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China

This paper addresses the limitations of current neural ordinary di�erential

equations (NODEs) inmodeling and predicting complex dynamics by introducing

a novel framework called higher-order-derivative-supervised (HiDeS) NODE.

This method extends traditional NODE frameworks by incorporating higher-

order derivatives and their interactions into the modeling process, thereby

enabling the capture of intricate system behaviors. In addition, the HiDeS

NODE employs both the state vector and its higher-order derivatives

as supervised signals, which is di�erent from conventional NODEs that

utilize only the state vector as a supervised signal. This approach is

designed to enhance the predicting capability of NODEs. Through extensive

experiments in the complex fields of multi-robot systems and opinion

dynamics, the HiDeS NODE demonstrates improved modeling and predicting

capabilities over existing models. This research not only proposes an expressive

and predictive framework for dynamic systems but also marks the first

application of NODEs to the fields of multi-robot systems and opinion

dynamics, suggesting broad potential for future interdisciplinary work. The

code is available at https://github.com/MengLi-Thea/HiDeS-A-Higher-Order-

Derivative-Supervised-Neural-Ordinary-Di�erential-Equation.

KEYWORDS

neural ordinary di�erential equations, multi-robot systems, opinion dynamics, robotics,

neural networks

1 Introduction

As a learnable model parameterized by θ ∈ R
n, a standard neural ordinary differential

equation (NODE) ẋ = φθ (x, t) is particularly adept at representing complex and nonlinear

dynamics (Chen et al., 2018; Liufu et al., 2024), where x ∈ R
d is the state at time t,

ẋ = dx/dt denotes the time derivative of x, and φ(x, t) is a vector field with φ ∈
(Rd × R → R

d) being a function of x and t. Its strength lies in processing time-

variant data and adaptively learning from it. This modeling flexibility renders NODEs great

potential for the intricate nature of dynamic systems (Hua et al., 2023; Wang et al., 2023;

Jin et al., 2024), enabling a more nuanced understanding of complex dynamic systems.
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Despite these strengths, the standard NODE encounters

expressivity limitations, failing to model functions like NOT

operations (Kidger, 2021; Xu et al., 2023). The NOT operation

[i.e., (0, 1) → (1, 0)] involves trajectories that necessarily

intersect, presenting a challenge for standard NODEs that cannot

model intersecting trajectories due to their first-order nature.

The NODE with momentum, which can be regarded as a

second-order ODE, improves the expressive capability (Sander

et al., 2021): ẍ = c0ẋ + c1φθ (x, t), where c0 and c1 are

constants. Nonetheless, it can only express limited dynamics due

to the linear relationship of ẋ and φθ (x, t). Besides, it cannot

model interactions between ẋ and x. The second-order NODE

(SONODE) presented in Norcliffe et al. (2020) seeks to address

this limitation by modeling the interactions between ẋ and x.

However, SONODE cannot model interactions between higher-

order derivatives and x, and the supervised signal used in training

is only the ground-truth value of x, which confines its scope and

limits its prediction capability.

To surmount these challenges, we propose a higher-order-

derivative-supervised NODE (HiDeS NODE) that is able to

model interactions between higher-order derivatives and x. This

approach not only expands the expressive range of NODEs

but also enhances predictive ability through employing the

state vector and its higher-order derivatives as supervised

signals, surpassing the modeling and predicting performance of

existing NODEs.

This paper evaluates the effectiveness of the HiDeS NODE

in the realms of multi-robot systems and opinion dynamics, key

areas of dynamic systems, both domains that inherently involve

complex interactions and communication (Granha et al., 2022).

In multi-robot systems, conventional analytic solutions fall short

in high-dimensional control tasks (Károly et al., 2021), such as

multi-robot grasping and motion control. NODEs, in contrast,

offer a promising avenue for modeling and controlling complex

dynamic interactions in a continuous, efficient, and adaptable

manner in multi-robot systems. Regarding opinion dynamics

research, the primary objective is to decipher the underlying

mechanisms and influences that catalyze shifts in opinions. Existing

methodologies for learning opinion dynamics overlook the critical

prior knowledge that opinion dynamics can be described as anODE

formulated as ẋ = φ(x, t). ODEs are particularly well-suited for

modeling the fluid nature of opinion dynamics due to their inherent

capacity to capture the dynamics of evolving systems. However,

contemporary models employed in learning opinion dynamics

underutilize this foundational knowledge. This oversight hampers

their ability to effectively capture the nuanced and intricate nature

of opinion evolution. Furthermore, the complexities inherent in

the evolution of opinions present considerable challenges to the

application of existing NODEs in both modeling and forecasting

the trajectories of opinion dynamics. The HiDeS NODE conquers

these aspects, providing amore effective tool for understanding and

predicting opinion evolution.

To bridge these gaps, we propose a new NODE, termed HiDeS

NODEs, for modeling and predicting tasks in multi-robot control

and opinion dynamics. Figure 1 illustrates the framework of the

HiDeS NODE, and Table 1 qualitatively demonstrates the HiDeS

NODE’s superiority compared with existing NODEs.

The contributions of this paper are demonstrated as follows:

• We propose the HiDeS NODE, a novel approach for

modeling the intricacies of dynamics. The HiDeS NODE

excels in modeling and predicting interactions among higher-

order derivatives within dynamic systems. This advancement

provides a more accurate and nuanced representation of

dynamic systems.

• The HiDeS NODE integrates higher-order derivatives as

supervised signals, significantly enhancing the ability to

predict dynamical behaviors.

• We examine the versatility and effectiveness of the proposed

HiDeS NODE through its application in two distinct yet

complex fields: Multi-robot systems and opinion dynamics. In

these fields, the model’s ability to capture and predict intricate

system dynamics is evaluated.

• To our knowledge, this is the first time that the NODE

is introduced for opinion dynamics and multi-robot-system

control. Application of the proposed HiDeS NODE to these

fields unveils new avenues for both the advancement of

NODE methodologies and the nuanced modeling of opinion

dynamics and multi-robot-system control.

2 Related work

In this section, we briefly review three lines of research that are

close to our work: NODEs, multi-robot-system control methods,

and opinion dynamics modeling.

2.1 NODEs

The intersection of neural networks and differential equations,

especially interpreting residual networks (ResNets) as discretized

ODEs, spurs the development of NODEs (Weinan, 2017; Cui

et al., 2023; Ruiz-Balet and Zuazua, 2023). NODEs integrate

black-box ODE solvers and neural networks to parameterize the

hidden state’s derivative. This integration substantially advances

time-series modeling, offering robust function approximation and

handling of irregular data (Chen et al., 2018; Kidger, 2021).

However, standard NODEs encounter representational constraints

without dimensionality augmentation, constraining their universal

approximation capabilities for certain functions (Dupont et al.,

2019).

Research pivots toward higher-dimensional NODEs to

overcome these limitations. Momentum-enhanced ResNets,

representing second-order NODE extensions, exhibit enhanced

capability in modeling non-homeomorphic dynamics and

demonstrate improved convergence properties (Sander et al.,

2021). In parallel, augmented NODEs, by expanding the solution

space, facilitate the learning of more complex functions through

simpler dynamic flows, thereby sidestepping the limitations

of the vector field’s general-representation property (Kidger,

2021). Nonetheless, augmented NODEs introduce challenges in

interpretability and alter the loss landscape’s structure (Norcliffe

et al., 2020). A specific iteration of augmented NODEs, termed

second-order NODEs (SONODEs) (Norcliffe et al., 2020), captures

more intricate behaviors by integrating second-order dynamics,

effectively combining the principles of coupled augmented NODEs.
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FIGURE 1

Framework of this paper. (Top) Evolution from first to third-order NODEs, highlighting their progressively sophisticated ability to model complex

trajectories where higher orders allow for more intricate behaviors. (Middle) Predicting precision with and without using higher-order derivatives as

supervised signals, showing the latter’s superior approximation of ground truth. (Bottom) Practical applications of HiDeS NODEs in multi-robot

systems and opinion dynamics.

Additionally, the advent of heavy ball NODEs (HBNODEs) (Xia

et al., 2021) marks a significant advancement. HBNODEs

incorporate the classical momentum accelerated gradient descent

method and adeptly mitigate the vanishing gradient problem,

thereby enhancing the model’s capacity in learning long-term

dependencies in sequential data (Xia et al., 2021).

2.2 Multi-robot-system control

Multi-robot systems provide significant benefits in tasks that

demand the duplication of effort, risk reduction, or adaptability,

offering distinct advantages over single-robot systems (Hichri

et al., 2022; Kwa et al., 2022). Multi-robot-system control methods

can be categorized into deterministic methods with fixed forms

and learning-based methods (Pierpaoli et al., 2021). However,

deterministic methods lack flexibility and adaptability in dynamic

or unpredictable environments (Liu et al., 2023). In order

to overcome these defects, learning methods are increasingly

applied to multi-robot control problems. Adaptation methods, for

instance, are proposed to enhance trajectory prediction efficiency

in multi-agent systems (Aydemir et al., 2023). Furthermore,

the parameter-adaptive learning methods are improved through

iterative parametric learning controllers (Yu and Chen, 2023).

Additionally, neural network-based adaptive learning methods are

utilized to learn unknown fault functions, ensuring cooperative

tracking in distributed multi-robot systems (Khalili et al., 2020).

Despite these advancements, existing methods often fall short in
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TABLE 1 Comparisons among di�erent NODEs.

Models Year Modeling
higher-order
dynamics

Modeling derivative
interactions of each

order

Applied to
opinion
dynamics

Supervised
signals

Standard NODE (Chen et al.,

2018)

2018 × × × x(t)

Momentum NODE (Sander

et al., 2021)

2021 Only 2nd order × × x(t)

SONODE (Norcliffe et al.,

2020)

2020 Only 2nd order
√ × x(t)

HiDeS NODEs 2024
√ √ √

x(t), ẋ(t), . . . , x(c−1)

naturally and efficiently modeling the dynamics that often can be

described as an ODE, a gap that NODEs can potentially fill.

2.3 Opinion dynamics modeling

Opinion dynamics studies how opinions form and evolve

over time through interactions with individuals and environments.

Researchers propose various mathematical models to understand

and predict the dynamics of opinions. These include continuous-

time models such as the DeGroot model (Wu et al., 2023),

Hegselmann-Krause model, and bounded confidence model

(Kolarijani et al., 2021), as well as discrete-timemodels like the Ising

model, Voter model, and Friedkin and Johnsen model (Baumann

et al., 2020; Ao and Jia, 2023; Peng et al., 2023). However, these

models, with their fixed forms, lack the flexibility to model the

evolution of opinions independently.

In response to these limitations, researchers leverage advances

in neural networks to utilize their nonlinear relation approximation

ability for learning complex opinion dynamics. An early approach

introduces a linear influence model that learns edge influence

strength from real data (De et al., 2014). Unlike traditional

models, this linear model represents a foundational step in

opinion dynamics learning methods, but its simplicity fails to

capture the complexity of societal opinion dynamics. Furthering

this exploration, SLANT (De et al., 2016; Zhu et al., 2020)

introduces a linear model of latent opinions driven by stochastic

differential equations (SDEs) using historical, fine-grained event

data. Subsequently, SLANT+ (Kulkarni et al., 2017) extends

this model with a nonlinear generative model and a network-

guided recurrent neural network (RNN) architecture. This model

underscores the importance of nonlinearity in designing opinion

dynamics models. However, the RNN architecture it relies on faces

the challenge of the vanishing gradient problem, hindering long-

term predictions of opinion flow. Learnable opinion dynamics

model (LODM) (Monti et al., 2020) emerges as a learnable

generalization of an opinion dynamicsmodel, combining the causal

interpretability of traditional agent-based models with data-driven

approaches. Additionally,Okawa and Iwata (2022) introduces the

sociologically-informed neural network (SINN), a novel hybrid

approach that integrates sociological and social psychological

theories with data-driven neural networks to model and predict

opinion dynamics in social networks. Despite these advances,

current models do not fully exploit the prior knowledge of

TABLE 2 Main symbols and notations.

Symbol Description

x State vector representing opinions of individuals

t Time variable

ẋ First-order time derivatives of x

ẍ Second-order time derivatives of x

...
x Third-order time derivatives of x

c Order of the highest derivative in HiDeS NODE

x
(c) c-th order time derivative of x

θ Parameters of a neural network

φθ (·) Vector field (neural network) parameterized by θ

R
d d-dimensional real space

R
n n-dimensional real space

ω Extended state vector in HiDeS NODE

1t Time step for numerical approximation

ϑ Alternate set of parameters for the neural network

ť, t̂ Time interval boundaries

differential equations in opinion evolution, nor do they effectively

model higher-order derivatives.

3 Materials and methods

In this section, formal descriptions and analyses of the

proposed HiDeS NODE are provided. Table 2 presents the main

symbols and notations used throughout this paper to ensure clarity

and ease of understanding.

3.1 Formulation of the HiDeS NODE

The HiDeS NODE has two unique features for modeling and

predicting opinion evolution. The first is that the HiDeS NODE is a

higher-order NODE that is able to model interactions of higher-

order derivatives of the opinion variable x. The second is that

the HiDeS NODE adopts higher-order derivatives as supervisory
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signals to predict opinion evolution better. The HiDeS NODE is

described as Equation (1):
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where x(t) ∈ R
d is a time-varying vector representing the opinion

of d individuals; t ∈ [ť, t̂] is the time; Vectors ẋ(t), ẍ(t),
...
x(t), and

x
(c)(t) correspond to the first, second, third, and c-th order time

derivatives of x, respectively; The function φ :R
cd × R → R

cd is

parameterized by a neural network with the parameter θ ∈ R
n.

Note that [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ ∈ R

cd is a concatenation

of higher-order derivatives, where the superscript ⊤ means a

transpose of a vector, and we call a HiDeS NODE with up to c-th

order time derivatives in this concatenation as the HiDeS-cNODE.

To enhance readability and avoid redundancy, we may omit “(t)” in

certain contexts where the time dependency is understood and does

not affect the meaning or clarity of the mathematical expressions.

Remark 1. One advantage of a HiDeS NODE is that it is able to

model nonlinear interactions between higher-order derivatives and

x. In practice, multiple higher-order derivatives and x can interact

with each other. For example, there can be terms like ẋ ⊗ ẍ in the

vector field, where⊗ is the Hadamard product.

It can be seen that the standard NODE (Chen et al., 2018) is a

HiDeS-1 NODE, and if we just focus on the formulation, SONODE

(Norcliffe et al., 2020) can be regarded as a HiDeS-2 NODE. In fact,

the HiDeS-2 NODE distinguishes itself from SONODE due to its

unique training process.

3.2 Training of the HiDeS NODE

Existing variants of the NODE utilize the ground-truth value

of x(t) as the label for training. Differently, the HiDeS NODE

adopts the entire [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ as the label (the

model’s prediction [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ is integrated first

to get [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤). This approach is beneficial

for predicting the future evolution of x(t). Training the entire

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ gives accurate approximations of all

these variables. Since the prediction of the next time step for the

HiDeS NODE relies on the entire [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤,
the training strategy of the HiDeS NODE leads to a better

prediction performance compared to only training with the

ground-truth value of x(t). When the model is predicting the next

x(t), utilizing only the ground-truth value of x(t) as the label may

lead to an inaccurate result because the basic information it relies

on is inaccurate. The inclusion of the derivatives ensures that the

model is sensitive to not just the position or condition at a given

time but also to the trends and patterns of change, which are critical

for forecasting. An explanation is illustrated in Figure 1.

3.3 Inexpressible trajectories of the HiDeS
NODE

The superior expressive capability of the HiDeS NODE comes

from two aspects.

The first is that lower-order NODEs have limitations in

modeling trajectories that require the representation of higher-

order dynamics. Consider a trajectory that requires an abrupt

change in its acceleration (second derivative of x), which is not

expressible in a first-order system but can be expressed in a

second-order system [ẋ(t), ẍ(t)]⊤ = φθ ([x(t), ẋ(t)]
⊤, t). Similarly,

trajectories requiring changes in the third derivative (jerk) are

not expressible in a second-order system but can be captured in a

third-order system, and so on. As a result, there exist trajectories

that can not be expressed by [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ =

φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

but can be

expressed by [ẋ(t), ẍ(t),
...
x(t), . . . , x(c+1)(t)]⊤ =

φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c)(t)]⊤, t
)

.

The second origin of the superior expressive capability of the

HiDeS NODE is that it alleviates the restriction that trajectories

cannot cross. One major limitation of the standard NODE is

that trajectories under different initial conditions cannot intersect,

which constrains its expressive capability. In the following, we show

how this constraint is able to be eliminated by the HiDeS NODE.

Theorem 1 (Inexpressible trajectories of a HiDeS-c NODE).

Assume that the function φθ (ω, t) :R
cd × R → R

cd with t ∈ [ť, t̂]

is Lipschitz continuous w.r.t. ω ∈ R
cd. Consider a HiDeS-c NODE

governed by Equation (2):

[ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤

= φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

, (2)

where x(t) ∈ R
d is the state vector, φθ :R

cd × R → R
cd

is a continuously differentiable function parameterized by neural

network parameters θ . For any two initial conditions ω(ť) =
[x(ť), ẋ(ť), . . . , x(c−1)(ť)]⊤ and ω̃(ť) = [x̃(ť), ˙̃x(ť), . . . , x̃(c−1)(ť)]⊤,
trajectories that require ω(t) and ω̃(t) to cross over the interval [ť, t̂]

are inexpressible by a HiDeS-c NODE.

Proof. Define the extended state vector ω ∈ R
cd as

ω(t) = [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤. The HiDeS-c NODE

can be represented as Equation (3):

ω̇ = φθ (ω(t), t). (3)

Given that φθ is Lipschitz continuous w.r.t. ω, the Picard-Lindelöf

theorem (Anil Kumar et al., 2022; Zhang et al., 2023) assures the

existence of a unique solutionω(t) for a given initial conditionω(0).

This uniqueness implies that for any two distinct initial conditions

ω(ť) and ω̃(ť), the resulting trajectories ω(t) and ω̃(t) do not cross

over [ť, t̂]. As a result, trajectories that requireω(t) and ω̃(t) to cross

over the interval [ť, t̂] are inexpressible by a HiDeS-c NODE. The

proof is thus completed.

Remark 2. From Theorem 1, it can be seen that as the order c

increases, the degree of freedom for avoiding the crossing of x(t)

and x̃(t) increases. In practice, there are some trajectories cross
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in the x-t space or in the phase space [i.e., x-ẋ-ẍ-. . .-x(c−1)-t

space], so the HiDeS-cNODE provides a better capability to model

these dynamics compared with the standard NODE (a HiDeS-

1 NODE) (Chen et al., 2018) and other second-order NODEs

(HiDeS-2 NODEs) (Norcliffe et al., 2020; Sander et al., 2021).

An intuitive understanding is that additional dimensions provide

new directions to make trajectories elude each other, which is

illustrated in Figure 1. Consider two actual evolution trajectories

under different initial conditions, x
∗(t) and x̃

∗(t), which may

intersect at some time points if there are no restrictions. However,

for c = 1, the trajectories x(t) and x̃(t) generated by the standard

NODE cannot intersect due to its nature of first-order ODEs. This

limitation means they cannot accurately approximate x
∗(t) and

x̃
∗(t) in cases where the actual trajectories intersect. Theorem 1

from our manuscript implies similar limitations for higher-order

NODEs, but with increasing order c, the trajectories have more

freedom, reducing the limitations.

3.4 The HiDeS NODE’s utilization of
historical information

Due to the introduction of higher-order derivatives, the HiDeS

NODE implicitly uses historical state information for predicting

the next state. The reason is that higher-order derivatives can be

approximated by historical states. For example, the first derivative

ẋ at the k-th moment tk can be approximated as ẋ(tk) ≈
(x(tk)− x(tk−1))/1t. Similarly, the second derivative ẍ can be

approximated as Equation (4):

ẍ(tk) ≈

(

x(tk)−x(tk−1)
1t

)

−
(

x(tk−1)−x(tk−2)
1t

)

1t
. (4)

Iteratively, we have Equation (5):

x
(c)(tk) ≈

c
∑

i=0

(−1)i
(

c

i

)

x(tk−i)/(1tc), (5)

where the binomial coefficient
(c
i

)

= c!/(i!(c− i)!) represents the

combinatorial number of ways to choose i elements from a set of

c elements. Consequently, φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

in

the HiDeS NODE (Equation 1) can be approximated as a function

of historical states as in Equation (6):

[

ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)

]⊤

= φθ

(

[

x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)
]⊤

, t

)

≈ φϑ

(

x(tk), x(tk−1), . . . , x(tk−c), tk
)

, (6)

where φϑ :R
d × R

d × · · · × R → R
cd is a function parameterized

by ϑ . TheHiDeSNODE’s utilization of historical information could

enhance the prediction of the next state.

3.5 Implementation

We provide Algorithm 1 to show the process of constructing,

training, and using a HiDeS NODE. Besides, structures of

1: Input: Time series data, initial conditions x(0),

ẋ(0), ẍ(0), . . . , x(c−1)(0)

2: Output: Predicted states x(t), ẋ(t), ẍ(t), . . . , x(c)(t)

3: Initialize neural network parameters θ

4: procedure CONSTRUCTING A PARAMETERIZED VECTOR

FIELD

5: Construct a neural network

φθ ([x(t), ẋ(t), ẍ(t), . . . , x
(c−1)(t)]⊤, t) to represent the

parameterized vector field

6: end procedure

7: procedure TRAINING

8: for each epoch do

9: for each batch do

10: Apply an ODE solver to get predicted

trajectories [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ at various

time t based on the parameterized vector field and

initial conditions

11: Compute the loss between the predicted

trajectories and actual trajectories

12: Backpropagate loss and update parameters θ

13: end for

14: end for

15: end procedure

16: procedure PREDICTION

17: Set initial conditions x(0), ẋ(0), ẍ(0), . . . , x(c−1)(0)

18: Use the trained φθ to compute future states and

derivatives

19: return predicted x(t)

20: end procedure

Algorithm 1. Algorithm of HiDeS NODE.

HiDeS-3 NODEs for multi-robot systems and for opinion

dynamics are shown in Figures 2A, B, respectively. In

Figure 2, the inputs to the system are a concatenation

of the initial state x(0), the initial velocity ẋ(0), and the

initial acceleration ẍ(0), which are fed into an ODE solver

alongside the parametrized function φθ ([x(t), ẋ(t), ẍ(t)]
⊤) to

compute the state x(t), velocity ẋ(t), and acceleration ẍ(t)

at time t.

4 Results

In this section, we conduct experiments to evaluate the

effectiveness of our models, HiDeS-2 NODE and HiDeS-3 NODE,

by comparing them with baseline models [standard NODE

(Chen et al., 2018) and SONODE (Norcliffe et al., 2020)] on

two applications: multi-robot control and opinion dynamics.

These baseline models have the same configurations in terms

of network architecture, optimizer, epochs, and learning rate,

ensuring a fair comparison. Notably, our models utilize higher-

order derivatives as supervised signals, crucial for accurately

capturing the intricate, nonlinear evolution of opinions over

time. The implementation details of our experiments are as

follows.
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FIGURE 2

Structure of HiDeS-3 NODEs. (A) Structure of HiDeS-3 NODE for multi-robot systems. (B) Structure of HiDeS-3 NODE for opinion dynamics.

A B C

D E F

FIGURE 3

Trajectories of multiple robots using standard NODE in target-chasing task without energy constraint. This figure depicts the paths of multiple robots

(indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5 s. (D)

t = 10 s. (E) t = 15 s. (F) t = 20 s.

4.1 Experimental settings

4.1.1 Settings for multi-robot-system control
In multi-robot-system control, each NODE block is composed

of three fully connected layers, each succeeded by a Tanh activation

function, as shown in Figure 2A. The NODE block undergoes

forward propagation 200 times, evolving from t = 0 to t =
20, in order to develop a deep model. A weighted loss ℓ

that emphasizes the trajectory’s later stages is applied: ℓW =
∑k̂

k=0(k/k̂)
pℓ(ω(tk),ω

∗(tk)), where k̂ is the total number of steps,

p > 0 is a scalar, ℓ(·, ·) is a loss function, and ω∗(tk) is the ground
truth of ω(tk). In simulations, p is taken as 4. All models are trained

for 1,000 epochs using the Adam optimizer and a cosine annealing

scheduler with a base learning rate of 0.01.

4.1.2 Settings for opinion dynamics
In simulations of opinion dynamics, each block of NODEs

consists of three fully connected layers, each followed by an

exponential linear unit (ELU) activation function, as shown in
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A B C

D E F

FIGURE 4

Trajectories of multiple robots using HiDeS-3 NODE (ours) in target-chasing task without energy constraint. This figure depicts the paths of multiple

robots (indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5

s. (D) t = 10 s. (E) t = 15 s. (F) t = 20 s.

A B C

D E F

FIGURE 5

Trajectories of multiple robots using standard NODE in target-chasing task with energy constraint. This figure depicts the paths of multiple robots

(indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5 s. (D)

t = 10 s. (E) t = 15 s. (F) t = 20 s.
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D E F

FIGURE 6

Trajectories of multiple robots using HiDeS-3 NODE (ours) in target-chasing task with energy constraint. This figure depicts the paths of multiple

robots (indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5

s. (D) t = 10 s. (E) t = 15 s. (F) t = 20 s.

A B

C D

FIGURE 7

Trajectories of multiple robots in target-chasing task after losing information of target. This figure depicts the paths of multiple robots (indicated by

dots) as they follow a dynamically moving target (denoted by stars). Solid curves denote training phase (trajectory of target is known), and dashed

curves denote test phase (trajectory of target is unknown). (A) Standard NODE; without energy constraint. (B) HiDeS-3 NODE (ours); without energy

constraint. (C) Standard NODE; with energy constraint. (D) HiDeS-3 NODE (ours); with energy constraint.
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A B

C D

FIGURE 8

Total energy cost of multiple robots in target-chasing task during 1,000 epochs of training. Energy constraint is set such that total energy cost ≤5,000
J. (A) standard NODE; without energy constraint. (B) HiDeS-3 NODE (ours); without energy constraint. (C) Standard NODE; with energy constraint.

(D) HiDeS-3 NODE (ours); with energy constraint.

Figure 2B. The block of NODEs loops in the forward propagation

50 times from t = 0 to t = 5 to form a deep model. To

enhance the training stability, we incorporate residual connections.

The optimizer employed is NAdam (Dozat, 2016; Li et al., 2022),

with an initial learning rate of 0.01, modulated using a cosine

annealing learning rate scheduler (Jin et al., 2022). We train

the models over 1,000 and 2,000 epochs, respectively. The loss

function is the mean square error between the predicted and

actual x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t). Given the higher dimensions of

HiDeS NODEs and SONODEs compared to standard NODEs,

we introduce an auxiliary loss to ensure a fair comparison. The

auxiliary loss is evaluated based on predicted and actual x(t), and

it is only used for comparisons rather than for training purposes.

4.2 Target chasing of multi-robot system

In this section, the NODE models are used to control a multi-

robot system to chase a moving target. The target’s trajectory

is described by x1 = 0.5t and x2 = 2 sin(0.5t + 2). During

the training phase, this trajectory serves as the ground truth to

minimize the total distance between the robots and the target.

In the test phase, the target location is unknown. The transition

from training to test simulates a scenario in tracking processes

where, despite initially having knowledge of the target location, the

information regarding the target’s position is lost from a certain

moment onward.

As tracking problems in reality often occur under finite

energy consumption, we introduce an inequality constraint on

the total energy consumption of all agents: e ≤ emax, where

e represents the energy and emax is the predetermined energy

ceiling. This constraint is implemented during training through a

regularization term as in Equation (7):

ℓ̌ = ℓ(ω,ω∗)+max{emax, e}. (7)

During training, if e > emax, the term max{emax, e} encourages a
reduction in e; If e ≤ emax, then this term does not affect e. Since

the tracking occurs on a horizontal plane, potential energy is not

considered; thus, e =
∑r

i miv
2
i /2, where r is the total number of

robots. In the simulations, we set each robot’s mass as equal, with

the total mass being 2 kg (therefore, e =
∑r

i v
2
i =

∑d
j=0

∑r
i=0 ẋ

2
ij),

and set emax = 5, 000 J.

4.2.1 Chasing trajectories with given target
trajectory

Figures 3 and 4 respectively illustrate the trajectories ofmultiple

robots and a chased target at different moments in time without

energy constraints. By comparing Figures 3A and 4A, it can be

observed that the chasing speed of the proposed HiDeS-3 NODE

is significantly faster than the standard NODE. At the end of

the tracking phase (e.g., at t = 20 s), both the standard NODE

and HiDeS-3 NODE successfully reach the target. Examination of

the various subfigures in Figure 4 reveals that the trajectories of

the HiDeS-3 NODE exhibit typical characteristics of high-order

dynamic systems similar to those seen with higher-order optimizers

(Su et al., 2016; An et al., 2018) and proportional-integral-derivative

(PID) controllers (Huba et al., 2023), such as rapid convergence

and overshooting. This is attributed to HiDeS-3 NODE being
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FIGURE 9

Visualization of learning results with standard NODE, SONODE, HiDeS-2 NODE, and HiDeS-3 NODE. All NODEs are trained for 1,000 epochs. (A)

Standard NODE; opinion evolution; training. (B) Training loss w.r.t. epoch. (C) Standard NODE; opinion evolution; test. (D) SONODE; Opinion

evolution; training. (E) Training loss w.r.t. epoch. (F) SONODE; opinion evolution; test. (G) HiDeS-2 NODE; opinion evolution; training. (H) Training

loss w.r.t. epoch. (I) HiDeS-2 NODE; opinion evolution; test. (J) HiDeS-3 NODE; opinion evolution; training. (K) Training loss w.r.t. epoch. (L) HiDeS-3

NODE; opinion evolution; test.

a high-order dynamic system, as demonstrated by Equation 1.

Figures 5 and 6 present a superficially similar performance between

the standard NODE and the HiDeS NODE when subject to

energy constraints. However, a distinct contrast emerges during

the subsequent testing phase, which operates without a predefined

target position.

4.2.2 Predicted trajectories without given target
position

In the test phase, the target position is not given to the

model. Figure 7 presents a comparison of the predicted trajectories

of multi-robots in a target-chasing scenario where the target

position is not provided. The comparison is between the trajectories
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FIGURE 10

Visualization of learning results with standard NODE, SONODE, HiDeS-2 NODE, and HiDeS-3 NODE. All NODEs are trained for 2,000 epochs. (A)

Standard NODE; opinion evolution; training. (B) Training loss w.r.t. epoch. (C) Standard NODE; opinion evolution; test. (D) SONODE; Opinion

evolution; training. (E) Training loss w.r.t. epoch. (F) SONODE; opinion evolution; test. (G) HiDeS-2 NODE; opinion evolution; training. (H) Training

loss w.r.t. epoch. (I) HiDeS-2 NODE; opinion evolution; test. (J) HiDeS-3 NODE; opinion evolution; training. (K) Training loss w.r.t. epoch. (L) HiDeS-3

NODE; opinion evolution; test.

generated by the standard NODE and the HiDeS NODE, with and

without the imposition of energy constraints. The figure clearly

demonstrates that the HiDeS NODE offers superior performance

over the standard NODE. Specifically, the trajectories predicted by

the standard NODE show significant deviations from the target

(Figures 7A, C). In contrast, those predicted by the HiDeS NODE

closely align with the target’s trajectory. Although theHiDeSNODE

with energy constraints shows slight deviations due to restricted

velocity, it still significantly outperforms the standard NODE

(Figures 7B, D). This suggests that the advantages of the HiDeS

NODE may not solely be attributed to increased velocity but could

also derive from additional information, such as curvature, which
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TABLE 3 Comparisons of training and test losses among SOTA NODEs and HiDeS NODE.

# Epochs Loss Standard NODE
(Chen et al., 2018)

SONODE (Norcli�e
et al., 2020)

HiDeS-2 NODE
(ours)

HiDeS-3 NODE
(ours)

1,000 Training 2.05 0.13 0.17 0.04

Test 17.50 6.97 4.42 2.03

2,000 Training 1.78 0.09 0.12 0.02

Test 14.70 5.21 2.63 1.08

is inferred by the high-order supervised signals, as illustrated in the

middle of Figure 1.

4.2.3 Energy cost
Figure 8 draws a parallel of the total energy expenditure of

multiple robots engaged in a target-chasing task, contrasting the

standard NODE with the HiDeS NODE. The figure shows that

the implementation of energy constraints has a significant impact.

Without energy constraints, both the standard NODE and the

HiDeSNODE incur substantial energy costs after training, reaching

up to 7,000 and 100,000 J, respectively (Figures 8A,B). However,

with the application of energy constraints, both NODEs manage

to keep the energy expenditure no more than 5,000 J after 1,000

epochs of training (Figures 8C, D).

4.3 Modeling and predicting of opinion
dynamics

In this section, simulations of NODEs on modeling and

predicting opinion dynamics are conducted.

4.3.1 One dimension, multiple initial conditions
We respectively present experimental results conducted over

1,000 and 2,000 epochs in Figures 9, 10, and complemented by

Table 3. The results indicate that our HiDeS NODEs surpass the

standard NODE and SONODE in capturing the subtleties of

opinion dynamics. Note that the SONODE and HiDeS-2 have the

same hidden layer dimensions. This superiority is evident from the

more accurate approximations of actual opinion dynamics during

both training and testing phases (Figures 9 and 10) and lower

auxiliary losses in consistent iterations (Table 3). For instance,

Figure 9 shows that the prediction curves of standard NODE

diverge from the ground truth traces in both training and testing

since the trajectories from different initial conditions can not

cross. While SONODE performs better than standard NODE

in the learning stage, its predictive ability remains inferior in

the testing phase. In contrast, our models’ prediction curves

closely align with the ground truth. Extending the epochs to

2,000 shows that both models perform better in the learning

stage than under 1,000 epochs, with our models demonstrating

remarkable superiority in the testing phase. This empirical

observation aligns with our theoretical analyses that using higher-

order derivatives as supervised signals enhances the predictive

capacity. Furthermore, as Table 3 shows, the proposed HiDeS-

3 NODE exhibits significantly lower training and testing losses

compared to the baseline models. Although the HiDeS-2 NODE

exhibits a slightly higher training loss than SONODE, its test loss is

substantially lower, indicating superior generalization ability, a key

goal of neural networks.

4.3.2 Multiple dimension, one initial condition
Figure 11 presents modeling and predicting results on diverse

types of individuals’ intra- and inter-group interactions for opinion

dynamics. The top row (Figures 11A–D) represents ground truth

values, while the bottom row (Figures 11E, F) shows predictions

generated by the HiDeS-3 NODE. Each subfigure illustrates

different combinations of consensus and dissensus within and

between groups, highlighting the model’s performance in capturing

extensive opinion dynamics.

4.3.3 Training dynamics
The learning results of opinion evolution are shown in

Figure 12 with the increase of epochs during a 2,000-epoch training.

It is clear that the learning results get more accurate and fine-

grained with the increasing epochs. Specifically, the predicted

results show significant deviation from the ground truth under

1–200 epochs (Figures 12B, C), while the more granular learning

results are presented with the increase of epochs (Figures 12D–H),

achieving more accurate predictions for opinion evolution.

5 Discussion

This paper has proposed the HiDeS NODE, a higher-order-

derivative-supervised NODE, as a novel approach for modeling

and predicting complex dynamics in multi-robot systems and

opinion dynamics. This framework excels in capturing interactions

among higher-order derivatives and the state vector, significantly

enhancing modeling precision over existing NODEmethodologies.

The introduction of higher-order derivatives as supervised signals

in the HiDeS NODE brings a superior predicting ability.

Applications of the HiDeS NODE in multi-robot systems and

opinion dynamics have demonstrated its effectiveness. To our

knowledge, this is the first initiative that introduces NODEs into

multi-robot systems and opinion dynamics. Applying the HiDeS

NODE to these fields opens new avenues for broader applications

in various intricate and dynamic systems.

The broader impact of the HiDeS NODE extends into

numerous fields where dynamic systems play a crucial role. For
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FIGURE 11

Opinion dynamics modeling and predicting using HiDeS-3 NODE for di�erent consensus and dissensus scenarios. (A) Intra-group consensus and

inter-group consensus, ground truth. (B) Intra-group consensus and inter-group dissensus, ground truth. (C) Intra-group dissensus and inter-group

consensus, ground truth. (D) Intra-group dissensus and inter-group dissensus, ground truth. (E) Intra-group consensus and inter-group consensus,

predicted by HiDeS-3 NODE. (F) Intra-group consensus and inter-group dissensus, predicted by HiDeS-3 NODE. (G) Intra-group dissensus and

inter-group consensus, predicted by HiDeS-3 NODE. (H) Intra-group dissensus and inter-group dissensus, predicted by HiDeS-3 NODE.

A B C D

E F G H

FIGURE 12

Opinion dynamics learning results during 2,000-epoch training. (A) Epoch = 1. (B) Epoch = 100. (C) Epoch = 200. (D) Epoch = 500. (E) Epoch =

1,000. (F) Epoch = 1,100. (G) Epoch = 2,000. (H) Ground truth.
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instance, it has the potential to offer refined predictions of climate

change effects or pollution dispersion. In healthcare, the HiDeS

NODE could lead to breakthroughs in understanding the dynamics

of disease spread or patient response to treatments, enabling

personalized medicine. The adaptability and advanced modeling

capabilities of the HiDeS NODE position it as a versatile tool

capable of addressing complex problems across various domains.

Despite its potential, the HiDeS NODE faces limitations such

as computational demands, particularly as the order of derivatives

increases, making real-time applications challenging. The model’s

accuracy is heavily reliant on the quality and quantity of data, which

can be a significant constraint in environments where data is sparse

or noisy. Addressing these challenges will be essential for the HiDeS

NODE’s successful application across different fields.

A valuable future direction is to utilize real-world data

to validate our model’s performance in practical scenarios.

Additionally, enhancing the robustness of the HiDeS NODE to

noisy data presents a promising direction for future research.
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