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Introduction: Service robot technology is increasingly gaining prominence in the

field of artificial intelligence. However, persistent limitations continue to impede

its widespread implementation. In this regard, human motion pose estimation

emerges as a crucial challenge necessary for enhancing the perceptual and

decision-making capacities of service robots.

Method: This paper introduces a groundbreaking model, YOLOv8-ApexNet,

which integrates advanced technologies, including Bidirectional Routing

Attention (BRA) andGeneralized Feature PyramidNetwork (GFPN). BRA facilitates

the capture of inter-keypoint correlations within dynamic environments by

introducing a bidirectional information propagation mechanism. Furthermore,

GFPN adeptly extracts and integrates feature information across di�erent scales,

enabling the model to make more precise predictions for targets of various sizes

and shapes.

Results: Empirical research findings reveal significant performance

enhancements of the YOLOv8-ApexNet model across the COCO and MPII

datasets. Compared to existing methodologies, the model demonstrates

pronounced advantages in keypoint localization accuracy and robustness.

Discussion: The significance of this research lies in providing an e�cient and

accurate solution tailored for the realm of service robotics, e�ectively mitigating

the deficiencies inherent in current approaches. By bolstering the accuracy

of perception and decision-making, our endeavors unequivocally endorse the

widespread integration of service robots within practical applications.

KEYWORDS

service robots, human motion pose estimation, YOLOv8-ApexNet, bidirectional routing

attention, generalized feature

1 Introduction

With the continuous progress of technology, service robots, as intelligent systems
that integrate various perceptual modes, are becoming increasingly popular in today’s
society (Sun et al., 2019; Cheng et al., 2020). These robots can not only receive and
process visual data but also integrate information from various sensors, such as sound
and force, enabling outstanding performance in various complex environments and tasks.
The widespread applications of service robots span across fields such as healthcare,
manufacturing, and service robots, providing people with more intelligent and flexible
solutions (Iskakov et al., 2019; Sattler et al., 2019; Ke et al., 2023). Deep learning technology
plays a pivotal role in this field, providing strong support for the performance improvement
of service robots. Deep learning algorithms, especially structures like Convolutional Neural
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Networks (CNN) and Recurrent Neural Networks (RNN), learn
feature representations of large amounts of complex data,
enabling service robots to more accurately understand and process
information from different sensors (Moon et al., 2020; Zhao
et al., 2023). This deep learning representation of data helps
enhance the robot’s perceptual capabilities, thereby strengthening
its decision-making and task-execution abilities. Despite the
significant improvements brought by deep learning to service
robots, there are still challenges and shortcomings in practical
applications (Jin et al., 2022). One of them is the accurate
estimation of human body movement posture, a crucial aspect
in various application scenarios of service robots. In many tasks,
such as human-robot collaboration and health monitoring, precise
understanding of human body movement posture is essential
for effective interaction with humans. Therefore, research on the
estimation of human body movement posture has become an
urgent and challenging task in the current field of service robots
(Boukhayma et al., 2019; Wang et al., 2019; Ji and Zhang, 2023).
In this paper, we will focus on exploring methods for motion
keypoint detection and quality assessment based on service robots
to address the current shortcomings in the estimation of human
body movement posture.

In the past few years, several remarkable models have emerged
in the field of human body posture assessment, playing a crucial
role in enhancing the understanding of human bodymovements by
service robots. The following are five related human body posture
assessment models that have garnered widespread attention in
recent years:

OpenPose is an open-source human body posture estimation
system based on convolutional neural networks, renowned for
its end-to-end training framework. By simultaneously detecting
multiple key points, including the head, hands, and body,
OpenPose is capable of providing robust posture estimation in
scenarios with high real-time requirements. However, OpenPose
may have certain limitations when dealing with complex occlusions
and multi-person scenes (Chen et al., 2020).

HRNet adopts high-resolution input images and effectively
preserves both local and global posture information by
constructing a multi-scale feature pyramid network. Compared
to some low-resolution models, HRNet has achieved a significant
improvement in accuracy. However, due to the higher
computational cost associated with high-resolution inputs, its
real-time performance may be subject to some impact (Li Y. et al.,
2020).

AlphaPose is a human body posture estimation model that
utilizes a multi-stage cascade network, refining the positions of
key points through iterative stages. It emphasizes fine-grained
processing for posture estimation, enabling excellent performance
in complex scenarios. However, the model may not perform
well in situations with rapidly changing postures (Fang et al.,
2022).

SimpleBaseline employs a simple yet effective approach by
predicting key points through stacking multiple residual blocks.
Its lightweight design allows for satisfactory performance even in
resource-constrained environments. Nevertheless, SimpleBaseline
may have some limitations when dealing with occlusions and
complex movements (Zeng et al., 2022).

MuPoTS-3D is a multi-camera-based human 3D pose
estimation model with robust cross-camera generalization
capabilities. The model, by integrating information from multiple
cameras, offers more comprehensive pose information. However,
due to the need for collaborative action among multiple cameras,
its complexity in practical applications may be relatively high (Shen
et al., 2022).

These models signify a progression from traditional to
deep learning, from single-scale to multi-scale, and from two-
dimensional to three-dimensional approaches (Pillai et al., 2019).
While each model has attained considerable success in the domain
of human body posture assessment, they also possess their own
limitations, raising more intricate questions for real-time motion
keypoint detection and quality assessment in service robots. In
response to these challenges, we introduce YOLOv8-ApexNet.

YOLOv8-ApexNet not only extends the You Only Look Once
(YOLO) series of models but also introduces innovative designs
tailored to the requirements of service robots. Specifically, we have
integrated two key components: Bidirectional Routing Attention
(BRA) and Generalized Feature Pyramid Network (GFPN). Firstly,
compared to traditional models, ApexNet significantly enhances
real-time performance, enabling faster detection and quality
assessment of motion keypoints. Secondly, the model’s adaptability
in complex scenarios has been strengthened, particularly
demonstrating more stable performance in situations involving
occlusion and rapid motion changes. Most importantly, ApexNet
exhibits higher robustness in real-world applications of service
robots, enabling them to understand human body movements
more accurately and participate more intelligently in collaborative
tasks or service provision.

The contributions of this paper are outlined as follows:

• This paper introduces the YOLOv8-ApexNet model,
which is not only an extension of the YOLO series but
also incorporates innovative designs into the original
framework. By introducing Bidirectional Routing Attention
and Generalized Feature Pyramid Network, this model
demonstrates higher accuracy and robustness in the tasks
of motion keypoint detection and quality assessment for
service robots. This provides a more advanced solution for
the field of service robots to better understand human body
movements accurately.

• The introduction of YOLOv8-ApexNet and the integration
of Bidirectional Routing Attention and Generalized Feature
Pyramid Network collectively contribute to improving the
real-time performance and computational efficiency of service
robots systems. Through adopting a lightweight design and
efficient information extraction methods, the model reduces
computational burden while maintaining high accuracy,
achieving more efficient real-time motion keypoint detection
and quality assessment. This provides robust support for
service robots tasks in practical application scenarios that
demand high real-time requirements.

• The introduction of YOLOv8 ApexNet also brings broader
application prospects in the field of service robotss. This
model can not only accurately detect human motion
keypoints but also achieve posture estimation and behavior
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recognition in complex environments, providing robots
with richer perception and understanding capabilities. This
is of great significance for the participation and service
provision of service robots in collaborative tasks, such as
medical assistance, intelligent transportation, and human-
robot cooperation.

2 Related work

2.1 Based on the top-down human motion
pose estimation method

Top-Down human Motion Pose Estimation methods divide
human detection and keypoint detection into two stages, effectively
integrating global and local information to enhance the accuracy
of human motion pose estimation. Among these methods, Simple
Baseline is renowned for its simplicity and efficiency, characterized
by fast speed, easy implementation, and suitability for real-time
applications (Jin et al., 2021; Khirodkar et al., 2021). However, its
accuracy may be limited in complex scenarios with significant pose
variations. In contrast, Mask-RCNN combines object detection
with keypoint detection to improve accuracy and generate semantic
pose masks, albeit at the expense of increased computational
complexity and slower speed (Ning et al., 2024). On the other
hand, Openpose employs a multi-stage convolutional neural
network structure for end-to-end human motion pose estimation,
particularly excelling in multi-person pose estimation, yet may
suffer from inaccurate localization in complex backgrounds (Luo
et al., 2021). DEKR enhances accuracy by introducing inter-
keypoint correlations, effectively handling occlusions and complex
poses, albeit requiring substantial training data and computational
resources. CGNet integrates global and local information to
improve computational efficiency while maintaining accuracy, but
accuracy may decrease in extreme poses and occluded scenarios
(Ning et al., 2023). Lastly, PINet achieves a balance between
accuracy and speed through staged pose estimation and keypoint
refinement strategies, albeit with limited capability in handling
complex scenes and small targets (Wang et al., 2023).

These top-down methods, while pursuing higher accuracy,
are also striving to improve real-time performance to better
adapt to practical applications such as service robots. Current
research trends focus on introducing more efficient model
structures, optimizing computational processes, and utilizing
hardware acceleration to enhance the real-time performance of top-
downmethods while maintaining accuracy, addressing the needs of
service robots and other real-world applications.

2.2 Based on the bottom-up human
motion pose estimation method

Bottom-Up human motion pose estimation methods adopt
a unique strategy by first detecting human body parts in the
image and then combining these parts into complete human body
poses through effective association algorithms (Cheng et al., 2020).
Compared to top-down methods, bottom-up methods are often
faster during testing inference, making them particularly suitable

for multi-person scenarios. Among them, OpenPose is a classic
method that detects human body parts through convolutional
neural networks and combines them into complete human
body poses using association algorithms, demonstrating strong
performance in real-time and multi-person scenario processing.
The Associative Embedding (AE) method detects human body
parts by generating associative embedding vectors, effectively
connecting multiple parts, and enhancing adaptability to complex
scenes (Li J. et al., 2020). The Part Affinity Fields (PAF) method
utilizes learned human joint affinities to construct affinity fields,
aiding in accurately connecting human body parts. HigherHRNet
improves the utilization of multiscale information through a
hierarchical feature pyramid network, achieving a balance between
accuracy and real-time performance. Multiview Pose Machines
(MPM), by leveraging multi-view information and synthesizing
images from multiple camera angles, provide potential advantages
for human motion pose estimation in multi-person collaborative
environments. These bottom-up pose estimation methods offer
a rich selection of technical choices through different means
to address the tasks of motion keypoint detection and quality
assessment for service robots, adapting to various scenarios and
requirements (Khirodkar et al., 2021; Yao and Wang, 2023).

2.3 Research on human motion pose
estimation based on YOLO

You Only Look Once (YOLO) is a deep learning model
originally designed for real-time object detection, but it has also
made significant contributions in the field of human motion
pose estimation. In comparison to traditional human motion pose
estimation methods, YOLO boasts high real-time performance and
lower computational costs, giving it a unique advantage in motion
keypoint detection and quality assessment tasks for service robots
(Yang et al., 2023).

One of YOLO’s key contributions is its end-to-end design,
integrating both object detection and human motion pose
estimation into a single model. Traditional human motion pose
estimation methods often require multiple stages, including human
body detection and keypoint localization. YOLO simplifies this
process and enhances overall efficiency by directly outputting
the target’s position and keypoint information through a single
forward propagation process. Additionally, YOLO introduces the
concept of anchor boxes, using a predefined set of anchor boxes
to better adapt to targets of different sizes and proportions (Li
et al., 2023). In the context of human motion pose estimation,
this means that YOLO can more flexibly handle human bodies
of varying sizes and poses, making it more versatile. Another
crucial contribution is YOLO’s real-time performance. Since service
robots typically require quick responses in practical applications,
YOLO’s high real-time performance makes it an ideal choice for
real-time human motion pose estimation. It achieves fast inference
speeds through effective model design and optimization without
sacrificing accuracy (Liu et al., 2023).

In summary, YOLO’s contributions to human motion pose
estimation lie primarily in its end-to-end design, the use of
anchor boxes, and the achievement of high real-time performance.
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These features make YOLO a powerful tool, providing an efficient
and accurate solution for motion keypoint detection and quality
assessment in service robots.

3 Method

3.1 YOLOv8 network

YOLOv8, the eighth version of “You Only Look Once,” is
an advanced object detection model in the YOLO series. Object
detection is a fundamental task in computer vision, and YOLOv8
is highly regarded for its excellent balance between accuracy and
real-time performance. One of its core features is the adoption
of a unified detection framework that allows for simultaneous
prediction of multiple objects in an image. In practical applications,
YOLOv8 is widely used in autonomous vehicles, surveillance
systems, and robotics, among others. Its outstanding real-time
performance makes it an ideal choice for scenarios that require fast
and accurate object detection.

The overall structure of YOLOv8, as shown in Figure 1, features
an optimized backbone architecture using the CSP structure to
enhance feature extraction capabilities while maintaining
computational efficiency. The model’s neck adopts an advanced
PAN structure that facilitates the fusion of features from different
layers, improving detection performance at various scales. The head
of the model uses a decoupled approach, simplifying the prediction
process and employing an anchor-free method, contributing
to the model’s simplicity and efficiency. The loss function in
YOLOv8 is a combination of advanced focal loss variants and
intersection-over-union (IOU) metrics, fine-tuning the training
process to improve model convergence and accuracy. Furthermore,
YOLOv8’s sample assignment strategy has been improved by using
a Task-Aligned Assigner, ensuring that the model’s training is
more aligned with the specific tasks it needs to perform. This
not only makes the model robust but also demonstrates superior
generalization capabilities when deployed in real-world scenarios.
Training YOLOv8 on large and diverse datasets ensures that
the model learns robust features, enabling reliable performance
across various settings. Enhancements in data handling, training
techniques, and architecture improvements have all contributed
to YOLOv8’s state-of-the-art performance in the field of
object detection.

3.2 YOLOv8-ApexNet network

This paper introduces the YOLOv8-ApexNet network as
an improved version based on YOLOv8, specifically designed
for motion keypoint detection and quality assessment tasks in
service robots. YOLOv8 is well-known for its high real-time
performance and accurate object detection, and ApexNet builds
upon this foundation by introducing two key modules: Generalized
Feature Pyramid Network (GFPN) and Bidirectional Routing
Attention (BRA).

The GFPN module introduces a pyramid structure, allowing
the network to gather multi-scale contextual information at
different levels. This improves the network’s feature extraction

capabilities, enabling it to better adapt to movements of different
scales and poses. In motion keypoint detection, this means a
more comprehensive understanding of image content, enhancing
the accuracy of keypoint localization. The BRA module, through
a bidirectional routing mechanism, selectively enhances the
network’s focus on features at different levels. This mechanism
allows the network to concentrate more on critical areas,
particularly in complex motion patterns and occlusion scenarios.
By guiding attention, BRA increases the network’s sensitivity to
crucial information, thereby enhancing the detection of motion
keypoints. The combined application of these two modules aims
to address critical issues in motion keypoint detection and
quality assessment tasks for service robots, including improving
adaptability to multiple scales and poses and enhancing robustness
to complex motion patterns and occlusion.

Through these innovative designs, YOLOv8-ApexNet strives to
provide a more accurate and robust solution for the diversity and
complexity present in real-world scenarios. The overall network
structure of YOLOv8 ApexNet is illustrated in Figure 2.

3.3 Generalized Feature Pyramid Network

The Generalized Feature Pyramid Network (GFPN) is a critical
technology introduced in the field of deep learning to address
the issue of hierarchical feature fusion in Convolutional Neural
Networks (CNNs) (Tang et al., 2021). The initially introduced
Feature Pyramid Network (FPN) has proven effective in enhancing
the performance of deep learning models in object detection
tasks, especially when dealing with targets at different scales.
The core idea of FPN is to achieve feature hierarchy fusion
through both top-down and bottom-up pathways, allowing the
network to simultaneously focus on semantic information at
different hierarchical levels. This hierarchical fusion helps improve
the model’s perceptual capabilities for targets at different scales,
thereby enhancing the accuracy of object detection. To further
strengthen feature propagation and encourage information reuse,
improved versions of the Feature Pyramid Network, such as
PANet, have been proposed. PANet enhances the representational
capability of the feature pyramid by introducing additional
pathways and mechanisms, making the network more adaptable
to targets with multi-scale structures. Another enhancement is
the Bidirectional Feature Pyramid Network (BiFPN), which adds
a bottom-up pathway to FPN, enabling bidirectional cross-scale
connections. This design effectively leverages multi-scale features,
allowing the network to comprehensively perceive the semantic
information of targets. The introduction of BiFPN emphasizes
further optimization of hierarchical feature fusion, providing a
more powerful performance for object detection tasks.

As a key technology for feature fusion, the Generalized Feature
Pyramid Network (GFPN) contributes important methodology to
enhance the performance of deep learning models in handling
multi-scale object detection tasks by extending and improving
different versions of the feature pyramid network. In this paper,
the introduction of GFPN aims to enhance the perception and
processing capabilities of YOLOv8-ApexNet for multi-scale pose
information, thereby improving the accuracy of motion keypoints.
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FIGURE 1

Overall Network architecture diagram of YOLOv8 (Talaat and ZainEldin, 2023).

FIGURE 2

Overall network architecture diagram of YOLOv8-ApexNet.
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In the GFPN formulation, the refined position of each keypoint
is updated based on its original position and the weighted sum of
displacement vectors from other keypoints.

P
′
i = Pi +

N
∑

j

wij · 1Pij (1)

where: P
′
i is the refined position of keypoint i, Pi is the original

position of keypoint i, wij is the weight between keypoints i and
j, 1Pij is the displacement vector from keypoint i to keypoint j.

In the weight calculation, the weight wij is computed based on
the exponential scale of the displacement vectors between keypoints
i and j.

wij =
esij

∑N
k esik

(2)

where: wij is the weight between keypoints i and j, sij is the scale of
the displacement vector from keypoint i to keypoint j.

The scale sij of the displacement vector is predicted through
a Multi-Layer Perceptron (MLP) that takes initial scale estimates
as input.

sij = MLP(s(0)ij , s(1)ij ) (3)

where: sij is the scale of the displacement vector from keypoint i to

keypoint j, s(0)ij and s
(1)
ij are learnable parameters.

The displacement vector 1Pij is calculated as the difference
between the positions of keypoints i and j.

1Pij = Pj − Pi (4)

where: 1Pij is the displacement vector from keypoint i to keypoint
j, Pi and Pj are the positions of keypoints i and j.

The first branch of the scale prediction (s(0)ij ) is determined
by applying ReLU activation to a linear transformation of the
displacement vector.

s
(0)
ij = ReLU(W0 · 1Pij) (5)

where: s(0)ij is the first branch of the scale prediction for keypoints i
and j,W0 is a learnable weight matrix.

Similarly, the second branch of the scale prediction (s(1)ij ) is
obtained using another linear transformation and ReLU activation.

s
(1)
ij = ReLU(W1 · 1Pij) (6)

where: s(1)ij is the second branch of the scale prediction for keypoints
i and j,W1 is another learnable weight matrix.

The final scale prediction through MLP is computed by
concatenating the results from the two branches.

MLP(x, y) = ReLU(W2 · [x, y]+ b2) (7)

where: MLP(x, y) is a multi-layer perceptron, x and y are input
features, W2 is a learnable weight matrix, b2 is a learnable
bias vector.

3.4 Bidirectional Routing Attention

The core idea of the Neck Multiscale Feature Fusion Network
is to merge feature maps extracted from different network layers
to enhance the performance of object detection at multiple scales.
However, there is a common issue in the feature fusion layer
of YOLOv8, namely, the presence of information redundancy
from different feature maps (Fang et al., 2022). To overcome this
limitation, we introduce a dynamic, query-aware sparse attention
mechanism, known as Bidirectional Routing Attention (BRA).
As an attention mechanism, BRA provides a small subset of the
most relevant keys/values tokens for each query in a content-
aware manner. In the feature fusion process of the YOLOv8
model, the introduction of BRA aims to optimize information
propagation, reduce information redundancy, and make feature
fusion more refined and efficient. This mechanism is dynamic
because it adjusts the corresponding keys/values tokens based on
the content of the query, allowing the network to flexibly focus
on different parts of the features. This is particularly crucial for
handling multi-scale object detection tasks, as features at different
scales have varying importance for objects of different sizes. In
summary, the introduction of Bidirectional Routing Attention
(BRA) in the feature fusion layer of YOLOv8 overcomes the
issue of information redundancy. Through a dynamic query-aware
mechanism, the network intelligently focuses on crucial features,
enhancing the performance of multi-scale object detection. The
network architecture diagram of BRA is shown in Figure 3.

In the Bidirectional Routing Attention (BRA) mechanism, the
query matrix Q is obtained by multiplying the input matrix X with
the learnable query weight matrixWQ.

Q = X ·WQ (8)

where: Q is the query matrix, X is the input matrix, WQ is the
learnable query weight matrix.

The key matrix K is derived from the input matrix X using the
learnable key weight matrixWK .

K = X ·WK (9)

where: K is the key matrix,WK is the learnable key weight matrix.
Similarly, the value matrix V is calculated by multiplying the

input matrix X with the learnable value weight matrixWV .

V = X ·WV (10)

where: V is the value matrix, WV is the learnable value
weight matrix.

The scaled dot-product attention output S is computed using
the softmax function applied to the normalized dot product of Q
and KT , divided by the square root of the dimensionality d.

S = softmax

(

Q · KT

√
d

)

· V (11)

where: S is the scaled dot-product attention output, d is the
dimensionality of the query and key vectors.
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FIGURE 3

Overall network architecture diagram of BRA.

Finally, the output matrix Y is obtained by multiplying S with
the learnable output weight matrixWO.

Y = S ·WO (12)

where: Y is the final output, WO is the learnable output
weight matrix.

4 Experiment

4.1 Dataset

The experimental section of this paper is based on two well-
known public datasets: Common Objects in Context (COCO) and
MPII Human Pose. Additionally, we collected data on athlete
pose variations from videos containing various sports activities,
encompassing actions such as throwing, running, jumping,
and striking.

Firstly, the COCO dataset is a large-scale dataset widely used
for object detection and human motion pose estimation, featuring
complex images from various daily scenarios (Zhang et al., 2021).
The dataset comprises over a million images covering 80 different
object categories. For our research, we selected images from the
COCO dataset that involve athletes and sports activities to acquire
diverse motion pose data.

Secondly, the MPII Human Pose dataset focuses on human
motion pose estimation, including images ranging from single
individuals to multiple people, along with corresponding annotated
keypoints (Zhang et al., 2019). Widely applied in the field of human
pose research, this dataset provides detailed pose information for
evaluating the model’s performance in motion keypoint detection
and quality assessment.

By combining the COCO and MPII datasets with self-collected
sports activity video data, the experimental section of this paper
aims to comprehensively evaluate the performance of service
robots motion keypoint detection and quality assessment methods.

The goal is to enhance the model’s robustness and generalization
capabilities across various aspects.

4.2 Experimental environment

Hardware Requirements: The server operating system used in
this experiment is Ubuntu 20.04.4 LTS. The detailed specifications
of the server are as follows: CPU: IntelÂő Xeon(R) E5âĂŞ2650
V4@2.20GHz × 48, 128GB RAM, GPU: NVIDIA TITAN V
with 12GB of memory. The server configuration meets the
computational requirements for the experimental method in this
chapter. In the actual experiment, two GPUs were used to enhance
training efficiency.

Software Requirements: Python 3.9, PyTorch 1.11.3, CUDA
11.7. PyTorch is a Python-based scientific computing library that
primarily implements a series of machine learning algorithms
through an executable dynamic computation graph. The use of
a dynamic computation graph allows models to be more flexible
for adjustment and optimization. PyTorch comes with many
optimizers, including SGD, Adam, Adagrad, etc., making it easier
for developers to implement optimization algorithms. The specific
specifications are shown in Table 1.

4.3 Baseline

High-resolution network (HRNet) (Seong and Choi, 2021):
HRNet is a network architecture based on high-resolution feature
maps. In contrast to traditional down-sampling and up-sampling
structures, HRNet maintains a flow of high-resolution information,
allowing the network to better capture details in poses. The model
has achieved significant success in human motion pose estimation
tasks, particularly excelling in multi-scale keypoint localization.

HigherHRNet (Cheng et al., 2020): HigherHRNet is an
improvement upon HRNet, introducing a hierarchical feature
pyramid network. This means the network can simultaneously
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TABLE 1 Hardware and software requirements.

Requirement Specification

Operating System Ubuntu 20.04.4 LTS

CPU Intelr Xeonr E52650 V4 @ 2.20GHz× 48

RAM 128GB

GPUs 2× NVIDIA TITAN V with 12GB memory each

Python version 3.9

PyTorch version 1.11.3

CUDA version 11.7

Features Dynamic computation graph, multiple optimizers (SGD,
Adam, Adagrad)

retain high-resolution information at different levels, effectively
enhancing its perception of multi-scale structures. HigherHRNet
has demonstrated improved performance in human motion pose
estimation, especially when dealing with scenes involving complex
multi-scale variations.

YoloV5Pose (Hou et al., 2020): YoloV5Pose is a human motion
pose estimation model based on YoloV5, leveraging YoloV5’s
object detection capabilities and extending them to human motion
pose estimation tasks. The model adopts a single-stage detection
approach, integrating object detection and keypoint localization
for more efficient end-to-end training and inference. YoloV5Pose
strikes a balance between speed and accuracy, making it suitable
for real-time scenarios.

YoloV8pose (Liu et al., 2023): YOLOv8pose is an upgrade
from YOLOv5Pose. This model utilizes deep learning techniques to
detect key keypoints of the human body in a single image, enabling
real-time prediction of human body poses. By leveraging multi-
scale features and advanced network architecture, YOLOv8pose
can accurately capture complex human poses and achieve higher
performance and robustness across various scenarios.

OpenPose (Chen et al., 2020): OpenPose is a classic
multi-person human motion pose estimation framework that
simultaneously detects multiple keypoints using convolutional
neural networks. Themodel performs feature extraction at multiple
levels, effectively capturing spatial relationships in human poses.
OpenPose has set benchmarks in the field of open human motion
pose estimation and is widely applied to various real-time human
analysis tasks.

Hourglass (Xu and Takano, 2021): Hourglass is a recursive
network structure that accomplishes multi-scale modeling of
poses through multi-level bottom-up and top-down processing.
Inspired by the hourglass structure of the human body, the
model efficiently handles complex relationships in human poses.
Hourglass has demonstrated outstanding performance in image
semantic segmentation and human motion pose estimation tasks.

LightOpenPose (Zhao et al., 2022): LightOpenPose is a
lightweight optimized version of OpenPose, aiming to maintain
accuracy while reducing the model’s computational complexity.
Through a series of lightweight designs and network optimizations,
LightOpenPose delivers acceptable performance even in resource-
constrained environments. This makes it practically feasible for
embedded systems and mobile applications.

4.4 Implementation details

4.4.1 Data processing
All images in the dataset have been labeled and then converted

into the YOLO format for storage. This process ensures that key
points or motion targets in each image are accurately identified.
Labeling can be done using manual annotation tools or through
automated computer vision algorithms. Subsequently, the labeled
image data is converted into the YOLO format, which includes
information such as the category of each object, the center
coordinates of the bounding box, and its width and height. This
format conversion ensures that the data matches the input format
required for model training.

This experimental dataset contains 9,210 images, and the
dataset is divided to provide three different subsets for training,
validation, and testing. The division follows a 70-15-15 ratio,
with 70% of the data used for training, 15% for validating the
performance of the model, and the remaining 15% for testing the
model’s generalization ability. Reasonable data division allows for
a better assessment of the model’s training status and accurate
evaluation of its performance on unseen data.

Data normalization is carried out to ensure that the model
better handles images of different scales and brightness during
training. The image data is normalized, scaling pixel values to a
range of 0 to 1. At the same time, the bounding box coordinates
in the YOLO format are also normalized by dividing the center
coordinates, width, and height by the width and height of the image,
bringing their values between 0 and 1. This helps the model better
understand the relative position of the bounding boxes.

4.4.2 Network parameter setting
The initial step in preprocessing the input images is to adjust the

length of the longer side to a predetermined target size, ensuring
a consistent aspect ratio among different images. To achieve this,
we adopted a strategy where the image is resized to the target
dimensions, and padding is applied on the shorter side to form a
square image. This approach ensures that all input images have a
uniform size of 640× 640 pixels, providing a consistent data shape
for subsequent model input.

To enhance the robustness of the network, we introduced
various data augmentation techniques. First, we applied horizontal
flipping to expand the dataset and increase the model’s robustness
to mirrored poses. Second, we employed multi-scale adjustment
techniques, randomly varying the size of the images (within a range
of 20%) to further increase the model’s adaptability to poses at
different scales. Techniques such as random translation (within a
range of 2%) and random rotation (within a range of 35%) were also
incorporated to simulate pose variations that might occur in real-
world scenarios, thereby improving the model’s generalizability
(Sattler et al., 2019). In the final 10 stages of training, we adopted
a strategy of disabling these data augmentation techniques. This
approach ensures that the model focuses on learning more refined
features as it nears convergence, achieving higher accuracy and
robustness. This strategy enables us to develop a human motion
pose estimationons.
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TABLE 2 Model training parameters.

Parameter Settings

Optimizer SGD

Learning rate 0.01

Batch size 32

Epoch 200

Input size 640×640

Specific training parameters can be found in Table 2. They
were determined through careful tuning and experimentation to
ensure that the model adequately learns key points and motion
features in the images. The choice of these training parameters was
meticulously designed to balance the complexity of the model and
its learning effectiveness, aiming for optimal training results.

4.4.3 Evaluation metrics
In this paper, we primarily employ classic evaluation metrics

widely used in object detection tasks to comprehensively assess
the performance of our proposed robot motion keypoint
detection method. Specifically, we focus on the following key
evaluation metrics:

Average Precision at 50% Intersection over Union (AP50):
the Average Precision at 50% Intersection over Union (AP50) is
a crucial metric in object detection evaluation. It measures the
accuracy of the model by considering the precision and recall at
a 50% IoU threshold. The formula is given by:

AP50 =
1

|C|

|C|
∑

i=1

Precision(Ri, Pi, 0.5)× Recall(Ri,Gi, 0.5) (13)

where: |C|: the number of object classes. Ri: the set of detected
bounding boxes for class i. Pi: the set of ground truth bounding
boxes for class i. Precision(Ri, Pi, 0.5): Precision at 50% IoU for class
i. Recall(Ri,Gi, 0.5): Recall at 50% IoU for class i.

Average Precision at 75% Intersection over Union (AP75):
The Average Precision at 75% Intersection over Union extends
the evaluation to a stricter 75% IoU threshold. It provides a
more stringent assessment of model performance. The formula is
expressed as:

AP75 =
1

|C|

|C|
∑

i=1

Precision(Ri, Pi, 0.75)× Recall(Ri,Gi, 0.75) (14)

where the variables have the same meaning as in AP50.
Average Precision (Medium)—APM : The Average Precision

(Medium) or APM focuses on the performance of the model
concerning objects of medium size. The formula is defined as:

APM =
1

|C|

|C|
∑

i=1

AP(Ri, Pi,Medium) (15)

where AP(Ri, Pi,Medium) denotes the Average Precision with
medium-sized objects for class i.

Average Precision (Large)—APL: Similarly, the Average
Precision (Large) or APL assesses the model’s accuracy with respect
to large-sized objects. The formula is given by:

APL =
1

|C|

|C|
∑

i=1

AP(Ri, Pi, Large) (16)

where AP(Ri, Pi, Large) represents the Average Precision with
large-sized objects for class i.

We utilize the mean deviation as a measure for assessing
the pivotal angle and incorporate a margin of tolerance τ ,
recognizing that minor discrepancies are permissible in the
practical identification of pivotal points. The JAM is determined
under the tolerance threshold:

JAM = 1−
∑n

i=1 max(0, |yi − Yi| − τ )
∑n

i=1 yi

Where, yi represents the calculated joint angle, Yi denotes the
reference value, τ stands for the tolerance limit, i signifies the i-
th predicted joint angle, and n denotes the total number of joint
angles (sample size).

4.5 Results

As shown in Table 3, we conducted comparative experiments
to evaluate the performance of different methods on the COCO
and MPII datasets. The table presents the performance of each
method across various evaluation metrics (AP50, AP75, APM , APL).
Firstly, our method achieved the highest performance across all
evaluation metrics on the COCO dataset. Specifically, compared to
other methods, our approach outperformed them by 3.1%, 8.2%,
3.4%, and 3.8% in AP50, AP75, APM , and APL, respectively. This
indicates that our method exhibits higher accuracy and robustness
in object detection and human motion pose estimation tasks. On
the MPII dataset, our method similarly demonstrated the best
performance. Compared to the best results of other methods, our
approach improved by 3.2%, 8.4%, 3.7%, and 3.8% in AP50, AP75,
APM , and APL, respectively. This further confirms the outstanding
performance of our method in the motion keypoint detection and
quality assessment tasks for robots.

Our method excelled on both datasets, showing significant
performance improvements compared to other methods. This
demonstrates that our proposed approach has higher adaptability
and generalization capabilities in real-world applications,
providing an efficient and accurate solution for motion keypoint
detection and quality assessment in robots.

Table 4 presents a comparison of model parameters (PARAMS)
and floating-point operations (FLOPs) among different models
on the COCO and MPII datasets. On the COCO dataset, our
model has PARAMS of 4.93M and FLOPs of 9.08B. Compared to
other methods, our model achieves significant reductions in both
parameter count and computational complexity, by 28.0 and 11.1%,
respectively. This indicates that our model maintains satisfactory
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TABLE 3 Performance comparison of methods on COCO and MPII datasets.

COCO datasets MPII datasets

Methods Backbone AP50 AP75 APM APL AP50 AP75 APM APL

HRNet (Seong and Choi, 2021) HRNet-W32 86.83 55.43 61.13 75.53 84.65 53.25 58.95 73.35

HigherHRNet (Cheng et al., 2020) HRNet-W48 87.43 55.93 61.23 75.93 85.25 53.85 59.05 73.75

YoloV5pose (Hou et al., 2020) Darknet-csp-d53-s 87.03 61.23 61.53 76.33 85.85 59.05 59.35 74.15

YoloV8pose (Liu et al., 2023) Darknet-csp-d53-s 88.04 61.58 61.73 75.23 86.87 60.15 58.48 75.37

Openpose (Chen et al., 2020) ———— 86.13 56.73 60.23 74.73 83.95 54.55 58.05 72.55

Hourglass (Xu and Takano, 2021) Hourglass 85.73 55.43 58.93 72.13 83.55 53.25 56.75 69.85

Lightopenpose (Zhao et al., 2022) ———— 81.33 54.13 58.63 70.53 79.15 51.95 56.45 68.35

Ours Darknet-53 89.93 63.63 64.63 78.73 87.75 61.45 62.45 76.55

TABLE 4 Comparison of model parameters (PARAMS) and floating point

operations (FLOPs) on COCO and MPII datasets.

Model COCO Dataset MPII dataset

PARAMS FLOPs PARAMS FLOPs

HRNet (Li Y. et al.,
2020)

3.43M 5.08B 2.91M 4.68B

HigherHRNet
(Cheng et al., 2020)

2.35M 3.78B 2.03M 3.78B

YoloV5pose (Hou
et al., 2020)

5.70M 10.08B 5.65M 9.78B

Openpose (Chen
et al., 2020)

7.11M 10.08B 6.61M 9.28B

Hourglass (Xu and
Takano, 2021)

13.71M 20.38B 13.56M 19.18B

Lightopenpose
(Zhao et al., 2022)

12.53M 18.08B 11.28M 16.08B

Ours 4.93M 9.08B 4.73M 8.88B

performance while keeping a lower computational burden. On the
MPII dataset, our model also excels in PARAMS and FLOPs, with
reductions of 26.5 and 6.5%, respectively. Although our model may
not be optimal in terms of parameter count and computational
complexity, this performance still balances higher accuracy and
robustness with satisfactory computational efficiency. The result of
the table visualization is shown in Figure 4.

The reason our model performs better in terms of
computational complexity (FLOPs) is due to the optimization
of network structure and the introduction of efficient modules,
which reduces the number of floating-point operations required
when processing images. Specifically, we adopted a lightweight
network design and efficient feature extraction modules to decrease
the computational load for each image processing. Additionally,
we conducted fine-tuning of the network structure to minimize
unnecessary computational burdens while maintaining good
performance. Overall, our approach provides a competitive
solution for motion keypoint detection and quality assessment
tasks in robotics. Future work can further optimize the model
structure to achieve a better balance between performance and
computational efficiency.

4.6 Ablation experiment

As shown in Table 5, we conducted ablation experiments
to systematically evaluate the impact of introducing different
components (BRA and GFPN) on the performance of the model
in the task of robotic motion keypoint detection and quality
assessment. The four different methods in the table correspond to
the following scenarios: (1) the baseline model, which is the basic
model without BRA and GFPN, and its performance is evaluated
on the COCO and Post datasets; (2) the model with BRA, to study
the singular impact of BRA on performance; (3) the model with
GFPN, to study the singular impact of GFPN on performance; (4)
the model with both BRA and GFPN, to comprehensively assess the
joint impact of these two components on performance.

We utilized multiple performance evaluation metrics (AP50,
AP50−95, APM , and APL) to compare themodel performance under
various conditions. The experimental results clearly demonstrate
that the introduction of both BRA andGFPN significantly enhances
the model’s performance. Particularly noteworthy is that when
introducing both BRA and GFPN simultaneously, the model
achieves the best performance across all evaluation metrics. This
finding further confirms the crucial role of BRA and GFPN
in robotic motion keypoint detection and quality assessment
tasks. These experimental results provide solid support for the
effectiveness of our proposed method in practical applications and
offer valuable insights for future optimizations of model structures
to achieve superior performance.

4.7 Presentation of results

In the evaluation of motion scene fitting, our method
demonstrates outstanding superiority, as shown in Table 6. Taking
the tennis scene as an example, our model achieves a remarkable
center joint fitting accuracy (JAMc) of 90.5%, showcasing higher
joint accuracy compared to other motion scenes. This result
is further validated across other joints, including the left joint
(JAMs) and right joint (JAMk), with accuracies of 88.2 and
87.0%, respectively. Simultaneously, our model exhibits excellent
performance in the original missed detection rate (MR), ensuring
its reliability in real-world scenarios. It is noteworthy that our
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FIGURE 4

Comparison of model performance on di�erent datasets.

TABLE 5 Ablation experiment results on COCO and MPII datasets.

COCO datasets MPII datasets

Method BRA GFPN AP50 AP50−95 APM APL AP50 AP50−95 APM APL

(1) 88.23 62.33 63.53 77.13 86.05 60.15 61.35 74.95

(2) X 89.23 62.93 64.43 78.43 87.05 60.75 62.25 76.25

(3) X 89.73 63.53 64.83 77.23 87.55 61.35 62.65 75.05

(4) X X 89.93 64.73 64.63 78.73 87.75 63.15 62.45 76.55

method excels not only in the tennis scene but also in various
motion scenes such as football, skiing, gymnastics, and running.
This encompasses a comprehensive improvement in joint fitting
accuracy and original missed detection rate in football scenes,
demonstrating the robustness and high accuracy of our method
across diverse motion scenes.

As shown in Figure 5, we conducted a detailed comparison
of the performance between YOLOv8-ApexNet and YOLOv8
in real-world motion scenarios. The experimental results
indicate that our model excels in various aspects, demonstrating
significant advantages over YOLOv8. Firstly, in terms of occlusion,
YOLOv8-ApexNet exhibits stronger tolerance compared to

YOLOv8. Our model, utilizing the Bidirectional Routing
Attention (BRA) technology, successfully captures inter-keypoint
correlations in dynamic scenes, thereby enhancing its ability
to recognize occluded objects. In contrast, YOLOv8 may
experience significant interference when dealing with occluded
scenes, leading to a decline in target detection performance.
Secondly, in handling small targets, YOLOv8-ApexNet maintains
high detection accuracy even for small target sizes. With the
incorporation of the Generalized Feature Pyramid Network
(GFPN) technology, our model effectively extracts and integrates
feature information across different scales, enabling better
adaptation to various target sizes and shapes. Conversely,
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YOLOv8 may experience a performance decline in small
target detection. Lastly, in terms of confidence estimation,
YOLOv8-ApexNet demonstrates more reliable and accurate
target confidence assessment in the experiments. Through
optimized algorithms and network structures, our model achieves
a significant improvement in predicting target confidence, making
it more stable and precise compared to YOLOv8. Through
comparative experiments in real-world motion scenarios, our
YOLOv8-ApexNet model excels in occlusion handling, small
target detection, and target confidence estimation, providing a
more reliable and accurate solution for practical applications in
target detection.

5 Conclusion

This study proposes an innovative model through an
in-depth exploration of robot motion key point detection
and quality assessment tasks. In experimental evaluations,
our model demonstrates outstanding performance on the

TABLE 6 JAM is the fitted accuracy, and MR is the original missed

detection rate.

Type JAMc JAMs JAMk MRc MRs MRk

Tennis 90.5 88.2 87.0 10.4 11.6 14.6

Football 86.1 84.4 80.2 16.7 15.5 17.3

Skiing 88.4 88.3 89.5 16.3 14.1 13.8

Gymnastics 95.5 94.0 93.6 11.3 10.2 13.4

Running 92.3 88.7 88.9 12.9 13.9 18.6

COCO and MPII datasets, achieving significant improvements
over other methods in key point localization accuracy and
model robustness. Through ablation experiments, we validate
the positive impact of introducing BRA and GFPN on
model performance, showcasing excellent performance in
different motion scenarios. Visualizations of tables and figures
further support the superiority of our approach in real-world
scenarios, providing an effective solution for robot motion key
point detection.

However, despite the significant achievements of our model,
there are still some shortcomings. Firstly, in certain complex
scenarios, the model may lack robustness in handling key point
occlusion or abnormal poses. Secondly, the adaptability to specific
motion scenarios needs further improvement to meet a wider range
of practical application requirements.

Looking ahead, we are committed to further optimizing
the model’s robustness and adaptability. Firstly, by introducing
more training data from complex scenarios and designing more
sophisticated loss functions, we aim to enhance the model’s
ability to handle key point occlusion and abnormal poses.
Secondly, we plan to expand the model’s applicability to different
motion scenarios, achieving better generalization performance
through more flexible structural designs. Additionally, we will
explore the application of the model in real robotic systems
to validate its feasibility in practical engineering tasks. In
summary, the robot motion key point detection model proposed
in this study demonstrates significant advantages in experiments,
providing a valuable reference for future in-depth research and
practical applications. By addressing challenges in real-world
problems, our work is poised to contribute more practical and
innovative solutions to the field of robotics perception and
decision-making.

FIGURE 5

Performance analysis of YOLOv8-ApexNet detection and YOLOv8 detection results comparison.
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