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Multimodal audio-visual robot
fusing 3D CNN and CRNN for
player behavior recognition and
prediction in basketball matches

Haiyan Wang*

School of Physical Education, Xinxiang University, Xinxiang, Henan, China

Introduction: Intelligent robots play a crucial role in enhancing e�ciency,

reducing costs, and improving safety in the logistics industry. However, traditional

path planning methods often struggle to adapt to dynamic environments,

leading to issues such as collisions and conflicts. This study aims to address

the challenges of path planning and control for logistics robots in complex

environments.

Methods: The proposed method integrates information from di�erent

perception modalities to achieve more accurate path planning and obstacle

avoidance control, thereby enhancing the autonomy and reliability of logistics

robots. Firstly, a 3D convolutional neural network (CNN) is employed to learn the

feature representation of objects in the environment for object recognition. Next,

long short-term memory (LSTM) is used to model spatio-temporal features and

predict the behavior and trajectory of dynamic obstacles. This enables the robot

to accurately predict the future position of obstacles in complex environments,

reducing collision risks. Finally, the Dijkstra algorithm is applied for path planning

and control decisions to ensure the robot selects the optimal path in various

scenarios.

Results: Experimental results demonstrate the e�ectiveness of the proposed

method in terms of path planning accuracy and obstacle avoidance

performance. The method outperforms traditional approaches, showing

significant improvements in both aspects.

Discussion: The intelligent path planning and control scheme presented in this

paper enhances the practicality of logistics robots in complex environments,

thereby promoting e�ciency and safety in the logistics industry.

KEYWORDS

multimodal, 3D CNN, CRNN, LSTM, behavior recognition, behavior prediction,

basketball matches

1 Introduction

In today’s fast-growing field of deep learning, multimodal data analysis and prediction

has become a compelling research direction (Maimaitijiang et al., 2020). Multimodal

data refers to different types of data, such as images and sounds, which often co-

exist in various real-world scenarios. With the improvement of computing power and

the development of data acquisition technology, utilizing multimodal data to achieve

more accurate and comprehensive analysis and prediction has become an important

challenge (Giannakos et al., 2019; Hosseini et al., 2020). Basketball game is a dynamic

and complex sports event, and its data contains rich information. Therefore, it is of

great research significance to use multi-modal data for player behavior recognition

and prediction in basketball games. The application of multimodal audio-visual robot

in basketball game can help to improve the understanding and analysis of the game.
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By analyzing video and voice data simultaneously, we can get a

more complete picture of player movements, position changes, and

the real-time situation of the game. This not only helps coaches,

teams and spectators better understand the game process, but also

provides a scientific basis for tactical formulation and decision-

making. Below are some common deep learning methods used to

recognize and predict behavior.

Convolutional Neural Networks (CNN) (Mohamed et al., 2020)

performwell in image processing tasks, capable of extracting spatial

features in images. Local and global features of images can be

learned automatically through convolutional and pooling layers.

In basketball behavior recognition, CNN can be used to extract

players’ spatial position and action features. But CNN mainly

focuses on local features and may ignore contextual information.

For complex action sequences in basketball games, CNNs may not

be able to capture long-term dependencies.

Recurrent Neural Networks (RNNs) (Woźniak et al., 2020)

are adept at handling sequential data, making them suitable for

capturing time-series actions in basketball games. They possess the

advantage of memorization, enabling information propagation and

processing of long-term dependencies, which can be leveraged for

predicting future player actions or behaviors. However, RNNs have

their limitations. The problem of vanishing or exploding gradients

can adversely affect the training of RNNs and their ability to capture

long-term dependencies effectively. Furthermore, RNNs tend to

exhibit relatively lower computational efficiency, rendering them

less suitable for processing lengthy sequences.

Graph Convolutional Network (GCN) (Yang et al., 2021)

is a deep learning model for graph data. Unlike traditional

convolutional neural networks, which are suitable for regular grid

structure data, GCN is specially designed to deal with irregular

graph structure data. The core idea of GCN is to aggregate the

features of nodes on the graph The disadvantage is that GCN

needs to build a graph structure, and there may be computational

efficiency problems for large-scale graphs. At the same time, for

unstructured data, it may need to be converted into graph data,

which increases the complexity of data preprocessing.

Transformermodel (Mazzia et al., 2022) is a sequencemodeling

model based on self-attentionmechanism. This model has achieved

remarkable achievements in the field of natural language processing

and is applicable to the processing of sequence data. It can

capture the long-distance dependencies in the sequence through

the attention mechanism, and has strong modeling ability. The

disadvantage is that the Transformer model needs to introduce

additional structured information when processing non-sequential

data such as images. At the same time, due to its large amount of

parameters, more computing resources are required.

Support Vector Machine (SVM) (Jain et al., 2021) is a

commonly used supervised learning algorithm for classification

tasks. It excels in handling high-dimensional data and performing

well in feature spaces with a large number of dimensions.

SVM exhibits strong generalization ability by maximizing the

classification margin, thereby ensuring stability even when faced

with previously unseen data. However, it is sensitive to missing data

and requires handling or imputing missing values. Additionally,

the performance of SVM relies significantly on the appropriate

selection of kernel functions and hyperparameters, necessitating

tuning to achieve optimal results.

These models alone cannot handle multimodal information, so

how to effectively fuse visual and speech information and use this

information for accurate action recognition and prediction remains

a challenging problem. Therefore, this paper aims to propose a

multi-modal audio-visual robot framework that combines deep

learning models such as 3D CNN, CRNN, and LSTM to achieve

accurate recognition and prediction of player behavior in basketball

games. 3D CNN is used to capture the spatio-temporal information

in the video frame of the basketball game. It can effectively

extract the players’ actions and position changes from the sequence

of video frames, thus providing key information for behavior

recognition and prediction. CRNN is used to analyze speech

information. It can combine sound features with time information,

providing a more comprehensive analysis basis for multi-modal

data. LSTM serves as a key component in the action recognition and

prediction stages. First, the training model classifies different player

actions and gradually learns feature representations for different

behavior patterns. Then, LSTM is used to model the historical

behavior sequence and predict the actions that the players may take

in the next few seconds, so as to achieve accurate prediction of the

progress of the game.

The contribution points of this paper are as follows:

• The research in this paper can improve basketball game

analysis and tactical decision-making. Through the multi-

modal audio-visual robot system, combined with the analysis

of video and voice information, it can provide more

comprehensive and accurate basketball game data. This

is extremely valuable for coaches and teams, who can

better understand the game process, player performance

and opponent strategies. Based on these analysis results,

coaches and teams can make more scientific tactical decisions

to improve the competitiveness and chances of winning

the game.

• The research in this paper will help promote the development

of robotics in the field of sports. The multi-modal audio-

visual robot system proposed in this paper integrates visual

and speech information, and uses deep learning models for

feature extraction and behavior prediction. This application

of robotics not only has potential applications in the game of

basketball, but could also advance the development of robotics

in other sports, such as football and tennis. This has a positive

impact on promoting the development of sports technology

and improving the level of training and competition.

• The research in this paper can improve the audience

experience and participation, and the application of multi-

modal audio-visual robotic system can provide the audience

with a more attractive and participatory viewing experience.

Spectators can get more real-time game information through

the robot system, and understand player behavior and game

progress predictions. This not only increases the enjoyment

of the audience, but also promotes the interaction and

participation of the audience with the game and enhances the

overall viewing experience.
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In the remaining sections of this paper, we will introduce

recent related work in Section 2. Section 3 presents our used

method: 3D CNN, CRNN, and LSTM. The experimental part,

details, and comparative experiments are discussed in Section 4.

Finally, Section 5 concludes the paper.

2 Related work

2.1 Dynamic time warping-CNN

Dynamic Time Warping-CNN (DTW-CNN) (Afrasiabi et al.,

2020) is a model that combines Dynamic Time Warping (DTW)

and Convolutional Neural Network for action recognition and

prediction. The main idea of the DTW-CNN model is to combine

DTW and CNN to overcome the limitation of traditional CNN in

time series data analysis. In the field of behavior recognition and

prediction, the application process of the DTW-CNN model is as

follows: First of all, data preprocessing is carried out, and the input

time series data is preprocessed, including data sampling, denoising

and standardization steps to ensure the accuracy and consistency

of the data. Then dynamic time warping is performed, and for each

time series, dynamic time warping is performed using the DTW

algorithm. DTW solves the problem of length inconsistency and

time offset between sequences by calculating the best matching

path between two time sequences. This enables time series of

different lengths to be compared and matched. Then input the

regularized time series into the CNN model for feature extraction

and classification. The CNN model learns spatio-temporal features

in time series data through convolutional layers, pooling layers,

and fully connected layers, thereby realizing behavior recognition

and prediction. Finally, according to the output of the CNN

model, the behavior is identified and predicted. The DTW-CNN

model combines the advantages of DTW and CNN, and can more

comprehensively capture the spatiotemporal information in time

series data. DTW solves the problem of different lengths and time

offsets, while CNN is able to learn the spatiotemporal features of

time series data, improving the accuracy of behavior recognition

and prediction. However, the computational complexity of the

DTW algorithm is relatively high, especially when processing long

time series, it will consume more computational resources and

time. This may limit the practical feasibility of DTW-CNN models

in large-scale datasets or real-time applications (Petty et al., 2020).

2.2 Gated recurrent unit

Gated Recurrent Unit (GRU) (Luo et al., 2021) is a variant

of cyclic neural network used in the field of behavior recognition

and prediction. The GRU model can effectively model long-

term dependencies through the mechanism of updating gates and

resetting gates (Yu et al., 2022). The following is the detailed

application process of the GRUmodel in this field: First, j performs

data preprocessing to preprocess the input time series data, such

as sampling, denoising, standardization and other operations, to

ensure the accuracy and consistency of the data. Then build

the GRU model, and input the preprocessed time series data

into the GRU model. The GRU model consists of a series of

GRU units, each of which has an update gate and a reset gate.

These gates control the flow of information and learn to adapt

to different time-series patterns. Subsequently, the GRU model

engages in feature extraction and learning, where it acquires

valuable feature representations by discerning internal patterns and

temporal relationships within the time series data. During training,

the model parameters are optimized to minimize prediction errors

through the backpropagation algorithm and an appropriate loss

function. After the GRU model is trained, it can be used for

behavior recognition and prediction. By passing the input time

series data to the trained model, the input data can be classified

to determine its corresponding behavior category. In addition, the

GRU model can also predict possible behaviors in a period of time

in the future through continuous prediction.

Its advantage is that there are fewer parameters. Compared

with other cyclic neural network models, the GRU model has

fewer parameters. This makes the GRU model more efficient

during training and inference, especially in resource-constrained

environments (Khodabandelou et al., 2020). Moreover, the GRU

model effectively alleviates the gradient disappearance problem

through the gating mechanism. This makes the GRU model better

able to deal with the temporal dependencies of long sequences and

avoid the problem of vanishing or exploding gradients. But for

some complex time series patterns, the GRUmodel may not be able

to model accurately. Compared with the LSTMmodel, the memory

capacity of the GRU model is slightly weaker, and may not be able

to capture longer-term dependencies in some cases.

2.3 Hidden Markov models

Hidden Markov Models (HMM) (Mor et al., 2021) is

a probabilistic model commonly used in the field of action

recognition and prediction. It can model the relationship between

the observation sequence and the hidden state sequence to

identify and predict specific behavioral patterns. The principle

of the HMM model is based on the Markov process and the

probabilistic graphical model, which mainly includes two key

components: hidden state and observation sequence. Hidden states

are unobserved variables in HMM models that represent patterns

of behavior or internal states of the system. The hidden states

form a Markov chain, that is, the current state depends only on

the previous state. Hidden states can be discrete or continuous.

The observation sequence is an observation variable in the HMM

model, representing the visible data observed from the system.

There is a certain correlation between the observation sequence

and the hidden state, but the hidden state is unknown while the

observation sequence is visible. The basic assumption of the HMM

model is that there is a Markov property between the hidden

state and the observation sequence, that is, given the current

hidden state, the generation of the observation sequence only

depends on the current hidden state. The HMM model consists of

three core probabilities: Initial state probabilities, state transition

probabilities, and launch probabilities (Deng and Söffker, 2021).

The initial state probabilities define the probability distribution that

the system is in each hidden state at time step 0. State transition

probability defines the probability distribution of transitioning
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FIGURE 1

Overall flow chart of the model.

from one hidden state to another. It expresses the probability

of a system transitioning from one state to another. The firing

probability defines the probability distribution over the generation

of a sequence of observations given a hidden state. It represents

the probability of generating a particular observation in a certain

hidden state. HMM models have flexible modeling capabilities

and can adapt to different behavioral patterns. Different types of

behavior can be modeled by adjusting the number of hidden states

and defining state transition probabilities, firing probabilities. The

disadvantage is that it is limited to the Markov assumption, and

parameter estimation is difficult (Nguyen-Le et al., 2020).

3 Methodology

3.1 Overview of our network

This paper introduces a method for player behavior recognition

and prediction in basketball games within a multimodal audio-

visual robotics framework. The method effectively combines image

and voice data, harnessing the capabilities of 3D CNN, CRNN,

and LSTM models. To ensure a thorough understanding of our

methodology, we provide detailed hyperparameter information for

each model.

Our 3D CNN model is configured as follows: it employs a

convolutional kernel size of 3×3×3, comprises 64 filters, utilizes

max-pooling, maintains a learning rate of 0.001, and undergoes

10,000 training iterations. The CRNN model is defined with the

following hyperparameters: a convolutional kernel size of 3×3, 64

filters, 128 LSTM units, a learning rate of 0.001, and 8,000 training

iterations. For the LSTM model, we set the hyperparameters as

follows: 256 hidden units, a learning rate of 0.001, and 6,000

training iterations. Furthermore, the multimodal fusion layer

employs a straightforward concatenation approach to combine

features generated by the 3D CNN and CRNN models, requiring

no additional hyperparameters.

The overall methodology encompasses the following stages:

Firstly, data acquisition and preprocessing involve the

extraction of visual and speech data from basketball game videos.

Visual data undergoes frame extraction, creating a sequence of

video frames. Simultaneously, we conduct feature extraction on

speech data, resulting in spectrograms or other speech-related

feature representations.

Secondly, a 3D CNN model is employed to extract spatio-

temporal features. The sequence of video frames is input into

the 3D CNN, adeptly capturing temporal relationships and spatial

variations among frames. This process effectively learns action and

location information within the videos, generating comprehensive

visual feature representations.

Next, the CRNN model analyzes the speech information,

simultaneously processing convolution and loop information to

capture key details in the speech and generate speech feature

representations. Following this, multimodal fusion occurs, with

features generated by the 3D CNN and CRNN models being

seamlessly integrated through the multimodal fusion layer. Fusion

methods can include straightforward splicing, weighted averaging,

and others, resulting in a comprehensive feature representation that

combines different modalities.

In the subsequent step, we employ LSTM for behavior

recognition and prediction. The fused feature sequence is input

into the LSTM model, enabling the modeling of time series data.

LSTM initially classifies different player actions, training a behavior

recognition model. Subsequently, based on the historical behavior

sequence, LSTM predicts future player actions, facilitating game

progress prediction. Finally, we evaluate the methodology through
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FIGURE 2

Flow chart of the 3D CNN model.

experiments on basketball game datasets, assessing behavior

recognition and prediction performance using indicators such as

accuracy and stability.

By leveraging multimodal information fusion and

LSTM modeling, our approach comprehensively analyzes

player behavior from both image and voice perspectives,

achieving precise recognition and prediction of basketball

game behavior. This framework offers robust support for

intelligent sports analysis and applications. Figure 1 is the overall

flow chart.

3.2 3D convolutional neural network

3D Convolutional Neural Network (3D-CNN) (Alfaifi and

Artoli, 2020) is a deep learning model for processing three-

dimensional data. It performs convolution operations in time,

space, and channel dimensions to capture spatiotemporal

features in the data. As shown in Figure 2, it is the flow

chart of MHA.

The 3D-CNN model is an extension based on 2D-CNN,

which introduces the temporal dimension as an additional

input dimension (Wu et al., 2021). Similar to 2D-CNN, the

3D-CNN model consists of multiple convolutional, pooling

and fully connected layers. The input to the model is a 3D

data tensor with time, height, width, and channel dimensions.

The model extracts spatio-temporal features by performing

convolution operations in three dimensions. This means that

the convolution kernel slides in time, height and width and

performs a convolution operation on the input at each position.

Convolutional layers are usually followed by pooling layers

for downsampling and reducing the amount of parameters.

Finally, the output of the convolutional layer is mapped to the

predicted category through a fully connected layer and a softmax

activation function.

The formulas and variables of the 3D-CNNmodel are explained

as follows (Li et al., 2020):

1. Input data request:

X ∈ R
T×H×W×C

where T is the time dimension, representing the number of frames

of a video or time series; H is the height dimension, representing

the height of the image or volume data;W is the width dimension,

representing the width of the image or volume data; C is the

number of channels, indicating the color channel of the image or

volume data (for example, the number of channels of an RGB image

is 3).

2. Convolution operation:

The convolution operation of the 3D-CNN model can be

expressed as follows (Equation 1):

Y = σ (

D
∑

d=1

K
∑

i=1

K
∑

j=1

K
∑

k=1

W[d, i, j, k, c, :]

∗ X[d, si + i− 1, sj + j− 1, sk + k− 1, :]+ b[c]) (1)

where, Y ∈ R
T′×H′×W′×F is the output feature map of the

convolutional layer; D is the number of convolution kernels; K

is the size of the convolution kernel; W ∈ R
D×K×K×K×C×F

is the weight of the convolution kernel; X is the input data; ∗

represents the convolution operation; si, sj, sk are the step size of

the convolution kernel in the height, width and time dimensions;

b ∈ R
F is the bias term; σ (·) is the activation function, commonly

used including ReLU, sigmoid, etc.

3. Pooling operation:

The pooling operation of the 3D-CNN model can be expressed

as follows (Equation 2):

Z = max(X[d, si + i− 1, sj + j− 1, sk + k− 1, :]

: i ∈ [1, Si], j ∈ [1, Sj], k ∈ [1, Sk]) (2)

where Z ∈ R
T′′×H′′×W′′×F is the output feature map of the

pooling layer; Si, Sj, Sk are the pooling sizes. Fully connected layer
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FIGURE 3

Flow chart of the CRNN model.

and softmax activation: The fully connected layers and softmax

activation function in the 3D-CNN model are used to map the

output of the convolutional layer to the predicted category. The

fully connected layer flattens the output of the convolutional layer

into a vector, and calculates the final prediction result through

matrix multiplication and bias term. The softmax activation

function converts the output into a probability distribution,

representing the predicted probability for each class.

The formulas for the fully connected layer and softmax

activation are as follows (Equations 3–5) (Duan et al., 2022):

U = flatten(Z) (3)

V = ReLU(WfcU + bfc) (4)

Ŷ = softmax(WoutV + bout) (5)

whereU ∈ R
N is the flattened feature vector,N = T′′×H′′×W′′×

F;Wfc ∈ R
M×N is the weight matrix of the fully connected layer,M

is the output dimension of the fully connected layer; bfc ∈ R
M is

the bias item of the fully connected layer; V ∈ R
M is the output

feature vector of the fully connected layer; ReLU(·) is the modified

linear unit activation function; Wout ∈ R
K×M is the weight matrix

of the output layer, K is the number of categories; bout ∈ R
K is the

bias term of the output layer; Ŷ ∈ R
K is the prediction result of the

model, and the output is converted into the probability distribution

of the category through the softmax function.

In this article, a 3DCNN model is used to extract spatio-

temporal features in video frames. For the basketball game video

frame sequence, 3DCNN can capture the players’ movements

and position changes, and provide key feature representations for

subsequent behavior recognition and prediction. Through spatio-

temporal analysis of video data, 3DCNN plays an important role

in the framework of multimodal audio-visual robotics, providing a

basis for comprehensive analysis of basketball game data.

3.3 Convolutional recurrent neural
network

Convolutional Recurrent Neural Network (CRNN) (Zhang and

Dong, 2020) is a hybrid neural network architecture that combines

the strengths of both Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs). It is designed to effectively

analyze sequential data with a spatial structure, such as audio

signals or spectrograms (Alashban et al., 2022). As shown in

Figure 3, it is the flow chart of CRNN.

The basic principle of CRNN involves using CNNs to extract

high-level features from input data and then feeding these

features into an RNN for sequence modeling and prediction. The

CNN component captures local patterns and spatial information,

while the RNN component models temporal dependencies in the

sequence (Liu et al., 2021).

The CRNNmodel consists of three main components:

• Convolutional Layers: These layers apply convolutional

operations to the input data to extract relevant features. The
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FIGURE 4

Flow chart of the LSTM model.

TABLE 1 Description of the NBA PTD, SD, BEDD, and SBD datasets.

Dataset Description Key Features

NBA Player Tracking

Data

Data collected by the NBA league, capturing player and ball positions, velocities, accelerations,

etc.

Real-time tracking, rich motion

information

SportsVU Dataset Motion analysis system utilizing high-speed cameras and computer vision algorithms.

Provides player positions, ball speed, passing routes, and running distances.

High-speed camera tracking,

comprehensive basketball game

data

Basketball event

detection dataset

Dataset containing basketball game videos with annotated event labels such as dribbling,

shooting, passing, etc.

Labeled events, useful for event

detection algorithms

SPORTLOGiQ

basketball dataset

Dataset consisting of basketball game videos with detailed annotations, including player

positions, ball positions, player actions, etc.

Rich information, tactical analysis,

player behavior patterns

output of these layers is a featuremap that preserves the spatial

structure of the input.

• Recurrent Layers: These layers process the feature map

from the convolutional layers in a sequential manner,

capturing temporal dependencies. The most commonly used

recurrent layer is the Long Short-Term Memory (LSTM),

which is capable of capturing long-term dependencies in

the sequence.

• Connection Layers: These layers connect the output of the

recurrent layers to a fully connected layer for classification

or prediction. The fully connected layer takes the learned

representations and maps them to the desired output classes.

The equations for the CRNNmodel can be defined as follows:

• The convolutional layer is shown in formula (6):

Xc = Conv(X;Wc, bc) (6)

whereX is the input data,Wc and bc are the weights and biases

of the convolutional layer, and Xc is the output feature map.
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Input: Training dataset: NBA PTD, SD, BEDD, SBD

Output: Trained 3DCNN-CRNN-LSTM Net

Initialize 3DCNN-CRNN-LSTM Net with random

weights;

Define loss function:

Losstotal = Lossclassification + Lossregression;

Define optimization algorithm: Adam optimizer;

for each epoch do

for each batch (video_inputs, audio_inputs, labels) in training dataset

do

Compute 3D CNN features from video_inputs;

Compute CRNN features from audio_inputs;

Concatenate 3D CNN features and CRNN

features;

Pass concatenated features through LSTM

layers;

Compute classification loss Lossclassification

using cross-entropy;

Compute regression loss Lossregression using

mean squared error;

Compute total loss Losstotal;

Update 3DCNN-CRNN-LSTM Net parameters using

optimizer;

end

end

Algorithm1. Procedure trainingprocess for 3DCNN-CRNN-LSTMnet.

• The recurrent layers is shown in formula (7, 8):

Hr = RNN(Xc;Wr , br) (7)

Hlast = Last(Hr) (8)

where Hr is the output of the recurrent layers, Wr and br

are the weights and biases of the recurrent layer, and Hlast

represents the last hidden state of the recurrent layers.

• The connection layers is shown in formula (9):

Y = FC(Hlast;Wfc, bfc) (9)

where Y is the output of the fully connected layer,Wfc and bfc
are the weights and biases of the fully connected layer.

In the context of the multimodal audio-visual robot for

player behavior recognition and prediction in basketball matches,

the CRNN model plays a crucial role in analyzing the audio

information. It takes the spectrogram or audio features as input

and learns to capture the temporal patterns and dependencies in

the audio sequence. This helps in providing real-time descriptions

of the match and contributes to the overall analysis and prediction

of player behavior.

3.4 Long short-term memory

Long Short-Term Memory (LSTM) (Kumar and Subha, 2019)

is a type of recurrent neural network architecture that addresses

the vanishing gradient problem and is capable of capturing long-

term dependencies in sequential data. It is widely used in various

tasks involving sequential data analysis, including natural language

processing, speech recognition, and time series forecasting (Tang

et al., 2022). As shown in Figure 4, it is the flow chart of LSTM.

The basic principle of LSTM is to introduce memory cells and

gating mechanisms that allow the network to selectively remember

or forget information over long sequences (Yeon et al., 2019). This

enables LSTM to effectively capture and propagate information

over extended temporal distances.

The LSTMmodel consists of several key components:

• Memory Cell: The memory cell is the core component of the

LSTM. It maintains and updates the internal state, allowing

the network to store and retrieve information over time.

• Input Gate: The input gate determines how much new

information should be added to the memory cell. It takes into

account the current input and the previous hidden state.

• Forget Gate: The forget gate decides which information

from the previous memory cell state should be discarded. It

considers the current input and the previous hidden state.

• Output Gate: The output gate controls howmuch information

from the current memory cell state should be exposed as the

output. It depends on the current input and the previous

hidden state.

The equations for the LSTMmodel can be defined as follows:

The input gate is shown in formula (10):

it = σ (Wi · [Ht−1,Xt]+ bi) (10)

The forget gate is shown in formula (11):

ft = σ (Wf · [Ht−1,Xt]+ bf ) (11)

The output gate is shown in formula (12):

ot = σ (Wo · [Ht−1,Xt]+ bo) (12)

The candidate memory cell state is shown in formula (13):

C′
t = tanh(WC · [Ht−1,Xt]+ bC) (13)

The memory cell state is shown in formula (14):

Ct = ft ⊙ Ct − 1+ it ⊙ C′
t (14)

The hidden state is shown in formula (15):

Ht = ot ⊙ tanh(Ct) (15)

In the context of the multimodal audio-visual robot for player

behavior recognition and prediction in basketball matches, the

LSTM model is used for sequence modeling and prediction. It

takes the fused features from the multimodal fusion layer as input

and learns to capture the temporal dependencies in the player

behavior data. By analyzing the sequential patterns in the data,

the LSTM model can classify different player actions and predict

future actions, contributing to the overall behavior recognition and

prediction in basketball matches.
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TABLE 2 Experimental comparison of training time, inference time, and parameters, flops between this method and other methods on four datasets.

Model

Datasets

NBA PTD SD

Training
Time (S)

Inference
time (ms)

Parameters
(M)

Flops (G) Training
Time (S)

Inference
time (ms)

Parameters
(M)

Flops (G)

CNN-LSTM (Tay

et al., 2019)

1000 5 10 50 800 4 8 40

CNN-BiLSTM

(Halder and

Chatterjee, 2020)

1100 5.5 11 55 750 3.8 7.5 37.5

LSTM-GCN (Zhao

et al., 2023)

950 4.8 9.5 47.5 850 4.3 8.5 42.5

LSTM-GANs (Rossi

et al., 2021)

1200 6 12 60 900 4.5 9 45

Ours 800 4 8 40 700 3.5 7 35

FIGURE 5

Visualization of experimental comparison of between this method and other methods on NBA PTD.
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4 Experiment

4.1 Datasets

NBA Player Tracking Data (NBA PTD) (Watanabe et al., 2022)

is collected by the NBA Alliance and encompasses information

about player and ball positions, speeds, accelerations, and more

during basketball games. This dataset is utilized for player behavior

recognition and prediction. We have gathered a total of 2,734

samples, with the training set comprising 2,232 videos, each

containing information regarding player and ball positions. The

testing set consists of 502 samples.

Sportsvu Data (SD) (Rolland et al., 2020) originates from

Sportsvu, a motion analysis system employing high-speed cameras

and computer vision algorithms for real-time tracking and analysis

of games. It provides data such as player locations, ball speeds,

passing routes, and running distances. The dataset comprises 1500

videos, each containing detailed information on player and ball

positions. These data can be combined with NBA Player Tracking

Data to provide more comprehensive basketball game data for

multi-modal audiovisual robots.

Basketball Event Detection DataSet (BEDD) (Fu et al., 2020)

includes basketball games and event labels. This dataset offers

annotation information for various events like dribbling, shooting,

and passing. The training set consists of 1,200 videos, each with

detailed event labels, while the testing set contains 300 videos, also

accompanied by corresponding event labels.

SportLogiq Basketball DataSet (SBD) (Sanford et al., 2020)

comprises basketball games with comprehensive annotations,

including player positions, ball positions, player movements, and

more. The training set includes 800 videos, each with detailed

annotation information, while the testing set contains 200 videos,

likewise enriched with annotation information.

We hope that the additional information provided above

offers a clearer description of the dataset sizes, annotation details,

and sample quantities, enhancing the reader’s understanding of

our research. For a clearer description of the data set information,

see Table 1.

4.2 Experimental details

In this paper, 4 data sets are selected for training, and the

training process is as follows:

Step 1: Data preprocessing

Extract data from NBA PTD, SD, BEDD, SBD. Divide the

multimodal dataset into training and testing sets to ensure uniform

distribution of data.

Step 2: Model Training

• 3DCNN model: train according to the structure of 3DCNN,

set the appropriate convolution kernel size, stride, pooling

operation, etc., and define an appropriate loss function and

optimizer.

• CRNN model: train according to the structure of CRNN,

combine convolution and cyclic neural network, and set

appropriate parameters. The features of these different

modalities are fused. T
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FIGURE 6

Visualization of experimental comparison of between this method and other methods on four datasets.

• Through a multimodal fully connected fusion layer for

comprehensive analysis of basketball game data. LSTM

model: train according to the structure of LSTM, set the

appropriate number of loop layers, number of hidden

units, etc.

• Multi-modal audio-visual robots: According to the proposed

method, combine 3DCNN, CRNN and LSTM to design a

multi-modal fusion layer and perform training.

Step 3: experimental evaluation

Evaluation by the following indicators: Training Time (S)

Inference time (ms), Parameters (M), Accuracy, AUC, Recall, F1

Sorce; RMSE, MAPE, MAE, and R2.

The following are the formulas and variable explanations for

each indicator,

1. The training time is shown in formula (16):

Training Time = End Time− Start Time (16)

2. The inference time is shown in formula (17):

Inference Time =
Total Inference Time

Number of Samples
(17)

3. Parameters: Parameters is the number of parameters in the

model.

4. The accuracy is shown in formula (18):

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives, and FN represents the number of false negatives.

5. The AUC is shown in formula (19):

AUC =

∫ 1

0
ROC(x)dx (19)

where ROC(x) represents the relationship between the true positive

rate and the false positive rate when x is the threshold.
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6. The recall is shown in formula (20):

Recall =
TP

TP + FN
(20)

where TP represents the number of true positives, and FN

represents the number of false negatives.

7. The F1 Score is shown in formula (21):

F1 Score = 2×
Precision× Recall

Precision+ Recall
(21)

Among them, Precision is the precision rate of the model, defined

as True Positives
True Positives+False Positives

.

8. The RMSE is shown in formula (22):

RMSE =

√

∑n
i=1(yi − ŷi)2

n
(22)

where yi is the true value, ŷi is the predicted value, and n is the

sample size.

9. The MAPE is shown in formula (23):

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

× 100 (23)

where yi is the true value, ŷi is the predicted value, and n is the

sample size.

10. The MAE is shown in formula (24):

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (24)

where yi is the true value, ŷi is the predicted value, and n is the

sample size.

11. The R2 is shown in formula (25):

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

(25)

where yi is the true value, ŷi is the predicted value, ȳ is the mean of

the true value, and n is the sample size.

12. The FLOPs is shown in formula (26):

FLOPs = Number of Multiply-Add Operations× 2 (26)

where Number of Multiply-Add Operations represents the

number of multiplication and addition operations in the model.

Multiplication and addition operations are generally considered to

be the most basic floating point operations, so each multiplication

and addition counts as two operations (one multiplication and one

addition), thus requiring a multiplication by 2.

Algorithm 1 represents the algorithm flow of the training in this

article.

4.3 Experimental results and analysis

Table 2 and Figure 5 present the experimental results conducted

on four different datasets (NBA PTD and SD), comparing various T
A
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FIGURE 7

Visualization of experimental comparison of between this method and other methods on four datasets.

methods across key performance metrics. In this analysis, we

evaluated training time (S), inference time (ms), number of

parameters (M), and FLOPs (G) to comprehensively assess the

efficiency and effectiveness of each method.

Notably, it exhibits superior results in terms of training

time, inference time, and model complexity when compared to

existing methods, namely CNN-LSTM (Tay et al., 2019), CNN-

BiLSTM (Halder and Chatterjee, 2020), LSTM-GCN (Zhao et al.,

2023), and LSTM-GANs (Rossi et al., 2021). In terms of training

time, our model requires significantly less time, achieving a

training time of 800 seconds for NBA PTD and 700 seconds

for SD, outperforming other methods by a substantial margin.

This efficiency is crucial for real-time model development and

deployment. Similarly, our model demonstrates impressive results

in inference time, with only 4 milliseconds for NBA PTD and 3.5

milliseconds for SD, showcasing its rapid prediction capabilities.

This speed advantage positions our model as an ideal choice

for applications demanding low-latency predictions. Furthermore,

when considering model complexity, our approach is notably

simpler, with only 8 million parameters for NBA PTD and 7

million parameters for SD. This reduced model complexity not

only saves computational resources but also enhances the model’s

generalization ability.

Table 3 and Figure 6 display the outcomes of our comparative

analysis, evaluating the performance of our “3DCNN-CRNN-

LSTM Net” model against several existing methods across four

diverse datasets: NBA PTD, SD, BEDD, and SBD. The results

unequivocally establish the superiority of our proposed “3DCNN-

CRNN-LSTM Net” across all datasets and metrics. Our model

consistently outperforms the alternative methods in terms of

Accuracy, AUC, Recall, and F1 Score.

In particular, our model achieves an exceptional Accuracy of

0.90 for NBA PTD and 0.82 for SD, indicating its ability to correctly

classify player actions. Furthermore, the high AUC values, 0.96 for

NBA PTD and 0.90 for SD, signify its strong discriminatory power

in distinguishing between different behavior patterns. Regarding

Recall, our model demonstrates impressive performance with

values of 0.85 for NBA PTD and 0.79 for SD, implying its

proficiency in capturing positive instances and minimizing false

negatives. The F1 Score, a balanced measure of precision and recall,

confirms our model’s effectiveness, with values of 0.88 for NBA

PTD and 0.80 for SD. Notably, ourmodel’s excellence extends to the
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BEDD and SBD datasets, where it consistently outperforms other

methods across all evaluation metrics, reaffirming its robustness

and generalizability.

These results underscore the efficacy of our approach,

leveraging multimodal audio-visual information through the

fusion of 3DCNN, CRNN, and LSTM. By capturing spatiotemporal

visual cues and real-time speech information, our model excels in

making accurate predictions about player behavior in basketball

games. The combination of multimodal fusion and sequential

analysis performed by our model through its three stages

contributes to its unmatched performance.

Table 4 and Figure 7 offer a comprehensive comparison of

various models, including our proposed “3DCNN-CRNN-LSTM

Net,” across different evaluation metrics on four distinct datasets:

NBA PTD, SD, BEDD, and SBD. This analysis aims to demonstrate

the generalizability of our proposed model in estimating player

behavior through various aspects of model evaluation.

Our “3DCNN-CRNN-LSTM Net” consistently outperforms

other models across all datasets in terms of RMSE, MAPE, MAE,

and R2. This demonstrates the robustness and generalizability of

our model in accurately predicting player behavior, regardless of

the dataset. The lower RMSE, MAPE, andMAE values indicate that

our model’s predictions closely match the actual values for player

behavior, highlighting its effectiveness in various contexts.

Additionally, the R2 values obtained by our model are

consistently higher than those of other models, indicating a better

fit of our predictions to the observed data. This underscores

the strong correlation between our model’s predictions and the

actual player behavior, reinforcing its ability to generalize well to

different datasets.

The outcomes of Table 4 underscore the superiority of our

proposed “3DCNN-CRNN-LSTM Net” in terms of prediction

accuracy and precision when compared to the alternative models.

This indicates that our model’s architecture, which leverages

multimodal information and sequential analysis, results in reliable

and generalized predictions of player behavior. The strong

performance across diverse evaluation metrics and datasets

demonstrates the adaptability and applicability of our model to

different scenarios and real-world basketball game situations.

Table 5 and Figure 8 illustrate the results of our ablation

experiments, which were designed to assess the influence of

individual model components on accuracy and F1 Score metrics

across four distinct datasets: NBA PTD, SD, BEDD, and SBD. These

experiments aimed to uncover the specific contributions of each

model component to the overall performance of our proposed

“3DCNN-CRNN-LSTM Net” in recognizing and predicting player

behaviors in basketball matches.

In our ablation experiments, we evaluated four different model

configurations: LSTM, CRNN-LSTM, 3DCNN-LSTM, and our

complete “Ours” model. The metrics used for comparison in

Table 5 include Accuracy and F1 Score.

Analyzing the results, it becomes evident that our complete

“Ours” model consistently outperforms the other configurations

across all datasets. This underscores the synergistic and

complementary nature of the three model components—3D

CNN capturing spatial-temporal features, CRNN analyzing

audio, and LSTM modeling sequential context. Together, these

components create a comprehensive understanding of player

behavior dynamics.

Our proposed “3DCNN-CRNN-LSTM Net” aligns seamlessly

with themultimodal nature of basketball games by jointly analyzing

visual and audio cues. This integration effectively captures intricate

player actions and contextual information, addressing the inherent

complexity of the task. As a result, our model achieves higher

accuracy and precision in predicting player actions compared to the

individual model components.

5 Conclusion and discussion

This article aims to solve the problem of player behavior

recognition and prediction in basketball games. By fusing multi-

modal audio-visual information, we propose a multi-modal

audio-visual robot framework based on 3D CNN, CRNN and

LSTM. By integrating three different deep learning components,

3D CNN, CRNN, and LSTM, the model can simultaneously

extract rich features from video and audio information, and

realize accurate recognition and prediction of player behavior in

basketball games. The 3D CNN is used to capture the spatial

and temporal information in the video, the CRNN analyzes the

voice information, and the LSTMmodels the sequence information

to comprehensively analyze the basketball game data. In order

to fully explore and evaluate the model, we conducted a series

of experiments to compare the performance of our method

with other classical models under different datasets. It can be

seen from the experimental results that our method performs

well under multiple evaluation indicators, achieving higher

accuracy, stability, and generalization performance. Especially in

the comparative experiments on various data sets, our method

has always maintained a leading position, not only achieved

higher accuracy and F1 Score in the recognition task, but also

TABLE 5 Comparative visualization of ablation experiments of accuracy and F1 Score metric on four datasets.

Model

Datasets

NBA PTD SD BEDD SBD

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

LSTM 0.79 0.80 0.75 0.72 0.87 0.86 0.76 0.74

CRNN-LSTM 0.81 0.79 0.74 0.71 0.86 0.85 0.75 0.73

3DCNN-LSTM 0.83 0.81 0.76 0.73 0.88 0.87 0.77 0.75

Ours 0.85 0.83 0.78 0.75 0.90 0.91 0.80 0.77
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FIGURE 8

Comparative visualization of ablation experiments on NBA PTD, SD, BEDD, and SBD.

showed better performance in the prediction task, revealing

that Its efficacy and superiority in action recognition and

prediction tasks.

However, this model also has some drawbacks: high

computational complexity and large data requirements Since

our model incorporates multiple deep learning components,

the computational complexity of the model is high, requiring

large computing resources and time for training and inference.

Deep learning models usually require a large amount of data for

training in order to achieve good generalization performance.

In some cases, it may be difficult to obtain enough multimodal

data, especially in specific scenarios or applications, it may be

difficult to collect enough audiovisual information data. Future

research can explore how to optimize the model structure and

parameters to improve the computational efficiency of the model

while maintaining the model performance. Using methods

such as lightweight network structure or model pruning can

reduce the demand for computing resources to a certain extent.

In the future, technologies such as small sample learning and

transfer learning can be considered to train models with limited

data. The performance of models with limited data can be

improved by transferring knowledge from other related domains

or tasks.

This study proposes a deep learning method based on

multimodal audio-visual data for the problem of player behavior

recognition and prediction in basketball games. This model

can help coaches and teams better understand the game

process and player performance, so as to formulate more

scientific tactics and decisions. It can also be used for in-depth

analysis of game data, digging out information hidden behind

the data, and providing fans and professional analysts with

deeper insights.
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