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Strip steel surface defect
detection based on lightweight
YOLOv5

Yongping Zhang*, Sijie Shen and Sen Xu

School of Information Engineering, Yancheng Institute of Technology, Yancheng, China

Deep learning-based methods for detecting surface defects on strip steel have

advanced detection capabilities, but there are still problems of target loss,

false alarms, large computation, and imbalance between detection accuracy

and detection speed. In order to achieve a good balance between detection

accuracy and speed, a lightweight YOLOv5 strip steel surface defect detection

algorithm based on YOLOv5s is proposed. Firstly, we introduce the e�cient

lightweight convolutional layer called GSConv. The Slim Neck, designed based

on GSConv, replaces the original algorithm’s neck, reducing the number of

network parameters and improving detection speed. Secondly, we incorporate

SimAM, a non-parametric attention mechanism, into the improved neck to

enhance detection accuracy. Finally, we utilize the SIoU function as the regression

prediction loss instead of the original CIoU to address the issue of slow

convergence and improve e�ciency. According to experimental findings, the

YOLOv5-GSS algorithm outperforms the YOLOv5 method by 2.9% on the NEU-

DET dataset and achieves an average accuracy (mAP) of 83.8% with a detection

speed (FPS) of 100Hz, which is 3.8Hz quicker than the YOLOv5 algorithm.

The proposed model outperforms existing approaches and is more useful,

demonstrating the e�cacy of the optimization strategy.
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1. Introduction

Strip steel is a crucial component in domestic construction. Due to the influence of

the production process and external environmental factors, strip steel inevitably develops

defects such as scratches, cracks, and pitting during processing (Zhu et al., 2023). These faulty

strip steel products are subsequently sold and used in the market, posing serious dangers to

worker safety and building site security. Therefore, it is crucial to research fast and accurate

methods for detecting surface defects in strip steel (Yeung and Lam, 2022).

Traditional defect detection methods rely on manual visual inspection, which is

inefficient, costly, poses safety hazards in the inspection environment, and lacks reliability

(Damacharla et al., 2021). In particular situations, approaches for defect detection based

on machine vision can produce satisfactory results. However, when applied to the complex

industrial scenes, various environmental and lighting effects can lead to a decline in the

accuracy of the detection results. Research on strip steel surface defect detection techniques

based on deep learning has progressively entered the mainstream in recent years due to the

rapid advancement of deep learning technology (Kou et al., 2021).

Deep learning-based target detection algorithms can be classified into two categories:

the first category consists of two-stage detection algorithms, such as R-CNN (Girshick et al.,

2014) and Faster R-CNN (Ren et al., 2016). He et al. (2017) implemented a multiscale

fusion end-to-end network for inspecting strip surfaces and created the NET-DET dataset

for strip surface defect detection. Zhao et al. (2021) improved the Faster R-CNN network

by replacing part of the conventional convolutional network with a variable convolutional

network, resulting in a 0.128 improvement in detection accuracy. The second category

comprises single-stage detection algorithms, including the YOLO (Redmon et al., 2016)
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and SSD (Kong et al., 2017) algorithms. Kou et al. (2021) enhanced

the YOLOv3 model by incorporating anchorless techniques for

detecting targets with significant scale variations, and the dense

structure of the algorithm led to substantial improvements in

handling high-resolution data. Li et al. (2020) improved YOLOv3

by employing a weighted K-means clustering algorithm and

introducing a large-scale detection layer, achieving an 80% increase

in detection accuracy. Mi et al. (2023) proposed a novel data

augmentationmethod based onYOLOv4 to enhance the robustness

and accuracy of the algorithm’s detection capabilities. Liu et al.

(2023) designed theMSC-DNet model, which excels in pinpointing

defects and significantly contributes to the accurate detection of

medium and large-scale defects. Fu et al. (2023) introduced amulti-

scale pooled convolutional neural network-based approach for steel

surface defect detection and classification. This method utilized

pre-trainedmodels and transfer learning techniques, which allowed

training with limited samples and improved the generalization

ability of the model. Chen et al. (2023) proposed a fast detection

network for strip surface defects called DCAM-Net, based on

deformable convolution and attention mechanism. Experimental

results on the NEU-DET dataset demonstrated an mAP of 82.6%

for this algorithm, coupled with a high detection speed of 100.2

FPS, effectively enhancing the efficiency of strip steel surface

defect detection.

Despite having increased detection capabilities, the

aforementioned techniques nevertheless run into problems

such target loss, false alarms, excessive computational demands,

and an unbalanced balance between detection precision and

speed. To strike a better balance between detection accuracy and

speed, this paper introduces YOLOv5-GSS, a lightweight strip steel

surface defect detection algorithm based on YOLOv5. The main

contributions of this paper are highlighted as follows:

• To reduce the number of parameters and the computational

burden of the model, we incorporate GSConv (Li et al.,

2022) into the neck network for lightweight enhancement.

By utilizing GSConv’s parallel computing capacity, this use

enhances the model’s computational effectiveness and speeds

up its inference process. The model can learn channel

associations thanks to GSConv, which also makes the model

more expressive and boosts detection precision.

• To enhance detection accuracy without compromising the

number of model parameters and detection speed, we

integrate SimAM (Yang et al., 2021), a non-parametric

attention mechanism, into the improved neck. SimAM

dynamically assigns weights to the feature map, enabling the

model to prioritize important features and reduce unnecessary

feature computations. This method improves detection speed

and accuracy by concentrating on pertinent data while

minimizing computing overhead.

• In YOLOv5, the CIoUmetric normalizes the distance between

the predicted bounding box and the ground truth bounding

box, but this normalization can introduce training instability

in certain scenarios. In this paper, we replace CIoU with SIoU

(Gevorgyan, 2022) because it doesn’t need to be normalized.

Improved training stability and increased model training

effectiveness are both provided by SIoU. By using SIoU instead

of CIoU, we mitigate the potential training issues caused by

normalization and achieve more stable and efficient training

of the model.

In summary, YOLOv5-GSS leverages GSConv, SimAM, and

SIoU to achieve efficient, accurate, and stable strip steel surface

defect detection while striking a balance between precision

and speed.

The remaining sections of this paper are outlined as follows.

Section 2 provides a comprehensive review of related work in the

field. Section 3 details the architecture of our proposed method.

In Section 4, we present comparative experiments and analysis to

demonstrate the outstanding performance of our model. Finally,

Section 5 concludes the paper and provides insights into future

research directions.

2. Related theories

2.1. YOLOv5 algorithm

The YOLO model, as a prominent single-stage detection

algorithm, is known for its fast operation and low memory

consumption. YOLOv5 builds upon the strengths of the original

YOLO model while incorporating state-of-the-art computer vision

techniques to enhance detection accuracy and training speed.

The YOLOv5 network is composed of four main components:

Input, Backbone, Neck, and Head. The Backbone, which serves

as the feature extraction network, consists of three modules:

the CBS (basic convolutional unit) module, the C3 residual

network module, and the SPPF (spatial pyramidal pooling fusion)

module. The CBS module performs convolutional operations,

batch normalization, and activation operations. It plays a crucial

role in extracting useful features from the input data. The C3

module is responsible for feature extraction and incorporates

residual connectivity, allowing the network to learn complex

features by combining information from different layers. This

enables the network to capture and represent intricate patterns and

details. The SPPF module outputs larger and more accurate feature

representations. It utilizes spatial pyramidal pooling to capture both

fine-grained and coarse-grained features from the input feature

map. This helps improve the accuracy of the target detection task

by incorporating multi-scale contextual information. Overall, the

Backbone in YOLOv5 combines the capabilities of the CBS, C3, and

SPPF modules to extract meaningful features from the input data,

enabling accurate and efficient target detection.

The Neck component of YOLOv5 employs an FPN+PAN

structure. The Feature Pyramid Network (FPN) structure,

introduced by Lin et al. (2017), effectively captures and conveys

semantic information, leading to improved detection performance.

It achieves this by integrating feature maps from different network

layers, enabling the model to handle objects of various scales. The

Path Aggregation Network (PAN), proposed by Liu et al. (2018),

complements the FPN by introducing a bottom-up structure. It

facilitates the flow of strong localization features from lower layers

to higher layers, enhancing the localization signal and further

improving the accuracy of object detection. The combination of
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FPN and PAN in the Neck component allows the YOLOv5 model

to leverage rich and diverse feature information from multiple

scales, enabling more precise and comprehensive object detection.

The head component, often referred to as the detection head, is a

crucial element of the YOLOv5 algorithm. It performs multi-scale

target detection on the feature maps extracted by the Backbone

and Neck components. The Head utilizes these feature maps to

generate detection results, including bounding box coordinates,

class probabilities, and confidence scores. In summary, the Neck

component, with its FPN+PAN structure, enhances the feature

fusion process, while the Head component performs multi-scale

target detection based on the extracted feature maps, ultimately

providing accurate detection results in the YOLOv5 algorithm.

2.2. Lightweight convolution GSConv

Convolutional Neural Networks (CNNs) have the advantage of

being lightweight, making them suitable for running and deploying

models efficiently, especially in resource-constrained scenarios.

Several common lightweight methods and techniques used in

CNNs include:

• A pruning algorithm is employed to remove unimportant

connections within the network, thereby reducing the number

of model parameters.

• Designing lightweight network structures, such as

MobileNetV3 (Howard et al., 2019), ShuffleNetV2 (Ma

et al., 2018), EfficientNet (Tan and Le, 2019), etc., is

another approach to reduce the computation and number

of parameters in the network. These structures often

utilize techniques like Depthwise Separable Convolution

(DSC) and channel rearrangement. By isolating the

channel information from the input image during the

computation phase, DSC is helpful in lowering the number

of parameters. The feature extraction and fusion capabilities

of DSC may be compromised by this separation, though.

As a result, the detection accuracy of the model can be

significantly compromised.

• Distillation techniques are employed to train small neural

networks, such as YOLOv4-tiny (Bochkovskiy et al., 2020),

YOLOX-tiny (Ge et al., 2021), YOLOv7-tiny (Wang et al.,

2022), etc., with the goal of achieving similar performance

to the original model. By utilizing distillation, knowledge

from a larger, more complex model (the teacher model) is

transferred to a smaller, more lightweight model (the student

model). The student model is trained to mimic the behavior

and predictions of the teacher model, allowing it to achieve

comparable performance while having fewer parameters and

reduced computational requirements. Distillation techniques

enable the development of compact models that can be

deployed efficiently in resource-constrained scenarios without

sacrificing performance.

In contrast to the accuracy sacrifice observed in the

aforementioned lightweight approaches, this paper introduces the

efficient lightweight convolutional GSConv. This convolutional

technique not only reduces the number of parameters and

increases detection speed but also ensures improved detection

accuracy. Combining traditional convolution with depth-separable

convolution, GSConv applies a shuffling uniformmixing approach.

It combines the strengths of both types of convolutions to enhance

the expressive power of the network while reducing computational

complexity. Figure 1 shows the generation process of GSConv and

how it effectively and efficiently combines traditional and depth-

separable convolutions.

In GSConv, the shuffle strategy is employed to permeate

the information generated by conventional convolution into

each part of the Depthwise Separable Convolution (DSC). This

ensures that the feature information is evenly exchanged across

different channels within the DSC output, without requiring

additional complex measures. GSConv successfully makes up for

the considerable drop in detection accuracy that could happen

whenDSC is used directly by including the shuffling approach. This

approach ensures that the feature information from conventional

convolution is mixed thoroughly with the DSC output, enhancing

the model’s ability to capture meaningful features and maintaining

detection accuracy.

2.3. SimSM attention mechanism

Attention mechanisms have been shown to be effective

for feature optimization in computer vision tasks by focusing

limited computational resources on more important targets

(Lindsay, 2020). One popular attention mechanism is the

Squeeze-and-Excitation Network (SENet) (Hu et al., 2018), which

employs a one-dimensional channel-based attention module with

low computational complexity and high target optimization

efficiency. SENet has been commonly applied in various target

detection scenarios. However, its dimensionality reduction and

dimensionality increase operations can result in the loss of

potentially valuable feature information. To address this drawback,

the proposed Efficient Channel Attention (ECA) mechanism

(Wang et al., 2020) compensates for the information loss by

effectively achieving cross-channel interaction. It enhances the

ability of the model to capture relevant information across

channels. The Coordinated Attention (CA) mechanism (Hou et al.,

2021) introduces coordinates into the attention mechanism. It

calculates an attention score for each location in the feature map

based on the coordinates and uses these scores to weigh the features

at each location. This allows the network to focus on the most

relevant regions of the input image, leveraging spatial information

for better attention-based feature optimization. Furthermore,

researchers have proposed other attention mechanisms such as

GAMAttention (Liu et al., 2021a), a global attention mechanism

that spans the spatial and channel dimensions, and NAMAttention

(Liu et al., 2021b), an attentionmechanism based on normalization.

These mechanisms offer additional ways to enhance feature

optimization by considering global relationships and leveraging

normalization techniques, respectively.

Compared to channel attention modules and spatial attention

modules, which demand additional training layers with numerous

additional parameters, the SimAM attention mechanism is a
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FIGURE 1

The GSConv generation process.

FIGURE 2

Comparison of attentional mechanisms in di�erent dimensions.

straightforward, parameter-free plug-and-play module that has

advantages. SimAM applies full three-dimensional weights

to the attention mechanism, enhancing its effectiveness.

Figure 2 illustrates the comparison of SimAM with other

attention mechanisms.

The SimAM attention mechanism provides the benefit of

extrapolating 3D attention weights from the feature map without

introducing additional parameters into the original network. It

accomplishes this by establishing an energy function based on

neuroscience principles, which is employed to deduce the 3D

weights from the current neuron. Subsequently, this module refines

these neurons sequentially while preserving the original network

structure. Equation (1) represents the energy function defined

by SimAM:

et
∗ =

4(σ̂ 2 + λ)

(t − µ̂)2 + 2σ̂ 2 + 2λ
(1)

In the provided equation, µ̂ represents the mean parameter

associated with a specific location, and σ̂ 2 represents the variance

parameter of that location, µt = 1
M−1

∑M−1
i=1 xi represents the

mean of the neurons, excluding the target neuron t, within the input

feature’s single channel. Similarly, σ 2
t = 1

M−1 (xi − µt)
2 denotes the

variance of the neurons, excluding the target neuron t, within the

same channel. Here, M stands for the number of energy functions

assigned to each channel, with xi representing the target neuron and

the other neurons within the single channel of the input feature.

This equation demonstrates that a smaller value of the energy

function e∗t indicates a higher variance between the target neuron

t and the surrounding neurons.

2.4. Regression loss function

The loss function for the target detection task consists of two

components: a classification loss function and a regression loss

function. The regression loss function plays a significant role in

improving model accuracy by facilitating better localization. To

address issues such as slow convergence, low detection accuracy,

and unstable model training caused by coordinate regression loss,

the IoU Loss (Jiang et al., 2018) was introduced in the ACM2016

paper. It is defined as the negative logarithm of the intersection

over union ratio between the predicted bounding box and the

ground truth bounding box. However, IoU-based metrics have

their limitations, and subsequent advancements have been made to

improve their effectiveness. The following order of advancements

has been proposed: Generalized IoU (GIoU) (Rezatofighi et al.,

2019), Distance-IoU (DIoU) (Zheng et al., 2020), Complete-IoU

(CIoU), Enriched-IoU (EIoU) (Zhang et al., 2022), and Alpha-

IoU (αIoU) (He et al., 2021). These loss functions incorporate

variations of bounding box regression metrics. However, they

do not consider the direction of mismatch between the desired
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FIGURE 3

Graph of Angel cost.

true box and the predicted box, which can result in slow and

inefficient convergence. The introduction of SIoU (Scale-Invariant

IoU) effectively addresses this problem by considering the direction

of mismatch between the desired true box and the predicted box.

SIoU has proven to be beneficial in achieving more efficient and

stable convergence during training.

SIoU is a novel loss function that redefines the metric of penalty

by incorporating vector pinch angles prior to expected regression.

SIoU consists of four cost functions: Angel cost, Distance cost,

Shape cost, and IoU cost. The overall SIoU can be expressed as the

sum of the Distance cost, Shape cost, and IoU loss. Therefore,

total SIoU = Distance cost
(

angle + distance
)

+

Shape cost + IoU loss (2)

The expression for Angel cost is:

3 = 1− 2∗sin2(arcsin(x)−
π

4
) (3)

The curve is depicted in Figure 3.

The Distance cost is defined by the following equation:

1 =
∑

t=x,y

(1− e−γpt) (4)

In the formula, we have the following definitions: px =

( b
gt
cx−bcx
cw

)
2

, py = (
b
gt
cy−bcy
ch

)
2

, γ = 2 − 3. It can be observed that α

determines the magnitude of the contribution of the Distance cost,

while γ assigns a time-preferred distance value that increases with

the angle.

The Shape cost is defined by the following equation:

� =
∑

t=w,h

(1− e−ωt)
θ

(5)

In the formula, w and h indicate the width and height of the

detection frame, and θ controls the degree of attention to shape loss.

The final defining equation for SIoU is as follows:

Lbox = 1− IoU +
1 + �

2
(6)

3. Lightweight YOLOv5 algorithm
design

3.1. Network structure of the YOLOv5-GSS

The advantage of YOLOv5 is that it successfully strikes a

balance between the quantity of network parameters and detection

precision. It still has issues with low detection accuracy and

slow detection speed, though. This study offers the YOLOv5-GSS

lightweight algorithm to overcome these problems. It optimizes

YOLOv5 by incorporating lightweight convolution, attention

module, and regression loss function. The overall architecture of

the YOLOv5-GSS algorithm comprises four main parts, as depicted

in Figure 4.

Unlike YOLOv5, YOLOv5-GSS utilizes the lightweight

feature fusion network, Slim Neck, and incorporates an attention

mechanism. Furthermore, the regression loss function is replaced

with SIoU. Overall, YOLOv5-GSS distinguishes itself from

YOLOv5 by optimizing the model architecture with these

enhancements. These improvements collectively reduce the

network’s parameter count while significantly enhancing detection

speed and efficiency, making YOLOv5-GSS a superior choice for

strip steel surface defect detection.

3.2. Slim neck construction

To ensure efficient and easy deployment of the algorithm for

real-time industrial inspection of strip surface defects, YOLOv5-

GSS incorporates the use of GSConv to redesign the neck,

referred to as the Slim Neck structure in this paper. The Slim

Neck structure, as illustrated in Figure 4, is designed to reduce

computational requirements and the number of parameters in

the algorithm. This optimization results in increased detection

speed without compromising detection accuracy. By implementing

the Slim Neck structure and leveraging the benefits of GSConv,

YOLOv5-GSS aims to strike a balance between accuracy and speed,

making it suitable for real-time strip surface defect detection in

industrial settings.

The base structure block of the Slim Neck, known as

VoV-GSCSP, is illustrated in Figure 5a. It is a lightweight 3D

convolutional structure that incorporates the GSConv and

CSP structures. The GSCSP, represented as the GSbottleneck

in Figure 5b, serves as the core component of the VoV-

GSCSP. It consists of multiple CSP connections, a 3 × 3

convolutional layer, and the GSConv. The most significant

distinction between GSCSP and the residual network

module in YOLOv5 is the utilization of the GSConv

layer instead of the traditional 3 × 3 convolutional layer.

The GSConv layer divides the convolutional kernel into
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FIGURE 4

Diagram of the YOLOv5-GSS framework.

FIGURE 5

Gsbottleneck and VoV-GSCSP structure. (a) Depicts the architecture of VoV-GSCSP, while (b) represents the fundamental module GSbottleneck that

constitutes VoV-GSCSP.
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several groups and performs convolutional operations on

each group.

The specific steps involved in the VoV-GSCSP block are

as follows:

• First, feature extraction of the input feature map is performed

using a 3× 3 convolutional layer.

• Second, the feature map is partitioned into groups, with each

group containing a specific number of channels.

• Third, spatial channel grouping convolution is applied to each

group, reducing the number of channels.

• Fourth, the results from each group are concatenated to obtain

a feature map that is connected across the stages.

• Fifth, feature fusion and dimensionality reduction are

performed on the feature map using a 1× 1 GSConv layer.

• Sixth, the feature map is added to the input feature map

through a residual connection.

The advantages of the VoV-GSCSP structure include:

• First, the feature map is partitioned into groups, and

independent spatial channel grouping convolution operations

are performed on each group. This approach effectively

reduces computation and the number of parameters.

• Second, the adoption of cross-stage partial concatenation

helps preserve the richness and diversity of features, leading

to improved accuracy.

YOLOv5-GSS incorporates GSConv in the neck to address

feature mapping with reduced redundant repetitive information

and without compression. This is achieved by utilizing grouped

convolution, where the input feature mapping is divided into

multiple smaller groups, and each group performs the convolution

operation independently. As a result, the convolution operation

avoids redundant computation, as each group only processes its

own inputs without considering information from other groups.

This approach effectively reduces the computational complexity

and inference time of the network model while maintaining

model accuracy. However, it’s important to note that GSConv

is not used throughout the entire network in YOLOv5-GSS.

Utilizing GSConv at all stages of the model would increase the

number of layers in the network, potentially leading to higher

training errors and significantly extending the network training

time. The specific validation of this approach is presented in

the experimental Section 4.4.1 to ensure clarity and readability

for reviewers.

3.3. Introduction of the SimAM attention
mechanism

To enhance the detection accuracy, the parameter-free

SimAM is incorporated into the Slim Neck module of

YOLOv5-GSS (refer to the Slim Neck module in Figure 4).

It not only computes the 3D weights between features but

also accelerates the calculation and fusion of weights. The

steps for weighted calculation using the SimAM attention

mechanism in the Slim Neck section of YOLOv5-GSS are

as follows:

Step 1: A set of 1 × 1 convolutional layers is employed to

upsample or downsample the feature maps from various layers

of the backbone network to a consistent resolution. The resulting

feature maps are denoted as F = {F1, F2, ..., FN}, where Fi ∈

R
(C×H×W) represents the feature map of layer i.

Step 2: For each feature map Fi and Fj, three tensors are

calculated: Qi (query), Kj (key), and Vj (value).

Step 3: The attention score Si,j between the i and j feature maps

is calculated as follows:

Si,j = Qi × Kj (7)

Step 4: The attention weight ai of the i feature map is calculated

using the following formula:

ai = softmax(
∑

j

Si,j) (8)

where softmax is a function.

Step 5: The weighted feature map for the ith feature map is

calculated by:

F
′

i =
∑

j

(aj × Vj) (9)

where aj is the attention weight of the jth feature map.

Step 6: The weighted feature map F
′

i is combined with the

original feature map to obtain the output features Fs.

In summary, the incorporation of the SimAM attention

mechanism module enhances the feature fusion capability of the

network without increasing the number of network parameters.

This ensures efficient computational power of the network while

effectively improving the detection accuracy of the algorithm.

3.4. Regression loss function

The purpose of the loss function is to minimize the

discrepancy between the predictions of the model and the

true target position. In YOLOv5-GSS, the loss function

comprises three components: regression loss, confidence

loss, and classification loss. After replacing the regression

loss function with SIoU, the complete loss function of the

algorithm is:

Lobject,Loss = Lbox,Loss + Lconf ,Loss + Lclass,Loss (10)

where: Lconf ,Loss represents the confidence loss, and Lclass,Loss
represents the classification loss.
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Both confidence loss and classification loss are

calculated using a binary cross-entropy loss function.

The expression for the cross-entropy loss function is

shown below:

C = −
1

n

∑

x

[ylna+ (1− y) ln(1− a)] (11)

where x represents the sample, y represents the actual label

(y=0 or 1), a represents the predicted output, expressed as the

probability that the predicted sample belongs to category 1,

and n represents the total number of samples. The term ylna

indicates that the model predicts a loss in category 1 when the

sample actually belongs to category 1, while (1-y)ln(1-a) indicates

that the model predicts a loss in category 0 when the sample

actually belongs to category 0. The sum of the loss functions C

is the sum of the losses of all samples. The cross-entropy loss

function measures the difference between the predicted probability

distribution and the true probability of a class. By minimizing

the classification loss, the ability of network to accurately classify

objects in an image can be improved, thereby enhancing overall

detection performance.

In summary, the loss function algorithm

for YOLOv5-GSS can be summarized

as Algorithm 1:

4. Analysis of experimental results

Four versions of the YOLOv5 are available in different sizes:

YOLOv5s (smallest), YOLOv5m (medium), YOLOv5l (large), and

YOLOv5x (extra-large). In this paper, the base model chosen

for improvement and comparison is YOLOv5s, which is the

smallest variant. The experiments conducted in this study are

described below.

4.1. Experimental environment

The hardware setup for the experiments in this paper includes

an Intel Core i5 12490F CPU with 16GB of RAM and an NVIDIA

GeForce RTX 3060 GPUwith 12GB of videomemory. The software

environment utilized is PyTorch, a deep learning framework for

Windows, with Python version 3.8 and PyTorch version 1.7.1. The

experimental settings and parameter configurations are showen in

Table 1. The provided table outlines the parameter settings used for

the experimental conditions. A batch size of 16 was employed, and

training was conducted over 300 epochs. The momentum factor

was set at 0.937, while the initial learning rate was initialized to

0.001. Threshold values for Intersection over Union (IoU) were

chosen at 0.5, and weight decay was set to 0.0005. These parameter

Input:

Output of the network(prediction box category probability distribution), Truth Box Label, Number of categories,

Threshold of IoU, Weighting parameters lambdacls, lambdaloc
Output:

Classification Loss, Regression Loss

The process of implementation:

Step 1: Initialize the classification loss Lcls, and regression loss Lloc to 0.

Step 2: For each prediction box discriminate:

(1) Calculate the IoU value of this prediction box and all truth box, find the truth box with the largest IoU and consider it as the

truth box matched by this prediction box.

(2) If the IoU value of a predicted box and all truth box are less than the set threshold, they are considered as background.

Step 3: Calculate the classification loss for each prediction box:

(1) Calculate the probability distribution for each category it belongs to and transform it into a probability distribution using

the softmax function

(2) Calculate the probability distribution of the truth box genus it matches with each category, treating it as a true label.

(3) The probability distributions of the true and predicted labels are used to calculate the classification loss using a cross-entropy

function, weighted and accumulated into Lcls.

Step 4: The regression loss is calculated for each prediction frame:

(1) Converts its coordinate and dimensional information to that of the truth box it matches.

(2) Calculate its coordinate and dimensional errors (losses) from the truth box, use SIoU to calculate the regression losses, weight

them and accumulate them in Lloc.

Step 5: For the whole batch of prediction box, the average of Lcls and Lloc are calculated and multiplied by the weight parameter

lambda respectively to obtain the final classification loss and regression loss.

Step 6: Classification loss and regression loss are added to the total loss and the model parameters are updated using the back

propagation algorithm to minimize the total loss.

Step 7: return classification loss and regression loss.

Algorithm 1. Loss function for YOLOv5-GSS
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TABLE 1 Experimental parameters.

Condition parameters Parameter settings

Batch size 16

Epoch 300

Momentum factor 0.937

Initial learning rate 0.001

Threshold values for IoU 0.5

Weight decay 0.0005

choices collectively define the training configuration utilized for

the experiments.

4.2. Experimental data set

The NEU-DET (He et al., 2020) dataset, developed by Professor

Song Kechen’s team at Northeastern University, was selected for

this paper. The dataset contains 1,800 grayscale images of hot-

rolled strip steel, capturing six common surface defects: rolling

swarf (Rs), plaque (Pa), cracking (Cr), pockmarking (Ps), inclusions

(In), and scratches (Sc). Each defect type consists of 300 samples,

resulting in a total of six classes. The images have a raw resolution

of 200 × 200 pixels. It is worth noting that within each class,

there can be significant variations in appearance, and there may

be similarities between different classes, which poses challenges for

detection tasks. To facilitate the experiments, the dataset provides

annotations indicating the class and location of each defect in

the images. Prior to conducting the experiments, the dataset was

divided into a training set and a validation set, with a ratio of 9:1.

4.3. Evaluation indicators

To visually and comprehensively evaluate the performance

of the improved algorithm and compare it with other detection

methods, various evaluation metrics were employed, including

Average Precision (AP) for single-class accuracy, mean Average

Precision (mAP) for multi-class accuracy, precision (P), recall

(R), Frames Per Second (FPS) for detection speed, Parameters

(Params), and Giga-Floating Point Operations (GFLOPs) to assess

computational space and time complexity. Precision (P) is defined

as the ratio of true positive predictions to the total number of

predicted positives, while recall (R) is the ratio of true positive

predictions to the total number of actual positives. The expressions

for precision and recall are as follows:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

Where TP denotes the number of true positive predictions, FP

denotes the number of false positive predictions, and FN denotes

TABLE 2 Results of ablation experiment.

Improve mAP/% Params GFLOPs FPS

YOLOv5 80.9 7026307 15.8 96.2

YOLOv5-G 81.5 5849187 12.7 104

YOLOv5-GS 82.7 5849187 12.7 103

YOLOv5-GSS 83.8 5849187 12.7 100

YOLOv5+GSConv

(all)+SimAM+SIoU

81.2 5085907 8.8 92.6

the number of false negative predictions. The Precision-Recall (P-

R) curve is plotted using the values of precision and recall, and

the area under the curve represents the Average Precision (AP), as

shown in Equation (13):

AP =

∫ 1

0
p(r)dr (14)

Where p and r denote the precision and recall rates, respectively.

Themean Average Precision (mAP) is obtained by dividing the sum

of the Average Precisions (AP) for each category by the number of

categories C, as shown in Equation (14):

mAP =

∑C
i=1 APi

C
(15)

4.4. Comparison of experimental results

4.4.1. Ablation experiments
To verify the superiority of YOLOv5-GSS over YOLOv5,

ablation experiments were conducted on the experimental dataset

using the controlled variable method. The performance of

YOLOv5-GSS with different modules was analyzed, and the

validation results for each module are presented in Table 2.

• The YOLOv5 with Silm Neck block is called YOLOV5-G.

• The YOLOv5 with Silm Neck block and SimAM block is

called YOLOV5-GS.

• The YOLOv5 with Silm Neck block, SimAM block and SIoU

is called YOLOV5-GSS.

Table 2 demonstrates that the addition of each module resulted

in improved mAP compared to the original algorithm. Firstly,

replacing normal convolution with GSConv and using the Slim

Neck structure designed on top of GSConv improved the neck of

the network model. This modification reduced the computational

effort (GFLOPs) from 15.8 to 12.7, increased the detection speed

(FPS) by 7.8, and improved mAP by 0.6%. These results validate

that GSConv, as a lightweight convolution, contributed to the

improvement in detection speed. Secondly, the addition of the

SimAM attention mechanism before the residual module in the

Slim Neck structure further improved mAP by 0.8% without

increasing the model parameters. This confirms the effectiveness of

incorporating the attention mechanism. Lastly, using SIoU as the
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FIGURE 6

Comparison of YOLOv5 and YOLOv5-GSS. The figure includes the detection accuracy data for each defect class before and after model

improvement, as well as a more visually informative bar chart for comparison.

regression loss function without introducing additional parameters

increased the detection accuracy (mAP) by 1.1%.

After the overall improvement, both the detection accuracy

and speed of the algorithm have significantly improved. The

analysis reveals that Slim Neck plays a crucial role in achieving

these improvements. Slim Neck effectively lowers computation

and parameter count by lowering the amount of feature map

channels, which increases model operation speed. Furthermore,

the reduction in feature map channels enhances the model’s

ability to learn target relationships and features, thereby improving

its expressiveness and ultimately boosting detection accuracy.

By enabling the model to concentrate more on the properties

unique to small targets—which often exhibit fewer features—

Slim Neck specifically aids in improving the detection of small

targets. Additionally, SlimNeck facilitates feature reuse by reducing

the number of channels between the feature extractor and the

detection network. By reusing features, the model becomes more

expressive and has better detecting abilities. In contrast, the original

YOLOv5 architecture had separate feature extraction and detection

networks, which limited feature reuse.

The SimAM attention mechanism plays a vital role in

enhancing the model’s ability to understand the similarities and

differences between different objects, leading to improved detection

accuracy. This is accomplished by applying weights to various

feature maps using self-attention, accentuating features that are

important for the detection task and attenuating irrelevant features.

This weighting operation enhances the expressiveness of the

model without introducing additional computational complexity.

Additionally, the SimAM attention mechanism incorporates

channel reduction techniques to decrease the dimensionality of the

feature map. Model compression is made possible by this reduction

in dimensionality, which also lowers computing costs and storage

needs. This improves runtime efficiency. Consequently, the SimAM

attention mechanism contributes to increased detection speed

without sacrificing computational efficiency.

Surface defects on steel strips can come in various shapes and

sizes. Some defects may be small, while others could be larger.

SIOU takes into account the scale of the objects, which means

it provides a fair evaluation of detection performance regardless

of the object’s size. This scale invariance is crucial for accurately

assessing the quality of detections across the entire range of defect

sizes. This attribute is particularly beneficial for detecting surface

defects on steel strips, where objects can exhibit diverse scales and

challenging localization conditions. As a result, using SIOU as the

localization loss can lead to an observed improvement in mAP and

overall detection accuracy. In summary, the combined technical

improvements, including GSConv, SimAM, and SIoU, effectively

enhance the detection speed and accuracy of the algorithm. These

improvements are achieved by reducing computational effort,

increasing the expressiveness of the model, and improving the

performance of the loss function.

The validation results in Table 2 also demonstrate that GSConv

is most effective when applied to the neck structure of the

network. While maintaining all other factors constant, replacing

every convolution method in the network with GSConv results

in a considerable decrease in detection time without considerably

increasing detection accuracy. The reason behind this observation

is that while GSConv reduces the computation by decomposing

convolution operations, it also introduces additional group

convolution operations. This implies that more multiplication and

addition operations are required in each convolutional layer, which

can potentially increase the overall computation. Additionally,

processing each channel using group convolution may produce

more intricatememory access patterns. Regular convolution, on the

other hand, processes each channel separately. Additionally, using

GSConv in the backbone network may negatively affect memory

bandwidth and caching effects, slowing down computation. These

findings validate the effectiveness of the specific improvements

proposed in this paper.

Figure 6 presents a comparison between the YOLOv5-

GSS and YOLOv5 algorithms for each category. The figure

clearly illustrates the comparison of detection results across

different categories. It can be observed that the accuracy

has significantly improved for categories such as Cr and Rs.

Although a modest decline in accuracy is seen for two other

categories, there is a substantial improvement in In and Pa.

This decline does not, however, prevent the overall rise in

mAP.
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FIGURE 7

Loss curve for YOLOv5 and YOLOv5-GSS. The black curve represents the loss curve of YOLOv5-GSS, while the red curve represents the loss curve of

YOLOv5. The x-axis corresponds to epochs, and the y-axis represents the value of the loss function.

Figure 7 depict the regression loss of YOLOv5 and YOLOv5-

GSS. The regression loss curve is commonly employed to monitor

the performance of object detection models during training. It

signifies the disparity between the accuracy of the model’s predicted

object bounding box positions and the actual annotations. A

lower regression loss curve indicates more accurate bounding

box predictions by the model. Throughout the training process,

the model continually adjusts its parameters using optimization

algorithms to minimize the regression loss. The loss curve

gradually descends as training progresses, eventually reaching

convergence or a stable state. In cases of insufficient training,

the loss curve may exhibit unstable fluctuations or a decelerated

descent rate. In the graph, the x-axis denotes the number of

training iterations or epochs, while the y-axis represents the

regression loss values. Observing the regression loss curve aids

in gauging the model’s training progress and identifying issues

like overfitting or underfitting. Since the network tends to

converge prematurely before reaching 300 epochs during training,

we have opted to plot the loss function graph for the first

250 epochs. From the graph, it is evident that the regression

loss curve of YOLOv5-GSS descends more rapidly, indicating

the clear advantage of utilizing SIOU as the regression loss

function.

Figure 8A illustrates six classes of original images from the

NEU-DET dataset. The images are presented from left to right

in the following order: Cr, In, Pa, Ps, Rs, Sc. Figures 8B, C

display the corresponding detection results before and after

the improvement, respectively. It is evident that YOLOv5-GSS

successfully detects all types of defects that were previously

undetected by YOLOv5.

4.4.2. Comparison of mainstream attention
mechanisms

To validate the effectiveness of the SimAM attention

mechanism integrated into the fine neck structure of YOLOv5-

GSS, its detection performance is compared with other popular

attention mechanisms.

Firstly, it was confirmed that the attention mechanism

performed best when added to the neck of the network. Figure 9

displays the detection precision-recall (P-R) curves for adding

the attention mechanism to the backbone, neck, and detection

head, respectively.

The closer the line is to 1 in the P-R plot, the better the detection

performance. It is evident from the three plots that the P-R curve in

plot (b) converges closer to 1 compared to the other two plots. This

suggests that the neck of the network is where the SimAM attention

mechanism would work best. SimAM was contrasted with well-

known attention mechanisms including SE (Hu et al., 2018), CA

(Hou et al., 2021), ECA (Wang et al., 2020), GAM (Liu et al., 2021a),

and NAM (Liu et al., 2021b) in order to demonstrate the benefits

of including it in the neck of the network. The results in Table 3

demonstrate that, except for the CA (Hou et al., 2021) attention

mechanism, all other attentionmechanisms exhibit varying degrees

of improvement in the network’s detection accuracy. Among

them, ECA (Wang et al., 2020) shows the most significant

improvement, followed by GAMAttention (Liu et al., 2021a) and

NAMAttention (Liu et al., 2021b). Comparing these three attention

mechanisms, the SimAM attention mechanism demonstrates less

pronounced improvement in algorithm accuracy. However, several

other attention mechanisms have varying impacts on the model’s

detection speed, except for the SimAM attention mechanism.
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FIGURE 8

Algorithm detection e�ect. (A) Depicts the original strip steel defect detection image, while (B, C) illustrate the detection results of YOLOv5 before

and after improvement, respectively. The colored boxes indicate the specific detected defects.

Considering the above results, the SimAM attention mechanism

stands out due to its combination of a high mAP score, relatively

high FPS, and consistent AP% performance across various defect

categories. This suggests that SimAM effectively enhances the

ability of YOLOv5 to capture and highlight the distinctive features

of steel strip surface defects, leading to improved detection

accuracy. The choice of attention mechanism often depends on

striking a balance between accuracy and efficiency. In this case,

SimAM provides a well-rounded improvement in both aspects,

making it a favorable option for enhancing defect detection

in YOLOv5.

4.4.3. Comparison with mainstream target
detection performance algorithms

To validate the superiority of the YOLOv5-GSS algorithm in

terms of detection accuracy and speed, it was compared with

other target detection algorithms using the NEU-DET dataset.

Firstly, as a lightweight network, YOLOv5-GSS was compared with

MobileNetV3 (Howard et al., 2019), ShuffleNetV2 (Ma et al., 2018),

YOLOv4-tiny (Bochkovskiy et al., 2020), YOLOX-tiny (Ge et al.,

2021), and YOLOv7-tiny (Wang et al., 2022) networks. The results

of these comparisons are presented in Tables 4, 5.

Lighter variations of YOLOv4, YOLOv7, and YOLOX are

known as YOLOv4-tiny (Bochkovskiy et al., 2020), YOLOv7-

tiny (Wang et al., 2022), and YOLOX-tiny (Ge et al., 2021),

respectively. MobileNetV3 (Howard et al., 2019) is a lightweight

and efficient convolutional neural network architecture, while

ShuffleNetV2 (Ma et al., 2018) is a lightweight neural network

proposed by the Kuangsi team. The results in Tables 4 demonstrate

that YOLOv5-GSS has a clear advantage in detection speed over

other lightweight networks and is only slower than YOLOv4-

tiny (Bochkovskiy et al., 2020). However, it is important to note

that YOLOv4-tiny sacrifices more detection accuracy to achieve

this speed advantage. During the experiments, it was observed

that the combination of MobileNetV3 (Howard et al., 2019) and

YOLOv5 reduced the computational load but also decreased the

computation speed. This mismatch can be attributable to the

variable computational resource requirements for the detection

task across different datasets. The NEU-DET (He et al., 2020)

dataset, with its multiple categories and requirement for high

detection accuracy, necessitates a greater capacity for feature

representation. However, MobileNetV3 (Howard et al., 2019)

as the backbone network may not provide sufficient feature

representation capacity, resulting in a decrease in computation

speed. YOLOv5-GSS appears as the better option for strip steel

surface defect identification when the trade-off between detection

accuracy and speed is taken into account since it strikes a

compromise between the two factors.

A comparison of YOLOv5-GSS with mainstream target

detection algorithms is presented in Table 5.

We compared YOLOv5-GSS with Li et al. (2020) and Ma et al.

(2022), as well as with YOLOv8, YOLOv7, SSD, and Mask R-CNN

(He et al., 2017).

Table 5 provides a comparative evaluation of various

object detection models based on several key performance

metrics, including computational complexity (GFLOP),

inference speed (FPS), mean average precision (mAP),

and average precision per class (AP). These metrics offer

a clear insight into the characteristics of each model as

well as the trade-off between computational efficiency and

accuracy.

To verify the significant differences in performance between

YOLOv5-GSS and other algorithms, a one-way analysis of variance

(ANOVA) was conducted to compare the performance of the

algorithms. The F-statistic is employed to assess the ratio of

between-group variability (SSB) to within-group variability (SSW),

where a larger F-statistic suggests a greater contribution of
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FIGURE 9

P-R curves for adding attention mechanisms to di�erent structures of the network. (A) SimAM in backbone. (B) SimAM in neck. (C) SimAMin head.

TABLE 3 Comparison of di�erent attention mechanisms.

Attention mAP% FPS AP%

Cr In Pa Ps Rs Sc

SimAM 81.6 105.4 59.6 87.1 89.2 87.4 68.5 98.0

SE (Hu et al., 2018) 81.4 86.2 60.4 88.8 90.3 86 65.9 97.1

CA (Hou et al., 2021) 80.9 58.5 61.3 87.0 92.5 88.9 60.6 95

ECA (Wang et al., 2020) 82.8 68.0 68.8 87.9 92.2 84.9 65.1 97.7

GAM; Liu et al. (2021a) 82.1 49.8 62.4 87.4 91.4 89.6 64.5 97.5

NAM; Liu et al. (2021b) 81.8 70.4 66.9 86.3 91.0 88.4 60.2 97.7

None 80.9 96.2 58.7 85.9 90.7 87.2 65.5 97.7

between-group variability to the overall variability. The P-value

serves as an indicator of the statistical significance of the test.

The calculation of between-group variability is given by:

SSB = n

k
∑

i=1

(Xi − X)
2

(16)

where Xi represents the mean of the i-th group and X denotes the

overall mean.

The calculation of within-group variability is represented by:

SSW =

k
∑

i=1

n
∑

j=1

(Xij − Xi)
2

(17)

whereXij signifies the j-th value of the i-th group and Xi is the mean

of the i-th group.

Consequently, the F-statistic is computed as the ratio of SSB

divided by the degrees of freedom between groups (k−1) to SSW

divided by the degrees of freedom within groups (nk–k):

F =
SSB/(k− 1)

SSW/(nk = k)
(18)

In the context of ANOVA, the null hypothesis assumes equal

group means. Through the calculation of the F-statistic, the

associated P-value is obtained. Specifically, the P-value is the

minimum of two values:

The tail area of the observed probability distribution of the F-

statistic under the assumption of the null hypothesis. This involves

looking up critical values or utilizing probability density functions

for specific distributions.

The area in the rejection region of the null hypothesis’s

probability distribution at a given significance level (typically 0.05).

The ANOVA test results in Table 5 yielded an F-value of

23.91 and a P-value of 0.00000000000444, which is significantly

smaller than 0.05. The substantial F-value and exceedingly small

P-value suggest a statistically significant difference. Consequently,

the performance indicators of different models exhibit significant

variation. It is evident that there exists a noteworthy distinction

between YOLOv5-GSS and other algorithms, underscoring the

research significance of the outcomes presented in Table 5.

Improvement models of object detection algorithms in Li

et al. (2020) and Ma et al. (2022) demonstrate better detection

accuracy and speed. YOLOv8 boasts relatively lower GFLOPs,

higher FPS, and a commendable mAP, positioning it as an efficient

and accurate choice. In comparison to YOLOv8, YOLOv7 exhibits
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TABLE 4 Comparison of the detection speed and accuracy of YOLOv5-GSS with other lightweight networks.

Model GFLOPs FPS mAP% AP

Cr In Pa Ps Rs Sc

Mobilenetv3 (Howard

et al., 2019)-YOLOv5

6.40 73.0 80.10 46.3 83.0 95.0 86.3 75.2 94.8

Shuffenetv2 (Ma et al.,

2018)-YOLOv5

8.00 90.1 79.30 51.0 87.5 95.0 77.5 70.5 94.5

YOLOv4-tiny

(Bochkovskiy et al.,

2020)

6.96 145.1 63.60 29.0 80.0 93.0 69.0 44.0 66.0

YOLOX-tiny (Ge et al.,

2021)

15.36 60.2 76.96 32.6 81.6 93.0 84.6 76.1 97.3

YOLOv7-tiny (Wang

et al., 2022)

13.86 91.9 64.05 16.0 76.0 92.0 80.0 45.0 76.0

YOLOv5-GSS 12.70 100.0 83.80 65.5 86.1 93.0 84.6 76.1 97.3

TABLE 5 Comparison of detection speed and accuracy between YOLOv5-GSS and mainstream target detection algorithm.

Model GFLOPs FPS mAP% AP%

Cr In Pa Ps Rs Sc

(Li et al., 2020) 66.171 50.00 80.10 70.00 88.3 93.7 89.9 76.40 91.70

(Ma et al., 2022) 60.527 91.90 82.40 53.40 77.60 90.20 78.40 71.40 98.10

YOLOv8 28.400 126.6 81.80 64.30 85.90 91.40 84.40 67.20 97.40

YOLOv7 103.20 69.96 73.40 38.10 79.10 92.80 77.30 60.50 92.70

SSD; Kong et al. (2017) 62.747 71.98 74.03 46.60 84.81 94.01 86.46 62.74 69.55

Mask R-CNN (He et al.,

2017)

941.17 10.76 81.02 40.96 82.06 93.25 89.97 77.81 93.72

YOLOv5-GSS 12.700 100.0 83.80 65.50 86.10 93.00 84.60 76.10 97.30

higher computational complexity. However, this complexity comes

at a slight trade-off of reduced FPS and mAP, indicating an

imbalance between computational requirements and performance.

SSD showcases strong performance in terms of mAP and AP

despite its higher computational complexity. Mask R-CNN (He

et al., 2017), representing a two-stage object detection algorithm,

excels in high detection accuracy, but its significant computational

load results in slower detection speed. The table reveals that its

detection speed of 10.76 is much lower than that of our algorithm.

YOLOv5-GSS stands out with its combination of lowGFLOPs, high

FPS, and competitive mAP and AP values, highlighting a balanced

performance in both accuracy and efficiency.

In conclusion, the distinctiveness of YOLOv5-GSS lies in

achieving a strong balance between computational efficiency, real-

time inference speed, and accurate object detection. Its lowGFLOPs

and higher mAP and AP values underscore its suitability for

industrial applications such as efficient and accurate detection of

surface defects in strip steel, where a combination of efficiency and

precision is crucial.

5. Conclusion

This paper employs an enhanced lightweight YOLOv5s

algorithm for the purpose of detecting surface defects in strip

steel. YOLOv5-GSS takes a focused approach by incorporating

GSConv and VoV-GSCSP into the feature extraction network

and optimizing the neck structure. This targeted enhancement is

a unique feature of our approach, ensuring that improvements

are applied where they have the most significant impact. The

inclusion of the SimAM attention mechanism in the Slim

Neck module is a notable innovation. This non-referential

and plug-and-play mechanism enhances detection accuracy

without introducing complexity, making it a practical addition

to the model. Through experimental analysis, it was determined

that adding this attention mechanism to the neck of the

model yielded the best results. The CIoU loss function was

also replaced with SIoU to address issues with the original

model. These improvements collectively demonstrate our

approach’s potential to significantly advance the field of surface

defect detection in strip steel while maintaining practicality

and efficiency.

To validate the effectiveness of the YOLOv5-GSS algorithm

improvements, we conducted a series of ablation experiments and

comparative trials. The experimental results demonstrate that the

improved model, compared to the original YOLOv5s, achieved a

2.9% increase in mAP and a 3.8 FPS improvement. It outperformed

the majority of lightweight networks already in use as well as

common target detection methods. The algorithm described in this

research is quite helpful in identifying surface flaws in strip steel.
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The improved algorithm proposed in this paper has certain

limitations that need to be addressed. Specifically, the detection of

small targets such as Cr and Rs is still relatively weak. In future

research, the focus will be on enhancing the detection of small

targets. Additionally, efforts will be made to expand the sample

dataset in order to further improve the accuracy of strip surface

defect detection while maintaining high detection speed.
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