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This paper presents a teleoperation systemof robot grasping for undefined objects

based on a real-time EEG (Electroencephalography) measurement and shared

autonomy. When grasping an undefined object in an unstructured environment,

real-time human decision is necessary since fully autonomous grasping may not

handle uncertain situations. The proposed system allows involvement of a wide

range of human decisions throughout the entire grasping procedure, including

3D movement of the gripper, selecting proper grasping posture, and adjusting the

amount of grip force. These multiple decision-making procedures of the human

operator have been implementedwith six flickering blocks for steady-state visually

evoked potentials (SSVEP) by dividing the grasping task into predefined substeps.

Each substep consists of approaching the object, selecting posture and grip force,

grasping, transporting to the desired position, and releasing. The graphical user

interface (GUI) displays the current substep and simple symbols beside each

flickering block for quick understanding. The tele-grasping of various objects by

using real-time human decisions of selecting among four possible postures and

three levels of grip force has been demonstrated. This system can be adapted to

other sequential EEG-controlled teleoperation tasks that require complex human

decisions.

KEYWORDS

brain-machine (computer) interface, telerobotics and teleoperation, human-robot

collaboration, steady-state visual evoked potential (SSVEP), electroencephalogram (EEG)

1 Introduction

Teleoperation enables the manipulation of a robotic device by a human operator distant
from the robot’s workspace (Niemeyer et al., 2016; Škulj et al., 2021). Traditional methods of
robotic arm teleoperation focus on using the upper limb movements of humans including
a joystick, haptic device, and inertial measurement unit (IMU) sensors (Zhao et al., 2017; Si
et al., 2021; Škulj et al., 2021). Even though these methods enable precise control of various
robotic arms in real-time, hands-free teleoperation can be useful in cases where human
movement is limited which is already explained in the relevant literature. For instance,
workers doing physical tasks with both hands in the industrial workspace would need the
capability of hands-free teleoperation to conduct additional tasks simultaneously (Liu et al.,
2021; Škulj et al., 2021). In addition to industrial purposes, it can be used to assist patients
suffering from motor disabilities in an upper limb due to stroke or spinal cord injury (Meng
et al., 2016; Chen et al., 2018; Quiles et al., 2022; Zhou et al., 2023). As grasping is an
essential task to perform activities of daily living (ADL) (Roy et al., 2017), teleoperation of
robotic grasping without upper limb motion can help these patients in fulfilling basic skills
in everyday life.
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Brain-Computer Interface (BCI) technology allows the
teleoperation of robotic arms in the absence of physical movement
through direct communication between the user’s brain as
a commander and the outside robot systems as an executor
(Robinson et al., 2021). To record brain activity, invasive methods
such as Electrocorticography (ECoG) provide highly accurate
data with high spatial resolution but are less favored due to the
risk of infection associated with the surgery (Meng et al., 2016;
Xu B. et al., 2022). In contrast, Electroencephalography (EEG) is
the most commonly used noninvasive method owing to its high
temporal resolution, cost-effectiveness, simple use, and portability
(Carpi et al., 2006; Aljalal et al., 2020). EEG inherently has lower
accuracy and dimensionality compared to invasive methods (Meng
et al., 2016). To address these limitations and cover a variety of
commands from the EEG signals, the extraction of steady-state
visually evoked potentials (SSVEP) from EEG has become a widely
adopted approach in robotic arm control (Chen et al., 2019).

The SSVEP signals are resonance responses that can be
observed in the event of providing a visual stimulus of flickering
with a specified frequency, usually over 4 Hz (Diez et al., 2011). In
existing studies of SSVEP-controlled robotic systems, the interface
provided multiple flickering blocks of different frequencies linked
to commands for the gripper motion. The human intention to
move the robot system can be detected by identifying the gazed
block from the extraction of the peak frequency in the SSVEP (Zhao
et al., 2015; Qiu et al., 2016; Yang et al., 2017). In this work, we also
used the peak frequency of the SSVEP to infer the human operator’s
desired command of motion through the EEG-BCI.

Several previous studies utilized the SSVEP-BCI to achieve
EEG-controlled robotic arm systems and their grasping capabilities,
as illustrated in Table 1. The subject could move the end-effector
not only within a two-dimensional (2D) plane (Cao et al., 2021) but
also in three-dimensional (3D) space (Chen et al., 2018; Zhu et al.,
2020; Peng et al., 2022; Quiles et al., 2022; Zhou et al., 2023) by
using six or more flickering blocks. The target object for grasping
also could be selected by linking each flickering block to a placed
object (Yang et al., 2017; Chen et al., 2019; Li and Kesavadas, 2022).
Many SSVEP-BCI systems incorporated a shared control algorithm
to tackle the difficulty of performing complex tasks using EEG
signals. The shared control approach combines human decision-
making with pre-programmed autonomous control for precise
manipulation (Deng et al., 2020; Xu Y. et al., 2022). For instance,
the fusion of computer vision and robotic autonomy enabled the
grasping (picking) and releasing (placing) with enhanced task
performance, requiring subjects only to issue onset commands or
select objects (Yang et al., 2017; Cao et al., 2021; Zhou et al., 2023).

Existing demonstrations of grasping, however, need further
improvements to extend their utility beyond laboratory
environments to the potential users of EEG-controlled
teleoperation. In previous studies, the grasping task was
accomplished by using pre-defined objects. The robot manipulator
relied on object information through prior knowledge (training),
and/or external sensors with computer vision for autonomous
grasping. Human involvement was mostly limited to moving the
gripper or selecting one of the pre-programmed motions. These
pre-defined grasping situations could be done only by autonomous
control without the need for human decision-making. On the

other hand, in many demonstrations, robotic arm systems were
situated close to the subject, facilitating the subject’s observation of
both the graphical user interface (GUI) and the robotic arm. This
near positioning of the robot system restricted the grasping task to
a structured environment. In a few studies where the human and
robot were distant, the GUI only highlighted objects (Yang et al.,
2017; Li and Kesavadas, 2022) or the video streaming of the robot
workspace and the visual stimuli for the SSVEP were presented in
different locations on the monitor (Cao et al., 2021). These setups
constrained the involvement of the subject to specific parts of the
task or potentially reduced the usability of the GUI.

In order to enable the utilization of the EEG-controlled
grasping system by individuals with motor disabilities, the
developed system has to be capable of grasping various objects
based on their real-time intentions in even not pre-defined
environments, to help ADLs. Objects used in everyday life vary
widely in terms of their shape, fragility, weight, and size, and the
object information is not pre-defined to the robot manipulator.
The robot manipulator lacks the ability to determine appropriate
posture and grip force without prior training (Billard and Kragic,
2019; Sun et al., 2021), whereas humans can readily determine the
same even for unfamiliar objects (Si et al., 2021). So, it becomes
possible to effectively grasp undefined objects within unstructured
environments by affording the human operator the flexibility to
select diverse grasping parameters. Accordingly, the provided GUI
must encompass a wide range of decision options by utilizing
shared control, all the while maintaining a user-friendly design.

Selecting various grasping parameters can be achieved by
dividing the entire grasping task into multiple substeps and
designing the GUI to facilitate teleoperation in a sequential
procedure. Grasping can be divided into successive substeps of
approaching the object, grasping it with an appropriate posture and
grip force, and releasing it in the desired position (Lei et al., 2017;
Newbury et al., 2023). Therefore, in this work the provided GUI
allowed for human decision to select the posture and grip force, as
well as translation of the gripper in the 3D space by the sequential
procedure to grasp undefined objects in an unstructured task space.

In this work we developed a EEG-controlled teleoperation
system that provides the human operator with various decision
options for a tele-grasping task, as shown in Figure 1. We
developed an intuitive GUI that can maximize the power of
real-time human decision-making. The GUI was an augmented
display of video streaming of the robotic system and flickering
blocks with simple symbols of commands, updated for every
substep. The tele-grasping of undefined objects was executed
by involving the operator in all substeps for 3D movement
of the gripper, selection of the grasping posture and grip
force, and the onset of grasping and releasing. The shared
control algorithm facilitated robust grasping based on the
operator’s command and the self-adjustment of the robot
system.

2 System development

Figures 1B, 2 show detailed illustrations describing the overall
tele-grasping system. The system can be divided into four
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TABLE 1 Performance comparison table of previous EEG-controlled robotic arm systems.

References Task goal Task di�culty Human role Performance

Cao et al. (2021)

Picking and placing

five objects
Medium

2D movement,

the onset of

placing

Success rate:

85% (picking),

50% (placing)

Completion time:

53.50 s (picking),

97.20 s (placing)

Chen et al. (2019)

Picking

and placing
Low

Object selection

(among three)

Target selection in

6.5 s with 97.75 %

of accuracy

Chen et al. (2018)
Move-grasp-lift High

3D movement,

grasping

Total commands:

159.83 trials (five

times of task)

Completion time:

639.33 s (five

times of task)

Li and Kesavadas
(2022)

Removing

defective part
Low

Defective part

selection

93.33 % accuracy

for a 2.0 s

time window

Peng et al. (2022)

Reaching the

designated position
Medium 3D movement

Total commands:

34.8 trials

Completion time:

174 s (for two

tasks)

Zhu et al. (2020)
Grasp-lift-move High

Grasping, lifting,

and moving

92.09 % accuracy,

Total commands:

68.73 trials

Completion time:

387.33 s

Yang et al. (2017)
Picking objects Low

Object selection

(among three)

Success rate: 90%

(average of two

subjects’ results)

20 s to select a

target object

Zhou et al. (2023)
Reach-grasp-drink High

3D movement,

the onset of

grasping

Total commands:

9.40 (single object),

11.50 (three objects)

trials

Completion time:

0.99 min (single

object), 1.42 min

(three objects)

Quiles et al. (2022)
Robotic arm control Low

Axis rotation

for 3D

movement

Success rate:

71.5 %

around 3 min

completion time

This work
Tele-grasping

undefined object
High

3D movement,

selecting posture

and grip force,

onset of grasping

and releasing

Success rate:

over 70% for all

substep tasks

Total completion

time: 115.3 s

components: the EEG-BCI system, the augmented GUI, shared
control algorithm, and remote data transfer, as categorized
in Figure 2. The commander-executor configuration allowed
operation over a distance of 100 km. At the commander
location, the subject was provided with an augmented GUI
that integrated video streaming of the executor and flickering
blocks for SSVEP extraction. Upon fixating on a block for
a predetermined duration, the EEG-BCI system generated a
command, which was transmitted to the executor location. At

the executor location, a robotic arm with a three-finger gripper
was employed, and a webcam captured and transmitted the
workspace in real-time. The shared control algorithm was utilized
to manipulate the gripper based on the operator’s command,
with additional self-adjustment for stable grasping of the object.
Various objects that were not pre-defined shapes or deformability
were used, as shown in Figure 1B, and the human operator
grasped and transported them to their associated boxes for
release.
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FIGURE 1

Illustration and realization of tele-grasping system based on real-time EEG and an intuitive GUI. (A) Conceptual schematic showing EEG-controlled

tele-grasping. (B) Experiment setup for commander-executor tele-grasping.

2.1 EEG-BCI system

The parietal and occipital cortex regions were chosen to
measure EEG signals, as SSVEP is a response to external visual
stimuli. Nine electrodes on these regions were selected for the
extraction of SSVEP from the EEG measurement, specifically Pz,
PO3, PO4, PO7, PO8, POz, O1, Oz, and O2, from the standard
64-channel actiCAP (EASYCAP GmbH, Germany), adhering
to the international 10–20 EEG electrode placement standard.
The actiCHamp system (Brain Products GmbH, Germany,
ACBM16050605), and BrainVision Recorder (Brain Products
GmbH) were used to amplify and record the signals. The sampling
rate, fs was downsampled to 250 Hz from the original rate of 500
Hz, and the raw signals were pre-processed using low- and high-
pass filters with cutoff frequencies of 0.5 and 80 Hz, respectively,
and a notch filter at 50 Hz.

The SSVEP response was elicited by presenting six circular
blocks on a common LCDmonitor (refresh rate of 64Hz and screen
resolution of 1,920 × 1,080) with distinct flickering frequencies of
5, 6, 7, 8, 9, and 11 Hz. The frequency of 10 Hz was excluded to
avoid harmonic interference with 5 Hz. To extract the feature of the

induced SSVEP signals, there have been developed several spatial
filters to detect the peak frequency in the SSVEP. In this study,
the standard canonical correlation analysis (CCA) method, which
is famous for multichannel detection technique (Spüler et al., 2013;
Kumar and Reddy, 2018), was applied to the segmented EEG data to
obtain the peak frequency. The CCAmethod utilizes the projection
vectorsWx ∈ R

Nc andWy ∈ R
2Nh as the spatial filters by the linear

transformation of the segmented EEG data X ∈ R
Nc×Ns and a set

of sinusoidal harmonics of each flickering frequency (Equation 1)
for the reference signals Yk ∈ R

2Nh×Ns , respectively. Then, the CCA
method solves Equation (2) which seeks projection vectorsWx and
Wy that maximize the correlation coefficient ρ between the pair of
linear combinations of WT

x X and WT
y Yk (Li and Kesavadas, 2022;

Peng et al., 2022).
To enable the stable detection of the peak frequency in

the application of the CCA method, we decided on the gaze
duration as 4 s and introduced a preliminary calibration before
the real-time tele-grasping task. So the pre-processed EEG signals
were segmented into four-second windows in synchronization
with the gazing duration Tg , and then subjected to the CCA.
The preliminary calibration of weighting the set of correlation
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FIGURE 2

The schematic block diagram of the overall tele-grasping system.

coefficients, which algorithm will be elaborated in Section 3.1,
was for the compensation of individual differences in the SSVEP
response for each frequency between subjects.

Yk =
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, k = 1, 2, ...,N, (2)

In this study, Yk is reference signals for the kth frequency fk
from f = [f1, ..., fN] = [5, 6, 7, 8, 9, 11], Nc = 9 is the number of
channels, N = 6 is the number of flickering blocks with different
frequencies, Nh = 5 is the number of harmonics, and Ns = fsTg =
1000 is the number of sampling points. The frequency that gives the
maximum correlation coefficient value is considered as the gazed
block, as shown in Equation (3) :

fg = argmax ρk, (3)

where fg is the flickering frequency of the expected gazed block.
The EEG-BCI system applied this CCA method for every four-
second gazing duration is completed. As soon as the CCA method
gave the result of the gazed block, the system immediately sent the
corresponding command to the robot system, as summarized in the
EEG-BCI box in Figure 2.

2.2 Augmented GUI design

An augmented GUI was utilized to facilitate communication
between the human operator and the robot manipulator. The term
“augmented” denotes the integration of both visual stimuli for
SSVEP and real-time video streaming of the robot system into a
single display, as illustrated in Figure 3. Two separate windows
for visual stimuli and video streaming were superimposed and
displayed simultaneously by adjusting the transparency of the
streamed image. This overlapping of windows aided in maintaining
a consistent flickering with a specified frequency, which has a
significant impact on the quality of SSVEP signal. Furthermore, it
enhanced the user experience during tele-grasping by eliminating
the need for the subject to switch between monitors.

For each substep the flickering blocks were assigned a different
task differentiated by appropriate symbols adjacent to it (Figure 4).
The visual stimuli window was designed to be independent of
each substep, while symbols added in the window indicated
the command associated with each block. For tele-grasping
an undefined object by the human operator, the GUI had to
accommodate the movement of the gripper in 3D space, selection
of grasping posture, amount of grip force, and timing of grasp
and release.

In the translation substep, four blocks corresponded to
plane movement, with arrows used to symbolize each direction
(Figures 4A, E). The same four blocks were used for selecting
the grasping posture (Figure 4B) and grip force (Figure 4D), with
images of the four postures next to each block and a clockwise
arrow in the center of the four blocks to indicate the increasing level
of the grip force, respectively. To reach an object, the rightmost
upper block was used to descend the gripper, indicated by a
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FIGURE 3

Augmented graphical user interface (GUI).

FIGURE 4

Symbolic display on the augmented GUI for each substep [Dotted squares indicate the invalid flicker(s)]. (A) 2D translation; (B) Selecting grasping

posture; (C) Reaching an object; (D) Selecting amount of grip force; (E) Reaching a box; (F) Example snapshot of augmented GUI during the 2D

translation.

downward arrow (Figure 4C). The transition between adjacent
substeps was done by gazing at the designated block with phrases
“Next step” or “Previous step.” Each substep had invalid blocks that
were not allocated to specific commands, as illustrated by dotted
rectangles in Figure 4.

The expected gazed block was displayed on the GUI to notify
the subject of the progress of teleoperation. The EEG-BCI system
transformed the gazed block into the designated command by

applying the CCA method immediately after the four-second
gazing duration. The human operator could not easily find the
updated command and designated motion of the gripper. In order
to confirm the selection, the gazed flickering block was highlighted
by a green circular border on the GUI (Figure 4F). So the subject
could not only directly understand the updated command, but also
fix the erroneous situation even when the EEG-BCI system gave a
wrong expectation of the gazed block.
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In the lower right corner, a rectangular indicator was presented
to provide information on the current substep and timing of gazing
duration. This indicator was designed to differentiate between
substeps by utilizing various background colors and captions.
The gazing trial began with a caption of “on,” followed by “-
ing” during the gazing period, and an assigned number of the
gazed block at the end of the trial. For example, in Figure 4F, a
white background represented the 2D movement substep, and the
number “2” indicated the conclusion of the gazing and the leftward
gripper movement. Other substeps, such as reaching an object, grip
force selection, and reaching a box were indicated using red, blue,
and yellow backgrounds, and were labeled as “down,” “grasp,” and
“go to box.”

2.3 Shared control of the robot system

2.3.1 The robot hardware for the executor
The executor robotic system comprised the manipulator RB5-

850 (Rainbow Robotics, Korea) and an independently developed
gripper for the end-effector operation. The robotic arm had 6
degrees of freedom (DOF) from the root to the end-effector, while
the three-finger gripper possessed a total of 11 DOF as shown in
Figure 5. The gripper’s initial position was fixed at the center of the
table, and the orientation of the gripper was fixed downwards, as
all objects were placed on a table (Figure 1B). The initial height was
approximately 20 cm from the table. In addition, a practical laser
pointer placed at the center of the gripper illuminated its position in
the horizontal plane. During object manipulation of the gripper, the
robot manipulator remained stationary. The gripper was capable
of moving within the workspace of 50 × 50 × 40 (cm) and was
programmed to move 5 or 10 cm per command along the Cartesian
coordinate system per command to reach the object and transport
it to the box, respectively.

2.3.2 Grasping postures and grip force
To manipulate objects with diverse shapes, we utilized a blind

grasping algorithm from a previous study (Bae et al., 2012). The
algorithm determines contact forces of each contact point to
maintain force equilibrium at the geometric centroid of contact
points to achieve stable grasping. In this paper, four grasping
postures were employed, namely Three-finger grasping, Parallel
grasping, Two-finger pinching, and Envelope, as illustrated in
Figure 6. Contact forces were directed toward the central point
of three fingers and two fingers in the Three-finger grasping
(Figure 6A) and the Two-finger pinching (Figure 6C), respectively.
The Parallel grasping posture was suitable for cube shaped objects,
as shown in Figure 6B, while the Envelope posture was preferable
for cylindrical shapes, as depicted in Figure 6D. These four postures
were displayed on the augmented GUI in the substep of selecting
grasping posture, as seen in Figure 4B.

The gripper could also adjust the grip force for deformable
or delicate objects, which is crucial for preserving their original
shape. In this paper, three preset grip force levels were used:
Minimum force (20% of Maximum force), Moderate force (50%
of Maximum force), and Maximum force. As demonstrated in

Figure 7, the paper cup only retained its shape when the minimum
grip force was applied (Figure 7A), while stronger grip forces
caused deformation, as seen in Figures 7B, C. In the substep of
selecting amount of grip force, different levels of the grip force
were displayed by using the clockwise arrow (Figure 4D). Blocks
near the head and tail of the arrow correspond to the Maximum
and Minimum force, respectively, while two intermediate blocks
correspond to Moderate force. Human operator involvement is
necessary to decide on a proper grasping posture and grip force
to grasp undefined objects as this decision is difficult for the
robot system.

2.3.3 Shared autonomy control
In the proposed tele-grasping task, the robot manipulator

lacked real-time information regarding the workspace
environment, including placed objects and destination (designated
boxes). Also, it did not use the real-time position of the gripper to
reach the object or box. Instead, the human operator had access
to this information via the webcam and the laser module, and
was responsible for carrying out all substeps of the task. The
robot remained stationary until receiving an operator’s command,
after which it moved the gripper using pre-programmed controls
within one second, as long as the operator chose the next gazing
block appropriately.

The splitting of the grasping task into consecutive substeps
enabled a simple shared control strategy and increased human
involvement. Figure 8 illustrates the flowchart for substep
transitions, which involved 2D translation of the gripper, selecting
grasping posture, descent to an object, selection of grip force,
object grasping, autonomous ascent, reaching a box, and release.
By gazing at the designated substep transition block for each
substep, the augmented GUI updated the symbolic display to the
next substep accordingly. Substep transitions also allowed the
operator to return to the previous substep in the gripper’s 3D
movement, as highlighted by gray dashed arrows in the flowchart,
helping the operator reach the object accurately.

The shared control strategy used in the task included not only
pre-programmed control but also the blind grasping algorithm
that allowed the manipulator to self-adjust during object grasping
(Figure 2). To move the gripper, the operator selected one of four
directions in the horizontal plane. For grasping, the operator chose
one of four postures, three levels of grip force, and the timing of
grasping in a sequential procedure. Once the operator had made
the high-level decisions necessary for grasping, the manipulator
conducted object manipulation with self-adjustment to grasp the
object robustly.

2.4 Remote data transfer between
commander and executor

The command for manipulation of the gripper was transmitted
from the commander to the executor, and the real-time video
streaming data was transferred from the executor to the
commander. The remote data transfer was enabled through a
virtual private network (VPN) service provided by a commercial
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FIGURE 5

Three-finger gripper used in the tele-grasping.

FIGURE 6

Photograph showing four grasping postures. (A) Three-finger grasping; (B) Parallel grasping; (C) Two-finger pinching; (D) Envelope.

router (R8000, NETGEAR, San Jose, California, USA). Both
computers in the commander and the executor were connected
to the VPN server of the router as clients via OpenVPN (2.4.7,
Pleasanton, California, USA) software.

The command had a string format, as shown in Table 2. Inside
the brackets, the alphabetical characters were enumerated in order
of operation (O for operation, S for stop), substep (T for translation,
G for Grasping, and R for Release), motion (x, y, z for direction
to move, and g, p, m, e for each grasping posture), and value
(−100 to 100 mm for distance to move, and 1 to 3 for level of
grip force). This command was transmitted to the manipulator
via the User Datagram Protocol/Internet Protocol (UDP/IP). On
the other hand, the webcam data was transferred through a
real-time streaming protocol (RTSP) server. The video data was

encoded using the High-Efficiency Video Coding (HEVC) format
with FFmpeg. An inexpensive webcam (C920, Logitech, Lausanne,
Switzerland) with 30 frames per second (fps) and a resolution of
640× 480 was used to capture the executor robot system.

3 Experimental validation

To validate the functionality of the system, 10 healthy subjects
who were novices to BCI teleoperation were recruited. The subjects
were 1 female and 9 males, and their ages were in the range
of 22–28. The experiment was conducted in a standard office
environment and took less than two hours to complete. The subject
was directed to sit on a chair and gaze at the monitor displaying
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FIGURE 7

Photograph showing three grip force levels. (A) Minimum force (20%); (B) Moderate force (50%); (C) Maximum force (100%).

FIGURE 8

Flowchart for substep transitions.

the GUI at a distance of approximately 50 cm. The height and
orientation of the chair were adjusted to align the subject’s gaze
direction with the center of the monitor screen (Figure 1B). The
EEG-BCI system was applied by fitting an EEG cap equipped

TABLE 2 Commands for remote data transfer between commander and

executor.

Operation Substep Motion Value

O T x −100 to 100

y −100 to 100

z −100 to 100

O R g 0

p 0

m 0

e 0

O G g 1 to 3

p 1 to 3

m 1 to 3

e 1 to 3

S

with 11 electrodes, including a ground electrode at the forehead,
a reference electrode on the crown, and 9 electrodes in the occipital
lobe. The conductive gel was inserted until all impedances were
lower than 10 k�.

3.1 Preliminary calibration

Prior to the tele-grasping task, a preliminary calibration was
implemented to check the efficacy of the expectation of the gazed
block by using the standard CCA and improve the accuracy by the
individual adjustment process. Each trial comprised of 1 s rest, 2
s to notify the target to be gazed at which was randomly selected,
4 s of gazing at the notified target, and a final 1 s cue highlighting
the expected target, as depicted in Figure 9A. The placement and
assigned frequencies of flickering blocks were matched to that used
in the augmented GUI. This trial was repeated 60 times, amounting
to 480 s of calibration data collection. The selection of the target
was randomized in each trial while ensuring an equal distribution
across all six flickering blocks (i.e., 10 times for each block).
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FIGURE 9

Experimental protocol. (A) Preliminary calibration to increase the accuracy of SSVEP. (B) Real-time tele-grasping (Five-second segment).

For each block, the number of times to be gazed at obtained
from the CCA method, nk, was measured. The initial set of the
correlation coefficients ρi could be considered as a pre-calculated
result of an element-wise product by an initial set of weighting
factors ωi = [ω1i, ...,ωNi] = [1, ..., 1], as shown in Equation (4):

ρi = [ω1iρ1, ...,ωNiρN] (4)

Compared to the true number of assigned times for each
block as the target, nt = 10, any excessive (or insufficient)
detection of a particular frequency, which means nk > nt (or
nk < nt), necessitates an adjustment by decreasing (or increasing)
the associated correlation coefficient ρk in Equation (2). This
adjustment was applied by assigning a weighting factor, determined
by the ratio of nk to nt , to each frequency’s corresponding
correlation ρk, as following Equations (5) and (6):

ωc = [ω1c, ...,ωNc] =
√
N

nt
√

1
n21

+ ...+ 1
n2N

[
1

n1/nt
, ...,

1

nN/nt
] (5)

The set of weighting factors in Equation (5) was normalized
to make the same norm as the set of the initial weighting factors.
The original equation of finding the SSVEP frequency by the CCA
method, Equation (3), then was revised by multiplying a weighting
factor for each correlation coefficient as follows:

fgc = argmaxωkcρk, k = 1, 2, ...,N, (6)

where fgc is the expected gazed frequency with the weighting factor.
Equation (6) and the obtained set of weighting factor ωc were
used in the real-time tele-grasping task. This calibration process
allowed for personalized frequency extraction, enabling enhanced
performance in the subsequent tele-grasping task.

3.2 Real-time tele-grasping task

After calibration, the participant was instructed to perform
the real-time tele-grasping task using the augmented GUI.
Comprehensive explanations and several practice sessions were
provided to familiarize the subject with the GUI and the overall
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task procedure. Prior to the whole task, the subject was informed
to perform each substep first, for the benchmarking to show the
functionality of each substep. As shown in the task flowchart in
Figure 8, the developed system was composed of each substep
according to the common grasping repertoire. Only substeps of
handling by the subject were selected to test, and the task success
rate and average execution time were measured for each substep.
These substeps were 2D movement (Task 1), Selection of grasping
posture (Task 2), Approaching and grasping (Task 3), and 2D
movement and releasing (Task 4).

For each trial of command, the five-second segment composed
of four-second of gazing duration and the one second of the
gripper motion was continuously repeated during all tasks. To
generate the desired command, the subject had to gaze at the
corresponding block for this gazing duration. The EEG-BCI system
then immediately applied the CCA to detect the gazed block and
sent the corresponding command to the robot manipulator. The
robot system performed the command to manipulate the gripper
within one second. By observing the motion, the subject could
decide the next gazing block for the following command before
the beginning of the next trial. For instance, in the 2D translation
substep (Figure 9B), the subject intended to grasp the cube, and
therefore gazed at the flickering block with a symbol of left arrow
for four seconds, and then observed for one second the leftward
movement of the gripper. This five-second segment was used to not
only send the command within the substep but also to shift to the
next substep by updating the GUI. Thus, this simple five-second
segment was sufficient to complete the entire task.

Task 1 was designed to be completed if the gripper moved
twice at minimum then reached the object’s plane position, and
the success case was measured when the laser illuminated the
center of the object. Task 2 required a single decision for each
trial, and when the correct posture was made then it counted as
a success case. Task 3 started by matching the horizontal position
of the gripper with the object. So the gripper was set to reach
the object after lowering three times, and then the subject gazed
at the next step block to select the grip force. The success case
was if the gripper grasped the object properly without the drop.
Task 4 started when the gripper completed its automatic ascent,
allowing it to release the object after the gripper moved twice at
minimum. The success trial was counted only when the object
was put in the placed box. The completion time of each substep
was averaged over five successful cases, and the success rate was
calculated from the total number of attempts to achieve aminimum
of five successes.

After testing each substep, the subject was asked to complete
the entire grasping task, which was the sequential process from
Task 1 to Task 4. While the previous substep tests benchmarked
the system in a routine environment, the whole task was designed
to demonstrate the system’s ultimate goal of grasping undefined
objects in an unstructured environment. So the object type was
varied across subjects, as well as the object was randomly placed on
a 5 cm grid, considering the gripper’s capability of 5 cm move per
each command, and the box was randomly placed also. However,
for a fair comparison, the minimum number of commands to
complete the substep was kept the same. Then, the total completion
time from the gripper origin to release the object was measured

for each subject in the average of three success cases of placing the
object in the box.

The success rate and average completion time for each step were
measured per subject and tabulated with the overall average results
of all participants in Table 3. The total completion time for the
successful grasping was also listed in the last column. Noting that
the total completion time included successive substep transitions’
time to move the next substep. The average success rates of all
subjects from Task 1 to Task 4 were 88.3 ± 9.4, 80.6 ± 15.6, 78.6
± 11.4, and 72.7 ± 17.2% (mean ± SD), respectively. The average
completion time of all subjects for each substep was 19.8± 7.5, 5.0,
31.5± 8.7, and 37.1± 12.6 s (mean± SD). In addition, the average
value of the total completion time including substep transition was
115.3 ± 24.5 s (mean ± SD) over 10 subject’s results. The result
shows that the average success rates of all subjects were over 70%
for all steps, and the average completion time for each step was
less than a minute, therefore all subjects could perform the entire
grasping task successfully without getting tired or fatigued.

As examples of tele-grasping demonstrations, the task
progresses of apple and paper cup were introduced in Figure 10.
The order of snapshots aligns with the task flowchart displayed
in Figure 8. The apple was picked by Three-finger grasping
posture and Maximum grip force, and released in the box with the
apple image. Supplementary Video includes not only the whole
demonstration of the apple but also parts of tele-grasping of other
objects with various grasping postures. The paper cup was prone to
crushing when grasped tightly. So, to preserve its shape, the subject
selected the minimum level of grip force. A separate demonstration
of testing the impact of varying grip force when grasping the paper
cup is shown in Supplementary Video.

4 Discussion and conclusion

This article introduces a tele-grasping system that employs real-
time EEG and an augmented GUI to elicit SSVEP and enable
sequential decision-making. The developed system expands the
scope of human operator involvement by subdividing the grasping
task into multiple substeps and designing an augmented GUI
for efficient sequential procedure. The GUI enables the human
operator to select various grasping parameters, including the
position of the gripper, grasping posture, and amount of grip force,
using a reduced number of flickering blocks, not exceeding six. The
proposed system is tested in a commander-executor configuration,
where the human commander can make decisions for the proper
grasping by using the augmented GUI, and the distantly located
executor of the robot system performs the received command
to move the gripper. Experimental results demonstrate that the
proposed system successfully grasps objects of various shapes and
deformability through the human operator’s sequential decisions.

The developed system, however, exhibits several limitations
that affect its performance. First, the system has a minimum 4 s of
tele-grasping delay to move the gripper due to the gazing duration
for sending commands. During the real-time tele-grasping task,
each trial is continuously repeated for every 5 s, where the first 4
s is the gazing duration and the following 1 s is for the gripper
motion. The execution time of the CCAmethod and the round-trip
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TABLE 3 Experimental results of the success rate and the completion time for each substep task and the total completion time including substep transition.

Subject

Task 1

(2D movement)

Task 2

(Selection of

grasping posture)

Task 3

(Approaching and

grasping)

Task 4

(2D movement

and releasing)

Total completion

time including

substep transitionSuccess

rate (%)

Completion

time (s)

Success

rate (%)

Completion

time (s)

Success

rate (%)

Completion

time (s)

Success

rate (%)

Completion

time (s)

Sub 1 90.0 19.8 100.0 5.0 63.6 28.3 62.5 55.0 98.3

Sub 2 100.0 12.0 80.0 5.0 71.4 24.0 75.0 27.0 93.3

Sub 3 83.3 33.0 70.0 5.0 75.0 30.0 50.0 32.5 85.0

Sub 4 71.4 28.0 63.6 5.0 83.3 29.0 100.0 40.0 145.0

Sub 5 100.0 25.0 90.0 5.0 85.7 31.7 55.6 42.0 150.0

Sub 6 83.3 22.0 60.0 5.0 85.7 21.7 66.7 35.0 130.0

Sub 7 100.0 18.3 90.0 5.0 75.0 27.5 83.3 24.0 111.0

Sub 8 85.7 11.7 62.5 5.0 83.3 30.0 62.5 36.0 101.7

Sub 9 85.7 18.3 90.0 5.0 62.5 51.0 100.0 59.0 143.3

Sub 10 83.3 10.0 100.0 5.0 100.0 42.0 71.4 20.0 95.0

Avg 88.3± 9.4 19.8± 7.5 80.6± 15.6 5.0 78.6± 11.4 31.5± 8.7 72.7± 17.2 37.1± 12.6 115.3± 24.5
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FIGURE 10

Examples of tele-grasping with proper posture and grip force. (A) Snapshots for tele-grasping an apple using Three-finger grasping posture

(captured from Supplementary Video). (B) Snapshots for tele-grasping a paper cup with minimum grip force (captured from Supplementary Video).

latency for the remote data transfer are short enough to complete
the gripper motion within the given one second, enabling the
participant to select the next command before the onset of the
new trial. In addition, the fixed distance (5 cm) to move restricts
the system’s capability to approach objects not in multiples of 5
cm, despite the blind grasping algorithm’s ability to accommodate
grasping at a slightly offset (<1 cm).

Though this tele-grasping delay is the bottleneck of the task
completion time, we have focused more on the usability of the
system. Reducing the gazing duration impacts the quality of the
SSVEP signals, consequently, the system’s ability to detect the
peak frequency in the SSVEP will be declined, causing erroneous
motions frequently against the human intention. The subject
then has to fix this situation in further commands, which is not
preferable due to redundant mental load causing fatigue, and
disturbing concentration on the gazing. Even though our system
sacrificed the task completion time, we placed more importance on
decreasing wrong commands to be beneficial to the task success rate
and improve usability.

The standard CCA method’s relatively low accuracy also
adversely affects the system due to the wrong detection of the gazed
target. The proposed system tackles this accuracy problem in two
ways: Preliminary calibration and reducing decision options. The
SSVEP response from the flickering of given frequencies is different
from person to person. So individual calibration is necessary to
compensate for either underestimated or overestimated frequency.
The calibration process determines the set of weighting factors
and each weighting factor is multiplied by the corresponding

correlation coefficient. The concept of weighting to the correlation
coefficient is similar to the previous research (Shi et al., 2019), but
the detailed algorithms of determining the weighting factor are
different, as well as our system uses this weighting process as a
preliminary calibration for improving the real-time teleoperation.
Even in the real-time task, if an unusually high detection of a
particular frequency suddenly happens from the self-report or
the observation, we rebalanced the weights accordingly. Also,
subdividing the whole grasping task into sequential substeps
reduces the required decision options to six or fewer for each
substep. For instance, the 3D movement can be carried out
in the order of plane movement and descent to the object,
and selecting postures and grip forces can be covered within
four commands.

However, these approaches are not sufficient to solve the system
limitation of the long completion time. This is because the main
source of elongating the completion time is the tele-grasping
delay due to the four-second gazing duration as mentioned above.
Future research should mainly focus on decreasing tele-grasping
delay by implementing an advanced frequency detection algorithm
of the SSVEP in a short gazing duration (Chen et al., 2018; Li
and Kesavadas, 2022). In addition to applying other methods of
SSVEP analysis, to further improve task efficiency, wemay consider
combining our EEG-controlled system with other methods of
decoding EEG signals, or even other hands-free teleoperation
control schemes beyond the EEG, such as eye tracking or voice-
based control for future studies. For instance, there have been
proposed hybrid systems that combine the SSVEP-BCI with motor
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imagery (MI) (Cao et al., 2021) or eye-tracker in grasping tasks
(Guo et al., 2023).

Although these alternative methods would show better system
performance, the main purpose of our study is to explore the
technology completeness of EEG-based tele-grasping systems,
rather than focusing on advancing task efficiency or perfectness. To
assist patients with upper limb impairments in conducting ADLs,
a hands-free teleoperation control system is required for grasping
diverse objects even for undefined to the robot manipulator.
Among several hands-free teleoperation methods, our attention is
drawn to the observation that existing EEG-based demonstrations
of grasping confined the task to pre-defined objects and utilized the
object information. The ability of the EEG-controlled tele-grasping
system needs to be extended for grasping undefined objects in order
to be applied to their everyday life.

To show the capability of grasping undefined objects, we
designed the experiment as benchmarking of each substep first
and then tested the whole grasping task composed of a sequential
combination of all substeps. These substeps of Task 1 to Task 4
are the common repertoire of the grasping tasks. The experimental
result shows that every subject succeeded not only in all substeps
separately but also in the whole task. Therefore, the benchmarking
of each step shows the system’s functionality of common grasping
repertoire, and the demonstrations of the whole task verify the
system’s further extended capability of grasping undefined objects
in an unstructured environment. The system therefore can be used
in the daily life of patients, enough to show the technological
advancement in EEG-controlled grasping systems.

Additionally, the developed system has been designed to
become a general EEG-based teleoperation framework, making
it more practical and useful for potential users of the system.
So, the system is also suitable for other teleoperation tasks that
involve sequential decision-making by the human operator. The
GUI can be used in standard commander-executor teleoperation
setups, where the commander receives robot information through
video streaming and controls its hardware (Zhao et al., 2017).
By dividing tasks into multiple substeps and using symbols to
assign appropriate commands to flickering blocks, tasks can be
executed remotely. The GUI updates every substep transition,
while the blocks remain consistent in shape, frequency, and
position, regardless of the substep, simplifying the implementation
of every task.

In conclusion, robot grasping of undefined objects in an
unstructured environment, which is challenging to the robot
system alone, is accomplished by involving real-time human
decisions through EEG-controlled teleoperation. These multiple
decisions can be facilitated by our augmented GUI, which
empowers the human operator to move the gripper in 3D and
select a grasping posture and grip force level in a sequential
procedure. Tele-grasping for objects with diverse shapes, sizes, and
fragilities has been successfully demonstrated. This system can be
effectively used in teleoperation tasks where real-time decision-
making is necessary.
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