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Face morphing attack detection
based on high-frequency features
and progressive enhancement
learning

Cheng-kun Jia, Yong-chao Liu* and Ya-ling Chen

School of Electrical and Information Engineering, Hunan Institute of Tra�c Engineering, Hengyang,
China

Face morphing attacks have become increasingly complex, and existing methods
exhibit certain limitations in capturing fine-grained texture and detail changes.
To overcome these limitation, in this study, a detection method based on
high-frequency features and progressive enhancement learning was proposed.
Specifically, in this method, first, high-frequency information are extracted from
the three color channels of the image to accurately capture the details and texture
changes. Next, a progressive enhancement learning framework was designed to
fuse high-frequency information with RGB information. This framework includes
self-enhancement and interactive-enhancement modules that progressively
enhance features to capture subtle morphing traces. Experiments conducted on
the standard database and compared with nine classical technologies revealed
that the proposed approach achieved excellent performance.
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1. Introduction

Facial features are widely used as personal identity authentication information. With

the improvement in the recognition rate, face recognition systems are increasingly being

used in bank businesses, mobile phone national ID card systems, face payment, and

border management.

However, studies have revealed that face recognition systems are vulnerable to face

morphing attacks (Scherhag et al., 2017) in which two facial images with various biological

characteristics are synthesized into a morphed facial image with biometric information that

is similar to the two facial images. A morphed face image results in face recognition systems

matching two people. If such images are embedded in passports or other electronic travel

documents, then border management systems can become vulnerable.

In many countries, applicants provide facial images for use in e-passport applications.

Criminals can use free software to transform their facial images into those of friends with

similar appearance. Because morphed faces are similar to real faces, if a partner uses the

morphed face to apply for electronic travel documents, then criminals can use facial images

on electronic travel documents to deceive border inspectors and recognition systems for

passing automatic border control. Because such attacks have been proven to be effective

(Ferrara et al., 2014), detecting faces generated by this attack is critical for social security.
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Detection approaches are classified into conventional and

depth-feature-based methods. Conventional feature-based

methods include texture (Raghavendra et al., 2016, 2017;

Venkatesh et al., 2020) and quality-based methods (Makrushin

et al., 2017; Debiasi et al., 2018a,b; Scherhag et al., 2019). With

deep learning technology evolving rapidly, the method based

on depth feature (Seibold et al., 2017; Long et al., 2022, 2023)

is widely used. Among these methods, conventional feature

methods are simple to implement but cannot achieve satisfactory

discriminability. By contrast, although depth-feature-based

methods can extract semantic information effectively and exhibit

superior generalization, these methods tend to extract global

information from images and ignore details. Studies (Luo et al.,

2021) have revealed that existing deep learning methods exhibit

poor performance in recognizing realistic synthetic faces because

they cannot extract details effectively.

With advancement in morphing attack technology (Makrushin

et al., 2017; Qin et al., 2020), morphed faces are becoming

increasingly realistic, rendering discerning the differences between

real and morphed images due to subtle and localized differences

difficult. Consequently, the limitations of existing methods are

especially concerning. To address this problem, a novel face

morphing attack detection method based on high-frequency

features and progressive enhancement learning was proposed to

effectively extract details and overcome the limitations of existing

methods. The contributions of this study are as follows:

• A novel face morphing detection method based on high-

frequency features was proposed. High-frequency features

typically represent parts of the image with high variation

rates, including details and texture information. The use

of high-frequency information as the input to a neural

network can better capture image details, thereby improving

the performance and accuracy of the model in detecting

morphed images.

• A progressive enhancement learning framework based on

two-stream networks was proposed for training a detection

model. The framework comprises of self-enhancement and

interactive-enhancement modules. These modules gradually

improve the feature representation of the model, and enable

it to accurately capture subtle morphing traces.

• The proposed system is analyzed on the standard database.

Experiments on two databases revealed excellent performance

in the single- and cross-dataset tests.

Abbreviations: ID, Identity Document; RGB, Red Green Blue; BSIF, Binary

Statistical Image Features; HOG, Histogram of Oriented Gradient; LBP,

Local Binary Patterns; JPEG, Joint Photographic Experts Group; CNN,

Convolutional Neural Network; GMP, Global Max Pooling; GAP, Global

Average Pooling; DFT, Discrete Fourier Transform; IDFT, Inverse Discrete

Fourier Transform; APCER, Attack Presentation Classification Error Rate;

BPCER, Bona Fide Presentation Classification Error Rate; ACER, Average

Classification Error Rate; ACC, Accuracy; EER, Equal Error Rate; SGD,

Stochastic Gradient Descent; SEM, Self-Enhancement Module; IEM,

Interactive-Enhancement Module; TSCNN, Two-Stream Convolutional

Neural Networks; PELF, Progressive Enhancement Learning Framework.

The rest of the paper is organized as follows: Section 2 introduces

the related work. Section 3 depicts the proposed method. Section

4 provides experimental results and analysis. Finally, Section 5

presents conclusions.

2. Related work

Face morphing detection is a critical task for ensuring social

security. Various techniques have been proposed to address this

problem. In this section, we review several state-of-the-art methods

for detecting face morphing. Specifically, we categorized these

methods into three types, namely texture-based methods, image-

quality-based methods, and depth-feature-based methods. We

discussed the strengths and weaknesses of each method and

highlighted the necessity of effective and accurate techniques to

detect face morphing.

2.1. Face morphing detection based on
texture

Raghavindra et al. (2016) proposed the use of binary statistical

image features (BSIF) to detect morphed faces. The method

was tested on a large database consisting of 450 morphed face

images created by 110 subjects of different races, ages, and

genders. Experimental results proved that the method is efficient.

Subsequently, Raja et al. proposed a method by using multi-

color spatial features (Raghavendra et al., 2017). In this method,

texture features extracted from HSV and YCbCr were used for

detection. The bona fide presentation classification error rate

(BPCER) of this method was 1.73%, and the attack presentation

classification error rate (APCER) was 7.59%, which revealed

superior detection performance compared to earlier methods.

Venkatesh et al. proposed the use of multiple features to improve

detection performance (Venkatesh et al., 2020). In this method,

BSIF, HOG, and LBP were used to extract features. Compared with

earlier studies, this model exhibited stable detection performance

under various environments and conditions.

2.2. Face morphing detection based on
image quality

Neubert et al. proposed an automated detection approach based

on JPEG degradation of continuous images (Makrushin et al.,

2017). Under laboratory conditions, the accuracy rate was 90.1%,

and under real world conditions, the accuracy rate was 84.3%.

Photo response non-uniformity (PRNU) is a source of mode noise

in digital cameras and is generated when photons in a digital

image sensor are converted into electrons. PRNU features are

widely used in image forgery detection because operations such as

image copying or moving changes the PRNU features of images.

Therefore, Debiasi et al. (2018a) proposed the use of PRNU features

for detection. According to experimental results, PRNU analysis

achieved reliable detection performance for morphed faces and

maintained excellent performance even under image scaling and
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FIGURE 1

Presented approach.

FIGURE 2

Extraction process of three-channel high-frequency features.

sharpening. Debiasi et al. (2018b) proposed an improved version of

the PRNU. Two detection methods based on the PRNU were used

to analyze the Fourier spectrum of PRNU and statistical methods

were used for quantifying the spectral distinction between real and

morphed face images. The value of PRNUwas affected by the fusion

operation in both spatial domain and frequency domains. Scherhag

et al. (2019) introduced spatial features for the parallel analysis of

frequency domain features.
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FIGURE 3

AFF module.

FIGURE 4

Self-enhancement module.

FIGURE 5

Interactive-enhancement module.
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TABLE 1 HNU and FEI dataset.

Dataset Training set Validation set Testing set Pixel
fusion
factor

Position
fusion
factorReal face Morphed

face
Real face Morphed

face
Real face Morphed

face

HNU (MDB1) 1,121 1,121 564 330 566 377 0.5 0.5

HNU (MDB2) 1,121 1,125 564 567 566 567 0.5 0.1–0.9

HNU (MDB3) 1,121 1,125 564 567 566 567 0.1–0.9 0.5

HNU (MDB4) 1,121 1,134 564 567 566 567 0.1–0.9 0.1–0.9

FEI 81 6,480 20 380 99 9,702 0.5 0.5

TABLE 2 Experimental settings.

Parameter Value

Framework Pytorch

Optimizer Stochastic gradient descent (SGD)

Learning rate 1e-4

Loss criterion Cross-entropy loss

Epochs 20

GPU GeForce GTX 1060Ti

Batch size 16

2.3. Face morphing detection based on
depth feature

In most morphing detection methods, deep learning methods,

especially the pre-trained CNN architecture, is used. Seibold

et al. (2017) first proposed a detection approach on the basis

of deep learning. Three popular network structures, namely

AlexNet, GoogLeNet, and VGG19 were evaluated. Experimental

results revealed that VGG19 after pre-processing can obtain

excellent performance. In subsequent studies, evaluation has been

gradually combined with ResNet, Inception, and other networks.

Subsequently, Long et al. used the lightweight network structure

and local feature information to improve accuracy. The network

achieved high accuracy with fewer parameters (Long et al., 2022).

To enhance the generalization ability of the network, Long et al.

(2023) proposed a detection method based on a two-stream

network with the channel attention mechanism and residual of

multiple color spaces. In the method, the residual noise of multiple

space and attention mechanism were used to detect morphed

face. Experimental results revealed that the proposed method

outperformed existing methods.

Methods based on conventional features are simple to

implement but cannot achieve satisfactory discriminability,

whereas methods based on deep feature generally outperform

conventional methods but tend to extract global information from

images and ignore details. To overcome the limitations of existing

methods, a detection method based on high-frequency features

and progressive enhancement learning was proposed for detecting

morphed faces. High-frequency features typically represent parts

of the image with high variation rates, including details and texture

information. The use of high-frequency information as the input

to a neural network can enhance the details of the captured image.

Progressive enhancement learning is a learning method that

progressively enhances feature representations. It achieves this by

inserting self-enhancement modules after each convolution block

in a convolutional neural network, and interactive-enhancement

modules after each stage to gradually enhance the feature

representation. This method effectively utilizes high-frequency

information to better locate subtle morphing traces.

3. Proposed method

The proposed scheme is displayed in Figure 1. The scheme

can detect the morphed face image by using high-frequency

features and progressive enhancement learning. First, the image

is preprocessed and subsequently decomposed into R, G, B color

channels. High-frequency features are extracted from images in

R, G, B channels. Finally, the merged high-frequency information

image and RGB image are input into the designed progressive

enhancement learning framework for end-to-end training for

detecting morphed faces. The scheme consists of three parts,

namely pre-processing, high-frequency information extraction,

and progressive enhancement learning framework design. Each

part is described in this paper.

3.1. Pre-processing

To effectively extract features from the image, pre-processing

the image is critical. In the pre-processing stage, first, the dlib

detector was used for face detection (King, 2009). The detected

faces were then cropped to 224× 224 pixels to ensure themorphing

detection algorithm was applied to the face area. Next, 224 × 24

pixels were selected to accommodate the size of the input layer of

the progressive enhanced two-stream network.

3.2. High-frequency information extraction

High-frequency information contains considerable detail

information as well as noise. Detailed information can be used to

detect subtle differences between real and the morphed faces, and
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TABLE 3 Detection results of the presented approach on fixed fusion factor datasets.

Algorithm FEI HNU (MDB1)

EER (%) BPCER@APCER EER (%) BPCER@APCER

=5% =10% =5% =10%

Traditional technologies

BSIF-SVM (Raghavendra et al., 2016) 3.38 8.67 4.79 20.80 22.60 19.82

HOG-SVM (Scherhag et al., 2018) 3.03 0.40 0.60 24.84 62.90 48.39

FS-SPN (Zhang L. B. et al., 2018) 0.51 1.58 0.35 1.93 1.53 1.21

Deep learning technologies

VGG16 (Seibold et al., 2017) 2.93 2.55 2.01 11.06 15.33 13.95

ResNet34 (He et al., 2016) 3.95 2.01 1.33 3.00 4.45 2.53

ShuffleNetV2 (Zhang X. et al., 2018) 2.02 2.02 1.01 4.01 3.98 1.89

MobileNetV2 (Sandler et al., 2018) 3.95 1.01 1.01 3.53 3.36 1.41

PLFL Long et al., 2022 0.85 0.98 0.55 0.91 1.35 0.37

TSCR (Long et al., 2023) 1.04 1.09 0.66 0.88 1.31 0.37

Proposed method 0.12 0.66 0.17 0.84 0.36 0.18

The bold values represent the best results.

TABLE 4 Results of the presented approach on various fusion factors datasets.

Algorithm HNU (MDB2) HNU (MDB3) HNU (MDB4)

EER
(%)

BPCER@ APCER EER
(%)

BPCER@ APCER EER
(%)

BPCER@ APCER

=5% =10% =5% =10% =5% =10%

Traditional technologies

BSIF-SVM

(Raghavendra et al.,

2016)

20.39 20.27 18.17 19.38 21.67 17.79 21.36 23.67 18.08

HOG-SVM (Scherhag

et al., 2018)

22.72 61.02 46.91 21.16 47.09 31.92 23.46 59.61 48.50

FS-SPN (Zhang L. B.

et al., 2018)

1.56 2.02 1.01 1.49 1.01 0.49 1.69 1.41 0.18

Deep learning technologies

VGG16 (Seibold et al.,

2017)

12.05 18.44 10.88 17.78 15.43 12.02 14.45 11.56 9.22

ResNet34 (He et al.,

2016)

3.52 1.33 0.55 3.44 1.51 0.37 4.53 2.72 0.88

ShuffleNetV2 (Zhang

L. B. et al., 2018)

4.06 3.53 1.41 9.19 14.66 8.66 7.60 14.49 4.42

MobileNeV2 (Sandler

et al., 2018)

4.59 4.59 2.65 5.65 6.18 2.83 4.94 4.77 2.30

PLFL (Long et al.,

2022)

1.00 0.37 0.12 1.24 1.21 0.31 1.21 1.51 0.18

TSCR (Long et al.,

2023)

0.98 0.59 0.12 1.21 1.01 0.57 1.16 1.41 0.16

Proposed method 0.88 0.27 0.12 1.06 0.65 0.35 0.77 0.37 0.05

The bold values represent the best results.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1182375
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Jia et al. 10.3389/fnbot.2023.1182375

TABLE 5 Detection results on cross dataset.

Training dateset Test dateset Algorithms EER (%) BPCER@APCER

=5% =10%

HNU (MDB1) FEI Traditional technologies

BSIF-SVM (Raghavendra et al., 2016) 30.27 87.77 63.16

HOG-SVM (Scherhag et al., 2018) 40.01 60.01 50.33

FS-SPN (Zhang X. et al., 2018) 37.37 85.69 75.02

Deep learning technologies

VGG16 (Seibold et al., 2017) 10.22 12.16 10.24

ResNet34 (He et al., 2016) 5.65 8.08 4.55

ShuffleNet (Zhang L. B. et al., 2018) 12.63 24.24 15.15

MobileNet (Zhang L. B. et al., 2018) 15.87 35.35 23.23

PLFL (Long et al., 2022) 4.52 3.30 1.51

TSCR (Long et al., 2023) 4.48 2.02 1.01

Proposed method 3.26 3.03 1.47

FEI HNU (MDB1) Traditional technologies

BSIF-SVM (Raghavendra et al., 2016) 40.09 81.86 47.19

HOG-SVM (Scherhag et al., 2018) 35.48 87.10 80.97

FS-SPN (Zhang X. et al., 2018) 25.09 60.07 45.09

Deep learning technologies

VGG16 (Seibold et al., 2017) 10.53 20.26 10.22

ResNet34 (He et al., 2016) 17.47 45.58 23.04

ShuffleNet (Zhang L. B. et al., 2018) 16.08 39.40 22.08

MobileNet (Sandler et al., 2018) 26.68 65.02 51.24

PLFL (Long et al., 2022) 8.33 11.25 5.84

TSCR (Long et al., 2023) 7.95 12.54 4.77

Proposed method 10.22 14.25 5.25

The bold values represent the best results.

noise can suppress the image content. Therefore, high-frequency

information was introduced to detect morphed faces.

To extract the high-frequency information of facial image X,

the high-frequency information of R, G, B color channels was

extracted. First, the input image was decomposed into R, G, and

B three channels, and the separated images were represented as Xr ,

Xg , and Xb. The corresponding frequency spectra Xfr , Xfg , and Xfb

are obtained through Fourier transform as follows:

RGB(X) = [Xr , Xg , Xb] , (1)

Xfr ,Xfg ,Xfb = D(Xr ,Xg ,Xb) , (2)

Where, Xfr ,Xfg ,Xfb ∈ RH×W×1, and D represents the

discrete Fourier transform (DFT). The image obtained after DFT

transformation exhibits excellent frequency distribution layout,

that is, the low-frequency response is at the top corner and

high-frequency response is at the lower right corner. To extract

high-frequency information, the low-frequency part of the upper

left corner is moved to the middle. The specific operation

symmetrically exchanges the four quadrants of the frequency

domain image, that is, the first and third quadrants, the second

and fourth quadrants exchange positions. Thus, the zero-frequency

component is moved to the center of the spectrum. Next, the image

content is suppressed by filtering low-frequency information for

magnifying high-frequency subtle artifacts as follows:

Xh
f r
,Xh

f g
,Xh

f b
= F(Xfr , a), F(Xfg , a), F(Xfb, a) , (3)

Where, F represents high-pass filtering, α controls the low-

frequency components to be filtered. Generally, the value range of

α is limited between [0.1, 0.5] because within this range, the value

of α can not only filter low-frequency components to a certain

extent but also retain the high-frequency information in the image

to achieve superior filtering effect. Therefore, the value of α was

set to 0.33. Finally, the frequency spectrum with high-frequency
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information was converted into RGB color space by using inverse

Fourier transform to obtain the output image with high-frequency

information as follows:

Xhr ,Xhg ,Xhb = D−1(Xh
fr ,X

h
fg ,X

h
f b
) , (4)

Where, Xhr ,Xhg ,Xhb ∈ RH×W×1, and D−1 represents inverse

discrete Fourier transform (IDFT). Finally, the high-frequency

information images extracted from the three channels are spliced

along the channel direction to obtain the final high-frequency

feature image as follows:

Xh
= cat(Xhr ,Xhg ,Xhb) , (5)

The high-frequency information extraction process is displayed

in Figure 2.

3.3. Progressive enhancement learning
framework

Attention mechanisms are widely used in image processing

tasks (Sa et al., 2021; Gu et al., 2022). Inspired by these

mechanisms, this study proposed a progressive enhancement

learning framework (PELF) to enhance detection performance

by combining RGB image information with high-frequency

information. The RGB image information provides basic color and

shape information, whereas the high-frequency image information

provides detailed information. Fusing RGB and high-frequency

features enables a comprehensive feature representation, which

results in improved detection performance.

The framework is based on a two-stream network architecture,

where RGB images and corresponding high-frequency information

images are simultaneously fed into the network as the input.

The backbone network is ShuffleNetV2, which is end-to-end

trained. To enhance the features in both intra- and inter-stream

manner, self-enhancement modules and interactive-enhancement

modules are designed. Specifically, each convolutional block of

the backbone is followed by a self-enhancement module, and

interactive-enhancement modules are inserted after each stage.

The self-enhancement module can enhance the characteristics of

each flow. The interactive-enhancement module can enhance the

feature interaction between RGB and high-frequency information.

This progressive feature enhancement process effectively locates

subtle morphing traces and improves detection performance. In

the feature fusion stage, the AFF module (Dai et al., 2021) is

used to fuse RGB and high-frequency features, as displayed in

Figure 3. This method is a feature fusion method, which can use

the complementarity and correlation between the two features

and improve the expression ability and classification performance

of features. After passing through the AFF module, the output

dimension remains consistent with the input dimension, which is

7 × 7 × 1024. The resulting fused features are then sent to the

Softmax layer for classification.

3.3.1. Self-enhancement module
Inspired by the channel attention mechanism, a self-

enhancement module (Figure 4) was designed to enhance the

characteristics of each flow. Specifically, the global features of each

channel were extracted through global average pooling (GAP) and

global max pooling (GMP), and the global spatial features of each

channel was considered as the representation of the channel to

form a 1× 1× C channel descriptor. The description is as follows:

S1 = GAP(fin) , S2 = GMP(fin) , (6)

Where, fin represents the input feature map. To effectively

capture cross-channel interaction information, this paper considers

capturing local cross-channel interaction information from each

channel and its k neighbors. For this purpose, we subject the

obtained global spatial features S1 and S2 to fast one-dimensional

convolution with a kernel size of k. These operations generate two

channel attention maps, Z1 and Z2, which are obtained by passing

the convolved features through a sigmoid function. The description

is as follows:

Z1 = σ (C1Dk(S1)), Z2 = σ (C1Dk(S2)) , (7)

Where, C1D represents one-dimensional convolution, σ

represents Sigmoid function, and convolution kernel size k

represents the number of neighbors participating in attention

prediction near this channel. Here, the final channel attention map

Z is computed by adding Z1 and Z2 together. This map is then used

to multiply the input characteristics of each flow fin, leading to an

enhanced feature representation. Finally, the enhanced feature is

added to the original input feature, resulting in the final output fout .

The description is as follows:

Z = Z1+ Z2 , (8)

fout = fin + fin ⊗ Z , (9)

Where, fout represents the output feature after passing through

the module. The self-enhancement module was inserted after each

convolution block. Through channel attention, the trajectories in

various input spaces were captured to enhance the characteristics

of each flow.

3.3.2. Interactive-enhancement module
To exploit RGB information and high-frequency information,

an interactive-enhancement module (Figure 5) was used to

enhance the interaction of two-stream features.

As displayed in Figure 5, U1 and U2 represent the feature map

of the frequency flow and RGB flow, respectively, of the l-th stage

of the network, and H, W, and C represent the length, width,

and height, respectively, of the feature map. First, U1 and U2 are

connected in the channel dimension to obtain U. Next, U is used

to generate effective feature descriptors through GAP and GMP
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operations, and a 7 × 7 convolution operation was performed to

reduce the dimension to one channel. The spatial attention feature

is generated by sigmoid. Finally, this feature is multiplied with the

input feature of each flow to obtain the enhanced feature as follows:

V = σ (f 7×7([AvgPool(U);MaxPool(U)])) = σ (f 7×7(Zs
avg;Z

s
max))

(10)

Uz = V ⊗ Ui , (11)

Where, ⊗ represents element multiplication, σ represents the

sigmoid function, and UZ is the feature of each stream enhanced

by the interactive-enhancement module. The module is inserted

after each stage and placed after the self-enhancement module.

Thus, the enhancement of RGB and high-frequency branches can

be realized simultaneously.

4. Experimental results and analysis

4.1. Datasets and evaluation criteria

FEI and HNU datasets (Zhang L. B. et al., 2018; Peng et al.,

2019) were used, and splicing the morphing attack was the primary

attack mode. The images in the HNU dataset were collected from

Chinese people and cover the face data of various genders. To

ensure an excellent fusion effect, the individuals of the same age

were selected, and the same lighting and background conditions

were used. When evaluating the effectiveness of face fusion,

four sub-protocols were included in the HNU for evaluating

generalization. The pixel fusion factor corresponding to the four

sub-protocols differs from the location fusion factor. In HNU

(MDB1), the pixel fusion factor and position fusion factor are both

fixed at 0.5, which reveals that the two faces as fusion materials

that exhibit the same contribution to the fusion photograph. In

this scenario, the attack effect is the best scenario because in

TABLE 6 Ablation results for the two-branch network.

FEI HNU (MDB1)

ACER
(%)

EER
(%)

ACC
(%)

ACER
(%)

EER
(%)

ACC
(%)

High-

frequency-

CNN

1.55 0.55 98.80 1.99 1.74 98.13

RGB-CNN 6.08 2.59 97.21 7.07 3.00 94.16

TSCNN 0.67 0.32 98.93 1.95 0.88 98.26

The bold values represent the best results.

this case, the fusion face image exhibits considerable similarity

to the holder from the perspective of vision or face recognition

systems. In practice, fusion photographs may be fused in various

proportions of pixels and positions. To simulate the real scenario,

the pixel fusion factor and position fusion factor of HNU (MDB2)

and HNU (MDB3) were randomly selected with values ranging

from 0.1 to 0.9, respectively. In HNU (MDB4), both factors were

randomly selected. In the FEI dataset, Europeans and Americans

are collection objects. In this dataset, both position fusion factor

and pixel fusion factor are fixed values of 0.5. The details of the two

datasets are presented in Table 1.

To assess the effectiveness of proposed scheme, the

experimental results of this method were compared with nine

existing classical methods. The results are presented in Tables 2, 3.

In the case of deep learning technology, the results of the method

were compared with VGG16 (Seibold et al., 2017), PLFL (Long

et al., 2022), TSCR (Long et al., 2023), ResNet34 (He et al., 2016),

ShuffleNet (Zhang X. et al., 2018), MobileNet (Sandler et al., 2018).

In the case of non-deep learning technology, the method was

compared with BSIF (Raghavendra et al., 2016), FS-SPN (Zhang L.

B. et al., 2018), and HOG (Scherhag et al., 2018).

Furthermore, standardized ISO metrics (Biometrics, 2016):

APCER, BPCER, ACER, ACC and EER were used to evaluate

detection performance. Here, APCER defines the proportion of

the morphed image that is incorrectly classified as the real image,

BPCER defines the proportion of real image that is incorrectly

classified as the morphed image, ACER is defined as the average

of BPCER and APCER. Furthermore, the results of EER, where

BPCER= APCER, were provided.

4.2. Implementation details

The proposed approach is based on the Pytorch deep learning

framework. In the training stage, the stochastic gradient descent

(SGD) optimizer was used to optimize two branches, with a

learning rate set to 1e-4. The loss criterion used was cross-entropy

loss. The two branches were trained for 20 epochs on a GeForce

GTX 1060Ti GPU, with a batch size value of 16. A summary

table listing the parameters and criteria used for all algorithms is

presented in Table 2 for easy comparison.

4.3. Experimental results and analysis

4.3.1. Single-dataset experiment and analysis
In a single-dataset comparison experiment, the proposed

method was compared with the conventional method and the

TABLE 7 Ablation results for two enhancement modules.

Algorithm FEI HNU (MDB1)

ACER (%) EER (%) ACC (%) ACER (%) EER (%) ACC (%)

TSCNN 0.67 0.32 98.93 1.95 0.88 98.26

TSCNN+SEM 0.33 0.20 99.57 1.91 0.88 98.46

PELF (ours) 0.08 0.12 99.83 1.59 0.84 98.70

The bold values represent the best results.
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deep learning-based method for verifying the effectiveness of the

method. Table 3 indicates the quantitative results of the presented

approach with nine classical approaches.

The proposed approach indicates that the performance of the

EER was 0.12% with BPCER = 0.66% @APCER=5%, and BPCER

= 0.17% @APCER= 10% on FEI. On HNU (MDB1), the EER

is 0.84% with BPCER = 0.36% @APCER = 5%, and BPCER =

0.18% @APCER = 10%. Excellent results were obtained on both

FEI and HNU (MDB1) datasets. The accuracy of the conventional

method is low, and it exhibits considerable limitations as the feature

extraction method. However, the effect of deep learning is superior

to that of conventional methods, which indicates that deep learning

technology exhibits obvious advantages. The performance of the

proposed approach was verified on datasets with various pixel

fusion factors, and Table 4 indicates relevant results.

For the presented approach, the EER was 0.88% on HNU

(FaceMDB2), the EER was 1.06% on HNU (FaceMDB3), and the

EER was 0.77% on HNU (FaceMDB3). Compared with nine MAD

technologies, the proposed approach achieved excellent detection

results on datasets with various pixel fusion factors. Under various

pixel fusion and position fusion factors, the proposed approach was

still robust.

4.3.2. Cross-dataset experiments and analysis
The cross-dataset test was conducted for verifying the

generalization ability of the approach. HNU (MDB1) and FEI

datasets were used in the study. The common feature of these two

datasets is that the position fusion factor and pixel fusion factor

were fixed at 0.5. Table 5 indicates relevant results.

In the cross-dataset test, the overall effect was reduced

compared with the single-dataset experiment because the various

methods of obtaining images from different datasets or races of

individuals as materials. When HNU (MDB1) was used as the

training set and tested on FEI, the EER value of presented approach

was 3.26%. By contrast, when using FEI as the training set and

HNU (MDB1) test, the EER value of proposed approach was

10.22%. Furthermore, the proposed approach can achieve excellent

generalization ability.

4.3.3. Ablation experiment and analysis
(1) Ablation experiment for the two-stream network

Ablation experiments were conducted to verify the effectiveness

of the designed two-stream convolution neural network. Table 6

indicates relevant results.

The effect of the high-frequency stream is superior than

the RGB stream under the same conditions. This phenomenon

indicates that distinguishing between real and the morphed face

in the RGB color space is difficult, whereas the high-frequency

stream can directly identify the difference between two categories

of images. On the FEI dataset, the ACER of the TSCNN was

0.67%, the EER was 0.32%, and the ACC was 98.93%. On the

HNU (MDB1) dataset, ACER was 1.95%, EER was 0.88%, and

ACC was 98.26%. On the two datasets, the performance of

the two-branch network achieved performance superior to that

of the single-branch network. This phenomenon indicates that

the fusion of the two branches contributes to a comprehensive

feature representation.

(2) The ablation experiment for self-enhancement module and

interactive-enhancement module

To highlight the contribution of self-enhancement module

(SEM) and interactive- enhancement module (IEM) to the

detection system, an ablation study was conducted on two datasets,

and the relevant results are presented in Table 7.

After introducing the designed self-enhancement and

interactive-enhancement modules, on the FEI dataset, the ACER

was 0.08%, the EER was 0.12%, and the ACC was 99.83%. On the

HNU (MDB1) dataset, ACER was 1.59%, EER was 0.84%, and ACC

was 98.70%. The SEM enhanced the characteristics of each flow,

whereas the interactive-enhancement module can complement

each other to enhance the feature interaction of dual flows.

Therefore, performance on both modules improved. Through

this progressive feature enhancement process, high-frequency

information and RGB information can be effectively used to subtle

morphing traces.

5. Discussion

The findings of our experiments demonstrated the effectiveness

of the proposedmethod in detecting morphing attacks. Specifically,

we compared the proposed method with methods on both

single and cross-dataset evaluations, and the results revealed that

the method achieved lower equal error rate. These results are

particularly significant given the increasing prevalence ofmorphing

attacks in various security-sensitive applications.

Furthermore, ablation experiments on the dataset

demonstrated the critical importance of incorporating high-

frequency features and a progressive enhancement learning

framework into the detection process. The use of high-frequency

features and a progressive enhancement learning framework based

on two-stream networks considerably improved the performance

of the model. High-frequency features are crucial in distinguishing

between morphed and authentic images, as they can capture subtle

differences that may not be visible to the naked eye. Moreover, the

progressive enhancement learning framework enables the model

to learn more discriminative features.

6. Conclusion

Morphed face detection is critical for mitigating illegal

activities. Based on the conventional deep learning binary

classification, a novel detection framework based on high-

frequency features and progressive enhanced two-branch network

structure was proposed. RGB stream and high-frequency

information stream were used to simultaneously detect morphed

faces and enhance the feature interaction of two streams by

using the SEM and IEM. The robustness and generalization

of the approach were verified on HNU and FEI datasets. In

the future, high-frequency features and a progressive enhanced

two-stream network can be used for detecting differential

morphing attacks.
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