
TYPE Perspective

PUBLISHED 25 January 2024

DOI 10.3389/fnbot.2024.1349498

OPEN ACCESS

EDITED BY

Gian Carlo Cardarilli,

University of Rome Tor Vergata, Italy

REVIEWED BY

Chung-Chuan Lo,

National Tsing Hua University, Taiwan

*CORRESPONDENCE

Cheng Hu

c_hu@gzhu.edu.cn

RECEIVED 04 December 2023

ACCEPTED 12 January 2024

PUBLISHED 25 January 2024

CITATION

Wu H, Yue S and Hu C (2024) Re-framing

bio-plausible collision detection: identifying

shared meta-properties through strategic

prototyping. Front. Neurorobot. 18:1349498.

doi: 10.3389/fnbot.2024.1349498

COPYRIGHT

© 2024 Wu, Yue and Hu. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Re-framing bio-plausible
collision detection: identifying
shared meta-properties through
strategic prototyping

Haotian Wu1,2, Shigang Yue2,3 and Cheng Hu1,2*

1School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China,
2Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China, 3School of

Computing and Mathematical Sciences, University of Leicester, Leicester, United Kingdom

Insects exhibit remarkable abilities in navigating complex natural environments,

whether it be evading predators, capturing prey, or seeking out con-specifics, all

of which rely on their compact yet reliable neural systems. We explore the field of

bio-inspired robotic vision systems, focusing on the locust inspired Lobula Giant

Movement Detector (LGMD) models. The existing LGMD models are thoroughly

evaluated, identifying their common meta-properties that are essential for

their functionality. This article reveals a common framework, characterized by

layered structures and computational strategies, which is crucial for enhancing

the capability of bio-inspired models for diverse applications. The result of

this analysis is the Strategic Prototype, which embodies the identified meta-

properties. It represents a modular and more flexible method for developing

more responsive and adaptable robotic visual systems. The perspective highlights

the potential of the Strategic Prototype: LGMD-Universally Prototype (LGMD-

UP), the key to re-framing LGMD models and advancing our understanding and

implementation of bio-inspired visual systems in robotics. It might open upmore

flexible and adaptable avenues for research and practical applications.
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1 Introduction

In the realm of robotics, the ability to detect impending collisions is essential for

navigation and interaction with dynamic environments. Conventional methods employed

for visual detection in robotics are often hard-coded and rigid, typically require large

amounts of data for training, lacking the necessary adaptability to respond to the complex

and sophisticated movements encountered in real-world settings.

The natural world, particularly the realm of insects, offers valuable lessons on visual

processing under complex scenes. Like robots, many insect species face similar visual

challenges to navigate and survive in a high dynamic environment (Borst et al., 2010;

Borst and Helmstaedter, 2015). These challenges are visual motion perceptions that the

animals perceive and calculate through their highly effective visual neural structures.

They display an exceptional capacity to detect dynamic motion visually, a key skill for

avoiding predators and navigating through complex environments. Neuro-physiological

and anatomical studies indicate that these abilities are dependent on designated sensory

neural pathways (Judge and Rind, 1997; Peron and Gabbiani, 2009; Zhu et al., 2018).

Researchers have already taken note of these abilities and used it as inspiration to develop
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new, biologically plausible neural models in the field of robotics,

e.g., Meng et al. (2010) and Hu et al. (2017).

Within this context, the Locusts’ Lobula Giant Movement

Detectors (LGMDs) and its related neural models have garnered

considerable interest. These models have been comprehensively

analyzed, researched, and replicated for their proficiency in

detecting swift motion cues of looming, which indicates the

presence of a nearby object (Fu et al., 2019; Chang et al., 2023).

Despite significant advances, these models still face challenges in

flexibility and adaptability in our view.

Our perspective contributes to this rapidly-growing field by

uncovering a compelling pattern: across different models and

applications, we found a common framework, characterized

by simple yet effective computational strategies. By examining

the meta-properties of the LGMD models, we suggest that a

wider outlook permits the combination of these models into

a single paradigm. The renewed approach may be the key to

re-framing LGMD models, thus advancing our understanding

and implementation of bio-inspired visual systems, simplifying

the route to generalization. It presents an innovative approach,

offering a more adaptable framework over LGMD models,

marking a significant advancement in the methodology of robotic

vision systems.

Manipulating meta-properties offers great potential for

innovation, enabling the exploration of new directions in research

and practical applications. It has the potential to enhance

robotic visual systems, as well as catalyze the emergence of

new ideas, ushering in an era of more intuitive and adaptive

robotic perception. These advancements may prove promising

in the realms of micro-robot navigation, automatic driving, and

swarm robotics.

2 LGMD insights

The LGMDneurons are first discovered in locust by O’Shea and

Williams (1974), and has been tested, As illustrated in Figure 1A,

the LGMD neurons are composed of two neighboring neurons:

LGMD1 and LGMD2, both of which contain extensive dendrite

trees with fan-like shapes within their pre-synaptic regions. There

have been many computational models inspired by both of them,

e.g., Rind and Bramwell (1996), Yue and Rind (2009), i Badia and

Verschure (2004), Bermúdez i Badia et al. (2010), Fu and Yue

(2015), and Fu et al. (2018).

Figure 1D shows a schematic of a typical LGMD1 model,

illustrating the sequential process of signal transmission and

processing. Initially, the input video signal passes through the

photoreceptor (P) layer, symbolizing the perception of the

luminance changes in each pixels. The signal then bifurcates into

two distinct pathways within the inhibition/excitation (I/E) layer.

This crucial junction serves to filter out irrelevant elements of

movement, ensuring that only relevant information is passed on.

The signals then converge in the summation (S) layer, signifying

an activation process through which only the correct signals can

pass. This layer acts as a critical node to reassemble and integrate

the signals. Finally, the signals progress through the grouping (G)

layer, culminating in the activation of the LGMD neuron. This

model also contains an additional layer, the feed-forward inhibition

(FFI), which shuts down the entire model if the visual stimuli

becomes too large. Figures 1B, C shows its detection results against

looming objects, where all looming objects are correctly detected in

all results.

Similarly, a typical LGMD2 model is illustrated in Figure 1E.

The LGMD2 neuron is the neighboring partner of the LGMD1,

which is modeled as two pathways—the “on” and “off” pathway

(O’Shea and Williams, 1974; O’Shea and Rowell, 1976). Compared

to LGMD1, the signals of LGMD2 in the I/E and S layers are

separated into on and off pathways then gathered in the S layer. This

brings LGMD2 a unique characteristic that it only sensitives to dark

objects approaching against a light background, and is not sensitive

to white or light objects approaching against a dark background,

representing a preference for light-to-dark luminance changes.

These models show complex intra-layer structures where each

layer performs particular processing functions. For example, the

LGMD1 model uses pattern convolution in its inhibition layers to

imitate genuine inhibition processes observed in locust neurons.

In this model, summation and averaging operations simulate

the average reaction of similar locust neurons. These layers

possess a close correlation with genuine neuronal response signals.

Inter-layer connections within these models display consistent

connectivity patterns such as one-to-one, one-to-many, and many-

to-one connections. This can be Time delays of varying values are

implemented for these connections to account for temporal aspects

of information processing. Furthermore, global responses of insect

neurons are depicted through cross-layer connections, acting as a

switch to the models’ output.

The models’ functions are mainly linear, which we believe

simplifies the computational procedures and supports themodeling

of biological systems through linear transformations and responses.

Both the LGMD1 and LGMD2 models, for instance, employ a

summation process to depict the total response of each cell. Such a

linear structure enables the development of a hyper-layer network

representation in which the processing function of each layer

includes input, processing and output. This integrated description

permits a common expression of different properties found in

different models, and enables model transformations by modifying

these meta-properties. This framework highlights the potential of

bio-plausible models to process information efficiently and adapt

effectively, reflecting the computational proficiency of nature.

3 The strategic prototype: LGMD-UP

Based on the shared structures of the above-mentioned models,

we believe that the construction of a unified description—The

LGMD-Universally Prototype(LGMD-UP)—has become possible.

To provide typical examples, we will employ the extensively

examined LGMD1 and LGMD2 models.

The LGMD1 model typically comprises four network layers

and a feed-forward global suppressor—the P, I/E, S, G layers, and

the FFI suppressor. The input signal, post-processed in the P

layer, passes to the I/E layer. At this stage, the signal splits into

two pathways for specialized processing. The signals from these

pathways merge in the S layer, culminating in a response in the G

layer. At the same time, the FFI layer can be activated in response to

excessive P-layer connections, effectively suppressing global signal
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FIGURE 1

The LGMD neurons and their computational models. (A) The structure of LGMD1 and LGMD2 neurons in locust, which is adapted from Rind et al.

(2016). The figure depicts the abundant dendrite trees with fan-shaped structures in the pre-synaptic regions of both neurons. The scale bars in

LGMD1 and LGMD2 are 10 and 5µm, respectively. (B) The responds to a computer-generated visual stimuli of an LGMD1 model, illustrating the

middle layer’s response of the model, which e�ectively identified the shape of the looming object. The model is based on Yue and Rind (2006). (C)

The responds of the LGMD models and neurons, which is adapted from Dewell and Gabbiani (2018). The standard LGMD neuron response is

depicted in the upper, whilst the lower portrays the LGMD model’s response identically to the actual neuron. (D) One possible LGMD1 model, which

is based on Yue and Rind (2006). This is a standard LGMD1 model with four feed-forward connection layers and one hyper-layer connection layer. (E)

One possible LGMD2 model, which is based on Fu and Yue (2015). This is a typical LGMD2 model, similar to LGMD1, with “on” and “o�” pathways split

from the I/E layer and then reconnected in the S layer.

output. The LGMD2 is similar, but it splits into two pathways in the

I/E layer, then the signals are again gathered together in the S layer.

To represent these structures coherently, we use a modular

directed graph network (Scarselli et al., 2008), where each node

corresponds to a layer, each with different inputs, processing

methods and outputs. Nonetheless, a cohesive depiction can still

be achieved through a modular representation, as presented in

Figure 2A that acts as a summary framework for a solitary layer.

This layer encompasses characteristics, for instance:

1. Input Edge attributes, specifying the source of the signals and

the signal size.

2. Node attributes, defining the processing function. For each

node, there are two optional pre-processing parameters, which is

the convolution and the rectifier. There are also two optional post-

processing parameters, which is the time delay coefficient and the

decay coefficient.

3. Output Edge attributes, specifying the destination of the

signal, and its size.

In each node, two optional pre-processing and two post-

processing is applied. The pre-processing procedures, which are the

convolution and the rectifier, can be formulated as follows:

fconv(x) = x ∗ K; frectifier(x) =

{

max(0,−x), if x 6 0;

max(0, x), if x > 0.

where ∗ is the convolution process,K is the convolution kernel with

adjustable size. If K ∈ ℜ, then it’s a gain coefficient.

These processes are purely optional, depending on the function

and requirements of each node. For example, in LGMD2 models,

rectifiers are enabled in the I/E and S layers and disabled in other

layers. The convolution (including gain), on the other hand, is more

commonly used in the P, I/E, G, and FFI layers in both LGMD1 and

LGMD2 models.
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FIGURE 2

The structure of LGMD-UP. (A) Attributes of the Graph Network, including Input Edge, Node, and Output Edge, each attribute has di�erent

properties. Input Edge contain signals of the form R
m×n, it is then go through the Node with a function F :ℜm×n 7→ ℜa×b. There are two optional

pre-processing parameters and two optional post-processing parameter. Output Edge are the signals of the form R
a×b. (B) The LGMD models

described in Graph Network. The Perception, Inhibition, and Global Respond Mechanisms are recursive structures, while other layers are

feed-forward structures. (C) The functions in each node. They may di�er from each other, but they all correspond to the layers of current LGMD

models. For example, the Perception node calculates the di�erences between two inputs: its last output and the current in node.

Similarly, the post-processing procedures, including time delay

and decay can be also formulated as follows:

fdelay(x) = x · z−k; fdecay(x) = x · e−i

where fdelay are defined in Laplacian domain.

These processes are also optional, depending on each node’s

function and demands. For example, time delays are enabled in P

and I/E layers in both LGMD1 and LGMD2, decays are used in P

layers, FFI layers in both LGMD1 and LGMD2.

We can further formulate this graph network G by a

standardized graph description: G = {N,E}, where N is the set of

nodes, and E is the set of edges. Let prw represent the pre-processing

function, fw represent the processing function and pow represent

the post-processing function. Then, the hidden state x and the

output y of node can be defined as follows:

xt = prw(lt , xt−1); yt = pow(fw(lt , xt))

where lt are the signals from its input edges, yt is the output at time

t. Note that fw can be different in each node, prw and pow are the

combinations of optional functions, which are also different in each

node.

Using this construction, we obtain a modular LGMDs

representation that matches the responses of the original network,

fully exposing all structures and connections, as shown in

Figure 2B. The network nowmanifests as a graph network with four

distinct meta-properties: Perception, Inhibition, Activation, and

Diffusion, with an attached Global Response Mechanism, as shown

in Figure 2C. Each mechanism is critical to the overall performance

of the system, mirroring intricate processes observed in biological

counterparts.

Perception mechanism: The Perception Mechanism

represents the initial stage in the model, focusing on detecting

luminance changes over time in each cell’s domain. It calculates

differences between successive frames to pinpoint areas where

luminance changes, indicating motion.

Inhibition mechanism: This critical filter assesses candidates

identified by the Perception Mechanism and excludes those that do

not correspond to approaching movements. Essential for boosting

the model’s accuracy, it guarantees that only relevant motion cues

are conveyed for further processing.

Activation mechanism: The activation mechanism categorizes

and sorts the appropriate stimuli that have passed through the

inhibition mechanism. It operates as a decision-making procedure

by assessing the significance of the stimuli and recognizing ones

that need additional processing.
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Diffusion mechanism: The Diffusion Mechanism augments

and arranges the outcomes from the Activation Mechanism. It

enhances the selected stimuli and integrates them into a coherent

representation of the approaching object. This mechanism is vital

for delivering a thorough and precise depiction of the stimuli.

Global respond mechanism: The Global Respond Mechanism

serves as a toggle switch for the entire network. It identifies

scenarios where motion detection may be unnecessary or pose

potential harm. In such cases, it temporarily deactivates the

entire motion detection network, thus ensuring network focus and

efficiency is maintained.

4 Perspective on the LGMD-UP

The modular design of the LGMD-UP forms the bedrock of

its flexibility. With five modular nodes replacing the hyper-layered

connections, it facilitates the independent development, testing,

and integration of each module in the system, thereby enabling

easy customization and scalability of the model. Additionally, the

independence of the modules means that changes or improvements

can be made in one area without disrupting the entire system.

The modular structure of this system has significant advantages

in research and development environments–it permits constant

testing and iteration. The ability to modify and turn on/off

individual parameters in each node ensures that the LGMD-UP

can be tailored to meet specific requirements or easily adapt to

new challenges.

The graph network framework significantly enhances the

efficiency of the LGMD-UP when compared to traditional hyper-

layered connections. Due to the independence of each node,

this framework allows for easier time updates and parameter

changes, which are essential in rapidly evolving fields such as

swarm robotics. The graph network also simplifies and unifies

structures, making it more efficient than more traditional designs.

This efficiency is essential for keeping the visual system in

line with technological advances and the diverse requirements

of applications.

The adaptability of the LGMD-UP is also based on its

graph-network structure, which allows the nodes and edges

of the network to be dynamically reconfigured. This in turn

establishes sophisticated interrelationships between the model’s

elements, optimizing processing for specific tasks or environments.

For instance, within the context of automated driving, specific

mechanisms, like the inhibition mechanism, can be adjusted

and independently tested to match the current road and traffic

conditions, without impacting other functions. Crucial to its

adaptability, the ability to modify the network’s configuration and

connections according to a variety of demands optimizes the

system’s capabilities to adjust to various visual scenarios adeptly.

It is also worth noting the distinction between bio-inspired

and bio-plausible models in this context. Bio-inspired models

extract key biological principles for technological applications,

whereas bio-plausible models aim for accuracy and plausibility in

simulating actual biological processes. The LGMD model uniquely

embodies both approaches, precisely imitates the LGMD neuron

in insects that detects fast-approaching objects, thus demonstrating

bio-plausibility. Simultaneously, it promotes technological progress

in motion detection systems, thereby classifying it as a bio-

inspired category as well. This duality highlights the special

role of LGMD models in bridging biological accuracy and

technological innovation.

5 Conclusion

In conclusion, our innovative approach to bio-plausible visual

systems in robotics, which focuses on the LGMDmodels of Locusts,

demonstrates significant potential for the advancement of robotic

perception. The LGMD-UP, which incorporates these discoveries,

represents a considerable advancement in our methodology for

robotic vision systems. The graph network structure, which

takes inspiration from nature’s simplicity and efficiency, provides

exceptional adaptability and modularity. This feature makes

it highly suitable for addressing the dynamic demands of

contemporary robotics. The LGMD-UP does not only improve

robots’ ability to interact with their environment in real-time but

also paves the way for further research and development. Our view

paves the way for further advancements in this field, encouraging

continued exploration and refinement of bio-inspired systems for

increasingly intuitive and adaptive robotic perception. Future work

can be focused on this perspective, by re-framing and adjusting the

LGMD-UP to meet specific requirements of diverse applications.
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