Box:

“All models are wrong, but some are useful.” The primary

challenge in computational neurostimulation will be to identify

how to construct computational models that are useful for

different purposes, be it scientific advancement, therapy design,

or personalized treatment planning.

Scientific-technical challenges of DNTs

It remains unclear what level of personalization and

accuracy is sufficient to improve patient-related outcomes.

It may be necessary to incorporate personalization steps

for parameters such as tissue conductances and neural

connectivities in the workflow using technologies including

novel imaging modalities (Landelle et al., 2021; Rimpiläinen

et al., 2021; Rocha et al., 2022). Further, there will be

technical challenges in ensuring robust automation of the DNT

workflows in the face of variabilities in patient data, user needs,

computational proficiency, or available resources. In recent

years, technological frameworks have started to emerge that

provide semi-automated workflows for DNTs (Neufeld et al.,

2013; Amunts et al., 2022). Some have been moved to cloud-

based platforms, enabling users to outsource computational

resources, while benefitting from intuitive and interactive

workflows (Neufeld et al., 2018). DNT workflows may also need

to be locally deployable on implantable or wearable devices

to rapidly calculate effective and safe stimulation parameters

during closed-loop neurostimulation. Computational resources

will be a limiting factor and thus less computationally

demanding, yet scientifically accurate modeling modalities must

be developed.

Socio-economic challenges of DNTs

There are several challenges to ensure ethical management

of patient data and adherence to related data management

principles and regulations. Similarly, technical challenges in the

automation of DNT workflows may necessitate the usage of AI

for purposes including image segmentation, thus opening the

discussion of explainable AI for clinical-decision making. After

all, computationally-guided neurostimulation will significantly

impact the patient pathway, offering an additional, potentially

more effective and safe treatment option to patients. This

departure from the current patient pathway will have to be

explained and justified to patients, clinicians, health system

administrators, and policymakers. That last group is particularly

important, as they will ultimate decide on the funding and

resourcing of DNT-based services. Financial decision making

will be crucial as many patients will depend on health

insurances to pay for e-drugs. Given that today, the average

direct costs of neurostimulation strategies tend to be larger
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than conventional medical interventions, there must be strong

effectiveness, efficiency, and safety considerations to convince

health insurances to pay for e-drugs (Mekhail et al., 2004; Dams

et al., 2016; Niyomsri et al., 2020). For example, policy makers

may subsidize effective and safe e-drugs to reduce the societal

and economic burden of neurological and psychiatric disorders,

many of which cause long-term disability (Deuschl et al., 2020).

Discussion

Today’s development state of neurostimulation may be

considered analogous to that of cardiac implantable electronic

devices of the 1950s−1960s. A mechanistic understanding of

the heart’s electric architecture and its interaction with external

stimuli of the early cardiac implants resulted in contemporary

cardiac pacing therapies being clinically approved, safe, efficient,

and robust treatment for heart disorders. The innovation was

feasible because researchers learned to understand the heart and

leveraged their insight for therapy optimization. Unfortunately,

we still understand much less about the nervous system today

than about the heart. Yet, recreating what we do understand

about the nervous system in computers not only gives us a first-

order approximation of neurostimulation mechanisms but will

also immediately reveal what we yet have to work on.We believe

that DNTs can accelerate and streamline therapy conception,

verification, and deployment beyond neurostimulation toward

e-drugs. Computationally-guided and personalized e-drugs of

the future will be effective and cost-, time-, and risk-limited

interventions with a broad application bandwidth that (re-

)establish functional capacity. What is needed now is the

definition of computational workflows that can efficiently

identify mechanisms of action and transfer this understanding

into effective, safe, and robust stimulation parameters for

neurostimulation strategies.
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