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Active object recognition (AOR) provides a paradigm where an agent can capture

additional evidence by purposefully changing its viewpoint to improve the quality

of recognition. One of themost concerned problems in AOR is viewpoint planning

(VP) which refers to developing a policy to determine the next viewpoints of the

agent. A research trend is to solve the VP problem with reinforcement learning,

namely to use the viewpoint transitions explored by the agent to train the VP

policy. However, most research discards the trained transitions, which may lead to

an ine�cient use of the explored transitions. To solve this challenge, we present a

novel VP method with transition management based on reinforcement learning,

which can reuse the explored viewpoint transitions. To be specific, a learning

framework of the VP policy is first established via the deterministic policy gradient

theory, which provides an opportunity to reuse the explored transitions. Then, we

design a scheme of viewpoint transition management that can store the explored

transitions and decide which transitions are used for the policy learning. Finally,

within the framework, we develop an algorithm based on twin delayed deep

deterministic policy gradient and the designed scheme to train the VP policy.

Experiments on the public and challenging dataset GERMS show the e�ectiveness

of our method in comparison with several competing approaches.

KEYWORDS

active object recognition, viewpoint planning, deterministic policy gradient, twin delayed

deep deterministic policy gradient, viewpoint transition management, reinforcement

learning

1. Introduction

Visual object recognition has a wide range of applications e.g., automatic driving (Behl

et al., 2017), robotics (Stria and Hlavác, 2018), medical diagnostic (Duan et al., 2019),

environmental perception (Roynard et al., 2018), etc. Most recognition systemsmerely take a

single viewpoint image as input and produce a category label estimate as output (Jayaraman

and Grauman, 2019). It is prone to the recognition errors when the image can not provide

sufficient information. In contrast, the visual behavior of people is an active process so

as to more clearly perceive their surroundings. As shown in Figure 1, in daily life, people

can intelligently observe an object from different viewpoints to determine the identity of

the object. Similarly, if the viewpoint of an agent can be adjusted (e.g., mobile robots and
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FIGURE 1

An example illustrating the active preception process of people.

autonomous vehicles), more valuable information will be obtained

to boost the recognition performance.

As a branch of active vision (Parr et al., 2021), active object

recognition (AOR) (Patten et al., 2015; Wu et al., 2015; Potthast

et al., 2016; Van de Maele et al., 2022) is a typical technology

to realize the above idea, which aims to collect additional clues

by purposefully changing the viewpoint of an agent to improve

the quality of recognition. Andreopoulos and Tsotsos (2013) and

Zeng et al. (2020) review a series of classical AOR methods. One

of the most concerned problems in AOR is viewpoint planning

(VP) that refers to developing a policy to determine the next

viewpoints of the agent. In recent years, researchers mainly focus

on using reinforcement learning to solve the VP problem (Becerra

et al., 2014; Malmir et al., 2015; Malmir and Cottrell, 2017; Liu

et al., 2018a), namely to use the viewpoint transitions explored

by the agent to train the VP policy. Becerra et al. (2014) formally

define object recognition as a partially observable Markov decision

process problem and uses stochastic dynamic programming to

address the problem. As a pioneering work, Malmir et al. (2015)

provide a public AOR dataset called GERMS that includes 136

objects with different view images and develops a deep Q-learning

(DQL) system to learn to actively verify objects by using standard

back-propagation and Q-learning. In the same way, Liu et al.

(2018a) design a hierarchical local-receptive-field architecture to

predict object label and learns a VP policy by combining extreme

learning machine and Q-learning. Similar to Becerra et al. (2014),

AOR is also modeled as a partially observable Markov decision

process by Malmir and Cottrell (2017). The difference is that

a belief tree search is built to find near-optimal action values

which correspond to the next best viewpoints. These VP methods

explore discrete viewpoint space, which may introduce significant

quantization errors. Hence, Liu et al. (2018b) present a continuous

VP method based on trust region policy optimization (TRPO)

(Schulman et al., 2015) and adopts extreme learning machine

(Huang et al., 2006) to reduce computational complexity. It shows

a promising result on the GERMS dataset compared to the discrete

VPmethods. However, due to the on-policy characteristic of TRPO,

the trained viewpoint transitions will be discarded by the agent,

which may lead to an inefficient use of the explored transitions.

The deterministic policy gradient theory (Silver et al., 2014)

is proposed for reinforcement learning with continuous actions

and introduces an off-policy actor-critic algorithm (OPDAC-

Q) to learn a deterministic target policy. Lillicrap et al. (2015)

present a deep deterministic policy gradient (DDPG) approach

that combines deterministic policy gradient with DQN (Mnih

et al., 2013, 2015) to learn policies in high-dimensional continuous

action spaces. Fujimoto et al. (2018) contribute a mechanism

that takes the minimum value between a pair of critics in the

actor-critic algorithm of Silver et al. (2014) to tackle the function

approximation errors. The deterministic policy gradient theory has

been widely applied in various fields, such as electricity market

(Liang et al., 2020), vehicle speed tracking control (Hao et al., 2021),

fuzzy PID controller (Shi et al., 2020), quadrotor control (Wang

et al., 2020), energy efficiency (Zhang et al., 2020), and autonomous

underwater vehicles (Sun et al., 2020; Wu et al., 2022). However, to

our best knowledge, it has never been employed in the AOR task.

In this work, we present a novel continuous VP method

with transition management based on reinforcement learning.

This method can efficiently use the explored viewpoint transitions

to learn the continuous VP policy. Concretely, a learning

framework of the continuous VP policy is established using

the deterministic policy gradient theory, which provides an

opportunity to reuse the explored transitions owing to the off-

policy characteristic of the theory. Then, we design a scheme

of viewpoint transition management that can store the explored

transitions and decide which transitions are used for the

policy learning. The scheme is implemented by introducing and

improving the prioritized experience replay technology (Schaul

et al., 2016). The improvements include: (1) We improve the

estimation approach of temporal difference (TD) error with the

clipped double Q-learning algorithm (Fujimoto et al., 2018) so as to

adapt to our continuous VP framework. (2) We utilize importance-

sampling to correct the estimation bias of TD error produced by

the prioritized replay. Finally, within the framework, we develop an

algorithm based on twin delayed deep deterministic policy gradient

(TD3) (Fujimoto et al., 2018) and the designed scheme to train the

continuous VP policy. Experimental results on the public dataset

GERMS demonstrate the effectiveness of the proposed VP method.
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The key contributions of this work are

• A novel continuous VP method with transition management

for AOR is presented to solve the problem of inefficient use of

the explored viewpoint transitions in the existing continuous

VP method.

• We establish a learning framework of the continuous VP

policy via the deterministic policy gradient theory.

• A scheme of viewpoint transition management is designed,

which is implemented by introducing and improving the

prioritized experience replay technology.

• We develop an algorithm based on twin delayed deep

deterministic policy gradient and the designed scheme to train

the continuous VP policy.

The rest of this paper is structured as follows: Section 2

formulates the VP problem. Section 3 details the proposed

framework for the solution of the problem. Finally, the

implementation and experimental results, as well as conclusions

are further provided in Sections 4, 5.

2. Problem definition

An AOR system mounted on an automatic mobile agent allows

the agent to identify an object by dealing with the images captured

from different viewpoints. Suppose at the initial time t = 0, an

object to be identified is given from an object library containing

M objects and the agent captures an image I80 from the initial

viewpoint 80. The classifier C(·) in the AOR system will give a

probability prediction C(I80 ) of the object according to the image

I80 . C(I80 ) is aM dimensional vector where every element denotes

recognition probability of different objects in the library. When the

prediction is uncertain [i.e., the maximum probability in C(I80 ) is

less than the preset threshold], the agent will move to explore more

viewpoints to improve recognition performance. This requires the

system plans a relative movement action at for the agent to obtain a

new viewpoint 8t+1 = 8t + at . The new image I8t+1 captured

from the viewpoint 8t+1 will be used for the recognition again.

This process is repeated several times until a stop condition (e.g.,

planning up to Tmax time steps or reaching the preset probability

threshold) is reached.

An undesirable planning action may make it difficult for the

agent to capture useful images for recognition. Therefore, we need

to find an effective VP policy for the AOR system. For this purpose,

the VP problem is considered as a reinforcement learning paradigm

which can be formulated as a Markov decision process. The process

is described with a six-element tuple < S,A, r,P , γ , u >.

• S represents a set of continuous states in which each state

s is produced by the predictions of corresponding images

captured from different viewpoints.

• A is a set of continuous actions which are determined by the

agent. Each action a in the set is used for the agent to get a new

viewpoint.

• r : S×A→R is a reward function designed to evaluate the

quality of selecting a viewpoint.

• P : S×A×S→[0, 1] denotes the transition probability. It

describes the possibility of transferring to the subsequent state

s, after the action a is selected in the state s.

• γ ∈ [0, 1] is a discount factor used to adjust the attention

between present and future rewards.

• u : S→A is a deterministic continuous VP policy [i.e., a =

u(s)] that can generate an action for the agent to get a new

viewpoint in a certain state.

The VP problem is transformed to solve the optimal policy u∗

in the setting of reinforcement learning.

3. Method

3.1. Overview

In reinforcement learning, the optimal policy u∗ can be

achieved by maximizing the expected return over all episodes. At

any time step t of each episode, with a given state st∈S, the agent

plans an action at∈A according to its current policy u (at = u(st)),

receiving a reward r(st , at) and the new state st+1∼P(st+1|st , at).

((st , at , rt , st+1) is called the viewpoint transition in the AOR

task.) The return is defined as the cumulative discounted reward
∑T

i=t γ
i−tr(si, ai) where T is the end time step of planning. Let

Qu(st , at) be the expected return when performing action at in state

st under the policy u. Q
u(st , at) is defined as

Qu(st , at) = E
st+1∼P(st+1|st ,at)

[

T
∑

i=t

γ i−tr(si, ai)|st , at] (1)

which is known as the action value function. u∗ can be solved by

maximizing the expected value of Equation (1) over the whole state

space

u∗ = max
u

Est∼d(·)[Q
u(st , at)|at = u(st)] (2)

where d(·) is the state probability density of Markov decision

process in steady state distribution (Bellemare et al., 2017).

We assume the deterministic continuous VP policy u is

parameterized by θ and denote it as u(s; θ). Naturally, Equation

(2) can be transformed to an optimization with respect to θ that

maximize the objective

J(θ) = Est∼d(·)[Q
u(st , at)|at = u(st; θ)]. (3)

To solve the optimization of Equation (3), the deterministic

policy gradient theory (Silver et al., 2014) is introduced to iteratively

update the parameters θ by taking the gradient of Equation (3)

▽θ J(θ) = Est∼d(·)[▽θu(st; θ)▽aQ
u(st , at)|at = u(st; θ)]. (4)

We utilize (Equation 4) as a framework to learn the optimal

deterministic continuous VP policy u(st; θ
∗) for AOR. The reason

why this framework can reuse the explored viewpoint transitions

is the off-policy characteristic of the deterministic policy gradient
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FIGURE 2

The pipeline of active object recognition based on deterministic continuous viewpoint planning. The deterministic policy gradient theory (Silver et al.,

2014) is introduced to build a framework of continuous viewpoint planning. We design a scheme of viewpoint transition management to store and

replay the explored viewpoint transitions. Within the framework, we develop an algorithm based on TD3 (Fujimoto et al., 2018) and the scheme to

train the VP policy network. During the training, the agent stores the explored viewpoint transition (st, at, rt, st+1) in the viewpoint transition bu�er and

samples a mini-batch transitions from it to train the VP policy network at each time step.

theory, i.e., the viewpoint transitions explored by any policy can be

used for the calculation of the gradient in Equation (4), because the

gradient is only related to the distribution of state st (Silver et al.,

2014). The pipeline of our AOR is shown in Figure 2 where the VP

policy u(st; θ) is represented by a three-layer fully-connected neural

network with the parameters θ . The policy network u(st; θ) takes a

state st as input and outputs a deterministic action at = u(st; θ).

In the following, the representations of state st and reward function

r(st , at) will be elaborated. Additionally, we will design a scheme of

viewpoint transitionmanagement and develop a training algorithm

based on twin delayed deep deterministic policy gradient (TD3)

(Fujimoto et al., 2018) and the scheme for the learning of u(st; θ
∗)

within the framework.

3.2. Recognition state

As shown in Figure 2, we first use a convolutional neural

network (CNN) model to extract features from the captured image

I8t and then recognize the concerned objects with a softmax layer

added the top of the CNNmodel. The CNNmodel and the softmax

layer constitute a classifier C(·) which is pre-trained with the images

from different viewpoints of the concerned objects. The parameters

of the classifier are fixed when training the VP policy network. The

classifier outputs a belief vector C(I8t ) where every element denotes

recognition probability of different objects. The oth element in

the vector is represented as P(o|I8t ) where o = 1, 2, ...,M is

the object label. The recognition state st is a posterior probability

distribution over different objects at time step t, which is produced

by the captured images. It is also expressed as a vector where the

oth element is P(o|I80 , I81 , ..., I8t ), o = 1, 2, ...,M. According to

naive Bayes (Paletta and Pinz, 2000), P(o|I80 , I81 , ..., I8t ) is given

as

ξtP(o|I8t )P(o|I80 , I81 , ..., I8t−1 ) (5)

where ξt is a normalizing coefficient.

3.3. Reward function

Reward function r(st , at) (denoted as rt for simplicity) is used

to evaluate the quality of selecting a viewpoint. As described

in Section 3.2, state is a posterior probability distribution over

different objects. The flatter the distribution is, the stronger

the recognition uncertainty is. To quantify the uncertainty,

information entropy (Zhao et al., 2016; Liu et al., 2018b) is

utilized and the uncertainty in state st is denoted as H(st) =

−
∑

o P(o|I80 , I81 , ..., I8t ) log P(o|I80 , I81 , ..., I8t ). The purpose of

AOR is to reduce the uncertainty of recognition through viewpoint

planning. Therefore, we can design the reward function according

to the change of uncertainty before and after viewpoint selection.

The resulting reward function is

rt =











−1, ôt+1 6= o∗

0, ôt+1 = o∗,H(st+1) ≥ H(st)

1, ôt+1 = o∗,H(st+1) < H(st)

(6)

where o∗ is the object label and ôt+1 =

argmaxoP(o|I80 , I81 , ..., I8t+1 ) is the predicted result. When

the predicted result is right (ôt+1 = o∗) and the uncertainty is

reduced (H(st+1) < H(st)), it indicates that this viewpoint selection
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FIGURE 3

The relationship between the six networks. The TD target ŷ is estimated with the target value function network 1 and 2 using our clipped double

Q-learning and bias correction based algorithm (Equation 12), which is used to update the value function network 1 and 2. With the gradient of

Q(st, at;ω1) to a, the policy network is updated with Equation (13). Three target networks (u(st; θ
−),Q(st, at;ω

−
1 ),Q(st, at;ω

−
2 )) adopt soft updates

according to their corresponding evaluation networks (u(st; θ ),Q(st, at;ω1),Q(st, at;ω2)).

is valuable for recognition. On the contrary, other situations mean

that this viewpoint selection is not good.

3.4. Viewpoint transition management

The agent can obtain a transition (st , at , rt , st+1) after a

viewpoint selection and use it for the learning of the continuous

VP policy. In the TRPO-based VP method (Liu et al., 2018b),

the obtained viewpoint transitions will be discarded after they are

trained due to the on-policy characteristic of TRPO. It leads to

a low efficient use of the obtained transitions. In our work, the

deterministic policy gradient theory (Silver et al., 2014) allows the

agent to reuse the obtained transitions. Therefore, to make full use

of the obtained viewpoint transitions, the experience replay (ER)

(Lin, 1992; Schaul et al., 2016) technology is adopted and improved

to implement a scheme of viewpoint transition management.

The scheme includes viewpoint transition storage and viewpoint

transition reuse.

3.4.1. Viewpoint transition storage
To store the obtained viewpoint transitions, we build a

viewpoint transition buffer with a capacity of K in the light of Lin

(1992) and Schaul et al. (2016). K is generally within 104 ∼ 106.

Once the buffer is full of transitions, the old ones will be replaced

by the newly generated transitions.

3.4.2. Viewpoint transition reuse
The key of viewpoint transition reuse is to decide which

transitions to reuse. Lin (1992) adopt a uniform sampling strategy

that means the sampling probability of each transition in the buffer

is the same. However, those transitions with greater temporal

difference (TD) errors are obviously more surprising to the agent

and should be sampled with a higher probability (Schaul et al.,

2016). Hence, Schaul et al. (2016) present a prioritized experience

replay (PER) technology that can quantify the surprising level

(priority) of each transition by the TD error and convert the priority

into the corresponding sampling probability. Here, we employ the

PER technology to sample the viewpoint transitions in the buffer.

Concretely, the probability of sampling the ith stored viewpoint

transition is given as

P(i) =
pλ
i

∑K
l=1 p

λ
l

(7)

where pλ
i > 0 is the priority of the ith transition. The exponent

λ indicates how much prioritization is used, with λ = 0
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corresponding to the uniform case. Proportional prioritization is

defined with

pi = |δ̂i| + ǫ (8)

where δ̂i is the TD error of the ith transition and ǫ is a small

positive value that prevents transitions with error of 0 from not

being sampled. The estimation of TD error in PER is based on the

double DQN algorithm (Mnih et al., 2015).

δ̂i = r
(i)
t + γQ(s

(i)
t+1, argmaxaQ(s

(i)
t+1, a;ω);ω

−)− Q(s
(i)
t , a

(i)
t ;ω)

(9)

where Q(st , at;ω) and Q(st , at;ω
−) are value function network

and target value function network respectively. However, it is only

applicable to discrete viewpoint planning, not to our continuous

case. Inspired by Fujimoto et al. (2018), we improve the estimation

method of TD error with the clipped double Q-learning algorithm

so as to adapt to our deterministic continuous VP framework. The

improved TD error is

δ̂i = |ŷ
(i)
t − Q(s

(i)
t , a

(i)
t ;ω1)| + |ŷ

(i)
t − Q(s

(i)
t , a

(i)
t ;ω2)| (10)

where ŷ
(i)
t = r

(i)
t +γ minj=1,2 Q(s

(i)
t+1, u(s

(i)
t+1; θ

−);ω−j ) is TD target.

Q(st , at;ω1) and Q(st , at;ω2) are two value function networks, and

Q(st , at;ω
−
1 ) and Q(st , at;ω

−
2 ) are their corresponding target value

function networks. u(st; θ
−) is the target policy network. These

networks will be elaborated in the next subsection.

In addition, we find that the estimation of TD error is

biased due to the prioritized sampling. It is known that Bellman

optimality equation (Sutton and Barto, 2018) is Q(st , at) =

Est+1∼P(st+1|st ,at)[rt + γ maxa Q(st+1, a)] where yt = rt +

γ maxa Q(st+1, a) is TD target. Obviously, the distribution st+1 ∼

P(st+1|st , at) is changed by using the prioritized sampling, which

introduces bias to the estimation of the expected value Q(st , at).

Thus, we correct the bias with importance-sampling weight

ρ = P

D
where D is the new distribution of st+1 generated

due to the use of prioritized sampling. Then Bellman optimality

equation is transformed to Q(st , at) = Est+1∼D(st+1|st ,at)[ρ(rt +

γ maxa Q(st+1, a)] where ρ(rt+γ maxa Q(st+1, a) is TD target with

bias correction denoted as ycorrt . And TD error is transformed to

δ = ycorrt − Q(st , at). Similar, in our scheme, the importance-

sampling weight of the ith viewpoint transition in the buffer is

ρi =
1

K · P(i)
(11)

whereK is the capacity of the buffer. Our clipped double Q-learning

based TD error and TD target are corrected as

δ̂corri = |ŷ
corr(i)
t − Q(s

(i)
t , a

(i)
t ;ω1)| + |ŷ

corr(i)
t − Q(s

(i)
t , a

(i)
t ;ω2)|

ŷ
corr(i)
t = ρi(r

(i)
t + γ min

j=1,2
Q(s

(i)
t+1, u(s

(i)
t+1; θ

−);ω−j )).

(12)

To avoid expensive sweeps over the entire viewpoint transition

buffer, priorities are only updated for the transitions that are

Input: Parameters: σ1,N, σ2, c,β , d,α, τ ,K

Output: θ

1 Initialize the value function networks

Q(st , at;ω1),Q(st , at;ω2), and the VP policy network

u(st; θ) with random parameters ω1,ω2, θ

2 Initialize the target networks

ω−1 ← ω1,ω
−
2 ← ω2, θ

− ← θ

3 Initialize the viewpoint transition buffer B

with the capacity K

4 for t = 1 to T do

5 Run a behavioral policy with exploration noise

to select an action ãt ∼ u(st; θ)+ ǫ1, ǫ1 ∼ N (0, σ1)

and receive a reward rt and a new state st+1

6 Store the transition tuple (st , ãt , rt , st+1) in B

with maximal priority

7 for i = 1 to N do

8 Sample transitions (s
(i)
t , ã

(i)
t , r

(i)
t , s

(i)
t+1) from the

buffer B: i ∼ P(i) =
pλ
i

∑K
l=1 p

λ
l

(Equation 7)

9 Compute importance-sampling weight ρi

(Equation 11)

10 Estimate the corrected TD targets ŷ
corr(i)
t

using Equation (12)

11 Compute ãt+1 = u(st+1; θ
−)+ ǫ2, ǫ2 ∼ clip(N (0, σ2),−c, c)

according to the smoothing regularization

of TD3 (Fujimoto et al., 2018)

12 Estimate the corrected TD error δ̂corri

(Equation 12)

13 Update transition priority using Equation

(8)

14 Update the value function networks by

optimizing the objective (Equation 14):

ωj = ωj − β▽ωj J(ωj)

15 if t%d == 0 then

16 Update the policy network using the gradient

(Equation 13):

θ = θ + α 1
N

∑N
i=1[ρi ·▽θu(s

(i)
t ; θ)▽aQ(s

(i)
t , u(s

(i)
t ; θ);ω1)]

17 Update the target networks:

18 ω−j = τωj + (1− τ )ω−j

19 θ− = τθ + (1− τ )θ−

20 return θ

Algorithm 1. Training the deterministic continuous VP policy

network.

sampled according to Schaul et al. (2016). In addition, the new

transitions will be put in the buffer with maximal priority in order

to guarantee that all transitions are seen at least once.

3.5. Training the policy network

In this section, we resort twin delayed deep deterministic

policy gradient (TD3) (Fujimoto et al., 2018) and the scheme

designed in Section 3.4 to develop a training algorithm for
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the solution of the optimal VP policy parameters θ∗. To this

end, we use the gradient (Equation 4) to iteratively update θ :

θ = θ + α▽θ J(θ). α is the learning rate. The core task

is to solve the gradient ▽θ J(θ). We therefore employ Monte

Carlo method to replace the expected operator in Equation

(4) in an approximate manner. Specifically, we sample N

transitions from the viewpoint transition buffer using Equation (7)

to calculate

▽θ J(θ) ≈
1

N

N
∑

i=1

[ρi · ▽θu(s
(i)
t ; θ)▽aQ

u(s
(i)
t , u(s

(i)
t ; θ))]. (13)

According to TD3, we approximately represent the value

function Qu(st , at) in Equation (13) by a three-layer fully-

connected neural network Q(st , at;ω) with the parameters ω.

The network takes the state st and the action at as input and

outputs the function value Q(st , at;ω). By updating the parameters

ω, the value function corresponding to the VP policy u can

be obtained.

In order to better train the policy network u(st; θ), we

follow TD3 to build six neural networks in total: policy network

u(st; θ), value function network 1 Q(st , at;ω1), value function

network 2 Q(st , at;ω2) and their corresponding target networks

[target policy network u(st; θ
−), target value function network 1

Q(st , at;ω
−
1 ), target value function network 2 Q(st , at;ω

−
2 )]. After

the training, the policy network u(st; θ) is the optimal deterministic

continuous VP policy we want. The other networks only serve

as auxiliary training. Figure 3 shows the relationship between the

six networks.

The value function networks can be updated with the

aforementioned N samples by minimizing the objective

L(ωj) =
1

2N

N
∑

i=1

(ŷ
corr(i)
t − Q(s

(i)
t , a

(i)
t ;ωj))

2 (14)

where j is 1 or 2. ŷcorrt is the corrected TD target proposed in

Equation (12).

Our whole algorithm to train the deterministic continuous VP

policy network is summarized in Algorithm 1. Once the optimal

parameters θ∗ are obtained after the training, we can use them

for the practical AOR task. Given a state st , the planned action

is a∗t = u(st; θ
∗), and the next best viewpoint of the agent is

8t+1 = 8t + a∗t .

4. Experiments

This section first provides details about the experimental

dataset and implementation, and then reports the experimental

results along with some analyzes.

4.1. Dataset and metric

We evaluate our proposed deterministic continuous VP

method on the public and challenging dataset GERMS (Malmir

et al., 2015) shown in Figure 4A which is collected in the context

of developing robots to interact with toddlers in early childhood

education environments. The dataset has 1,365 video tracks of

give-and-take trials using 136 different object instances. The

object instances are soft toys denoting a wide range of disease-

related organisms, microbes and human cell types. Each video

track records a robot grasping an object instance to its center

of view, rotating the object by 180◦ with its left or right arm,

and then returning it. All video tracks were recorded by a

head-mounted camera of the robot at 30 frames/s, as shown

in Figure 4B. At the same time, the joint position and object

label corresponding to each frame image were also recorded

in each track. These joint positions provide an opportunity

for verifying different VP methods in one dimensional action

space. The dataset authors specified the image subsets of all

tracks as train and test set, as shown in Table 1. The evaluation

metric used for different VP methods is recognition accuracy

that is the average value of the entire test set. The higher the

recognition accuracy is, the better the corresponding VP method

will be.

FIGURE 4

The GERMS dataset. (A) One hundred and thirty six object instances. (B) Recorded images of di�erent joint positions in each track.
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4.2. Implementation details

4.2.1. Network architecture
The Tensorflow platform is used to implement the proposed

method in this work. In the pre-trained classifier, we transform

every image in the GERMS dataset into a 4,096-dimensional

feature vector using an existing CNN model VGG-net provided

by Malmir et al. (2015). The softmax layer has 136 neurons.

For the policy network u(st; θ), the dimensions of each layer

are 136, 512, 512 and 1. The activation functions of the two

hidden layers are both relu. The output layer adopts tanh

activation function, which is multiplied by 512 so as to make

the planned relative VP action in [−45◦, 45◦]. For the two

value function networks (Q(st , at;ω1) and Q(st , at;ω2)), they

have the same network structure with the dimensions of each

layer are 137, 512, 512 and 1. The activation functions of

the two hidden layers are also relu. The configuration of

their corresponding target network is completely consistent

with theirs.

4.2.2. Viewpoint transition management
The capacity of the viewpoint transition buffer is 106. ǫ and

the exponent λ are set as 0.01 and 0.6 according to the original

setting of PER (Schaul et al., 2016). To efficiently sample from

distribution (Equation 7), we use a “sum-tree” (Schaul et al., 2016)

TABLE 1 GERMS dataset statistics (mean ± std).

Images/track Number
of tracks

Images/track Total
number
of images

Train 816 157± 12 76,722

Test 549 145± 19 51,561

in which every node is the sum of its children and the leaf nodes

are priorities. The sum-tree can be efficiently updated and sampled

from.

4.2.3. Training
The reward discount factor γ is 0.95. The minibatch size N

is 128. The maximum step Tmax for recognition is Tmax = 12

and the preset probability threshold is 0.99. The Adam optimizer

(Kingma and Ba, 2014) is utilized to optimize the policy network

and the value function networks. The learning rates are 0.0001,

0.001, and 0.001, respectively. The standard deviations (σ1 and σ2)

of the exploration noise and smoothing regularization are 128 and

32. c is 512. The delayed update cycle d and soft update τ are 2

and 0.01.

FIGURE 6

The average entropy over the whole test dataset. The experiment is

implemented with our VP model.

FIGURE 5

Performance comparison between our presented deterministic continuous VP approach and several competing methods. The shaded region

represents the standard deviation of the average evaluation over 10 trials.
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FIGURE 7

An example of actively identifying an object by our VP method. The recognition belief increases with the increase of the number of viewpoint

planning.

FIGURE 8

The performance comparison results of ablation experiments. K represents the capacity of the viewpoint transition bu�er. The shaded region

represents the standard deviation of the average evaluation over 10 trials.

4.3. Results and analyzes

4.3.1. Comparison with competing methods
To validate the effectiveness of our proposed deterministic

continuous VP method in this experiment, we compare

our proposed method with the following baseline and

competing methods.

4.3.1.1. Single viewpoint recognition

Single viewpoint recognition only allows the agent to recognize

an object from one viewpoint.

4.3.1.2. Blind VP policies

Random policy (Liu et al., 2018a) randomly selects an

action from the continuous action space [−45◦, 45◦] with

a uniform probability. Sequential policy (Liu et al., 2018a)

moves the agent to the next adjacent viewpoint in the

same direction. The reason why these two baseline policies

are called blind VP policies is that they do not use the

previous observation information for purposeful viewpoint

planning. The blind policies may produce worthless viewpoints

for recognition.

4.3.1.3. Purposeful discrete VP policy

DQL policy (Malmir et al., 2015; Malmir and Cottrell,

2017) develops an active discrete VP method with deep Q-

Learning algorithm, which explores in the discrete action space

{± π
64 ,±

π
32 ,±

π
16 ,±

π
8 ,±

π
4 }.
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FIGURE 9

Performance comparison between our sampling strategy and uniform sampling strategy. The capacity of the viewpoint transition bu�er is 106. The

shaded region represents the standard deviation of the average evaluation over 10 trials.

4.3.1.4. Purposeful continuous VP policy

TRPO policy (Liu et al., 2018b) utilizes trust region policy

optimization (Schulman et al., 2015) to learn a continuous VP

policy and adopts extreme learning machine (Huang et al., 2006)

to reduce computational complexity. This policy has on-policy

characteristic that means the agent can not reuse learned viewpoint

transitions for efficient training.

Since the main focus of this work is viewpoint planning, we do

not investigate the impact of classifiers on recognition performance.

Therefore, for a fair comparison, the classifiers in different

approaches are the same in the experiment. Figure 5 reports the

experimental results of our method against other approaches

over 10 random seeds of the policy network initialization.

Some observations from Figure 5 are presented as follows: (1)

Viewpoint planning can greatly improve recognition performance.

The number of VP is 0 that means the agent recognizes

the concerned object with a single viewpoint. Obviously, the

recognition accuracy of single viewpoint recognition policy is far

lower than that of the methods which perform multi viewpoint

recognition via VP. This is because more object information

with difference can be found through VP to reduce recognition

uncertainty, thus improving the recognition performance. As

shown in Figure 6, the uncertainty of recognition decreases as the

number of viewpoints increases. Figure 7 shows the process of

actively identifying an object. (2) The performance of the blind

VP policies is nowhere near as good as that of the purposeful VP

policies. The primary reason is that the purposeful VP policies

(i.e., DQL policy, TRPO policy and our policy) can purposefully

plan next viewpoints according to the observed information. (3)

The continuous VP policies have better performance than the

discrete VP policy. That is because the continuous VP policies

(i.e., TRPO policy and our policy) directly explore continuous

viewpoint space without sampling, so they will not miss some

important viewpoints. (4) The performance of our deterministic

continuous VP policy exceeds that of TRPO policy. This is mainly

because we design a scheme of viewpoint transition management

that can reuse the obtained viewpoint transitions to improve the

training effect.

4.3.2. Ablation studies
To verify the importance of different components in our

proposed VP model, we intend to conduct the variant experiments

with the ablation of different components, i.e., viewpoint transition

management (VTM) and bias correction (BC). Training the model

without VTM and BC are respectively denoted as Ours-woVTM

and Ours-woBC. From the presented results over 10 random seeds

in Figure 8, we can notice that: (1) The performance of Ours-

woVTM is the worst. It illustrates that our designed scheme of

viewpoint transition management indeed enhances the training

effect. (2) The performance of Ours-woBC is inferior to that of

Ours, especially when the capacity K of the viewpoint transition

buffer is large. This is because when the capacity is larger, the

distribution of st+1 in the buffer is closer to its true distribution.

In this case, the effect of our bias correction based on importance

sampling will be more obvious.

4.3.3. Sampling strategies investigations
To verify the superiority of our proposed sampling strategy

(i.e., prioritized experience replay based on clipped double Q-

learning and bias correction) in the scheme of viewpoint transition

management, we conduct comparison experiments with the

uniform sampling strategy (Lin, 1992) over 10 random seeds. As

shown in Figure 9, we observe that our sampling strategy achieves

a better performance, since the importance of each viewpoint

transition is ignored by the uniform sampling strategy.

5. Conclusions

In this paper, a continuous viewpoint planning method

with transition management is proposed for active object

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1093132
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Sun et al. 10.3389/fnbot.2023.1093132

recognition based on reinforcement learning. Specifically, we

employ deterministic policy gradient theory to build a learning

framework of the viewpoint planning policy. We also design a

scheme of viewpoint transition management that can store and

reuse the obtained transitions. We develop an algorithm based on

twin delayed deep deterministic gradient and the designed scheme

to train the policy. Experiments on a public dataset demonstrate

the effectiveness of our method. In the future, we will integrate

the calibrated probabilistic classifiers in AOR research. As stated

in Popordanoska et al. (2022), the way the posterior probability

distribution is defined in our work assumes that the classifier is

properly calibrated, i.e. the softmax output represents the correct

error rate probabilities. In general, this is not necessarily the case.
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