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CELLULAR NEUROSCIENCE

end of the spectrum of brain disorders associated with ARX 
mutations, is also a heterogeneous group of cortical malforma-
tions resulting from mutations in at least fi ve different genes: 
LIS1, DCX (doublecortin), RELN (reelin), ARX and TUBA1A 
(tubulin alpha1A) (Reiner et al., 1993; des Portes et al., 1998; 
Gleeson et al., 1998; Hong et al., 2000; Kitamura et al., 2002; 
Keays et al., 2007). Lissencephaly is caused by abnormal neuro-
nal migration and is characterized by disrupted cytoarchitecture 
associated with an abnormally thick cortex and absence (agyria) 
or diminution (pachygyria) of gyri and sulci and, hence, a smooth 
brain surface (for reviews, see Francis et al., 2006; Guerrini and 
Parrini, 2009).

ARX encodes a transcription factor which belongs to the class of 
homeobox genes. Mutations in this class of genes were fi rst described 
in Drosophila and result in the misexpression of body structures in 
different segments of the fl y, demonstrating their important role 
in specifying the body segments. Since then, homeobox genes were 
shown to control many cellular processes including proliferation, 
differentiation, apoptosis, cell shape, cell adhesion, and migration 
(for review, see Pearson et al., 2005). They are characterized by a 
60-amino acid homeobox domain (or homeodomain), which is 
responsible for DNA-binding. In addition, they often contain other 
motifs that can contribute to DNA and/or co-factor binding to 
further defi ne their target gene specifi city. These additional motifs, 
as well as variations in the homeodomain, are used to divide the 
homeoprotein superfamily into families and subfamilies, such as 
Hox, Nk, Paired, Pax, Lim, or Six.

INTRODUCTION
In the last years, defects in transcription regulation have been linked 
to several monogenic neurodevelopmental disorders resulting, in 
some cases, in cerebral malformations, mental retardation and/or 
autism. Such defects may result from mutations located directly in 
genes encoding transcription factors such as ZIC2 (Zinc fi nger pro-
tein of the cerebellum 2), responsible for holoprosencephaly (Brown 
et al., 1998). As these transcription factors often have precise spa-
tio-temporal expression profi les as well as multiple trans-acting 
co-factors, mutations in these genes can have pleiotropic effects. 
This is, for example, the case for ARX (aristaless-related homeobox 
gene), which has been shown in humans to be responsible for a 
wide spectrum of brain disorders ranging from phenotypes with 
severe neuronal migration defects, such as lissencephaly, to milder 
forms of X-linked mental retardation (XLMR) often associated with 
epilepsy, but without apparent brain abnormalities (for review, see 
Gécz et al., 2006).

Mental retardation is a heterogeneous group of disorders that 
result from a variety of acquired and genetic causes. The observa-
tion that mental retardation preferentially affects males, has led 
investigators to focus on genes located on the X-chromosome. 
XLMR may be: (i) syndromic, characterized by recognizable 
dysmorphic features, neurological complications and/or meta-
bolic abnormalities, or (ii) non-syndromic, showing no specifi c 
features apart from an intelligence quotient (IQ) below 70 with 
a defi cit in adaptive skills (for reviews, see Chelly and Mandel, 
2001; Gécz et al., 2009). Lissencephaly, which represents the other 
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The ARX protein belongs to one of the three largest classes of 
homeoproteins, the paired (Prd) class. This class of homeobox 
genes are thought to be important regulators of essential events 
during vertebrate embryogenesis, including the development 
of the central and peripheral nervous systems (for reviews, see 
Meijlink et al., 1999; Wigle and Eisenstat, 2008). Three subclasses 
have been identifi ed based on the nature of a key residue at posi-
tion 50 within the homeodomain. A serine residue at position 
50 (S50) of the homeodomain defi nes the Pax- or Paired-type 
subgroup, whereas a lysine residue at position 50 (K50) defi nes 
another subgroup including the Orthodenticle gene. The presence 
of a glutamine at position 50 (Q50) of the homeodomain defi nes 
a third subgroup, which contains the aristaless-related proteins 
(Galliot and Miller, 2000). ARX has, in addition to the homeo-
domain [amino acid (aa) 334–377], a conserved domain located 
at the C-terminus called the aristaless domain (aa 527–542), an 
octapeptide domain (aa 27–34) located near the N-terminus, three 
nuclear localization sequences (aa 82–89, 325–333 and 378–386), 
a central acidic domain (aa 224–255) and four polyalanine tracts 
(aa 100–115, 144–155, 275–281 and 432–440) whose function is 
not well known (Figure 1).

ARX MUTATIONS IN HUMAN
ONE SINGLE GENE INVOLVED IN SEVERAL SYNDROMES IN HUMAN
ARX, located on Xp22.13, was fi rst identifi ed in 2002 as being 
involved in non-syndromic XLMR (OMIM 300382 and 300419) 
(Bienvenu et al., 2002) as well as in X-linked West syndrome [also 
called infantile spasms (ISSX)] (OMIM 308350) (Strømme et al., 
2002; Kato et al., 2003). Since then, several other mutations have 
been described and broadened the spectrum of phenotypes result-
ing from ARX mutations (Figure 1). These phenotypes can be 
divided into two groups: (1) a malformation group, which includes 
X-linked lissencephaly associated with abnormal genitalia (XLAG) 
(OMIM 300215) (Dobyns et al., 1999; Ogata et al., 2000; Kitamura 
et al., 2002), hydranencephaly and abnormal genitalia (HYD-AG) 
(OMIM 300215) and Proud syndrome (OMIM 300004) (Kato et al., 
2004); and (2) a non-malformation group including non-syndro-
mic XLMR (Bienvenu et al., 2002), Partington syndrome (PRTS) 
(OMIM 309510) (Frints et al., 2002; Strømme et al., 2002), various 
forms of epilepsy including West syndrome (Strømme et al., 2002; 
Kato et al., 2003), X-linked myoclonic seizures, spasticity and intel-
lectual disability (XMESID) (OMIM 308350) (Scheffer et al., 2002; 
Strømme et al., 2002), idiopathic infantile epileptic-dyskinetic 

FIGURE 1 | While non-malformation phenotypes [non-specifi c X-linked 

mental retardation (MRX), Partington (PRTS) and West syndromes, XMESID, 

IEDE and Ohtahara syndrome] tend to be caused by pathogenic variations 

outside the homeodomain or inside the fi rst two polyalanines tracts of ARX, 

brain and genital malformation phenotypes [XLAG, hydranencephaly with 

abnormal genitalia (HYD-AG) and Proud syndrome] are associated with 

pathogenic variations that truncate the ARX protein or alter residues in the 

highly conserved homeodomain. Interestingly, a non-conservative missense 
mutation near the C-terminal aristaless domain (p.A521T) causes unusually severe 
XLAG with microcephaly and mild cerebellar hypoplasia.
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encephalopathy (IEDE) (OMIM 308350) (Guerrini et al., 2007) 
and early infantile epileptic encephalopathy with suppression-burst 
pattern (EIEE or Ohtahara’s syndrome) (OMIM 308350) (Kato 
et al., 2007) (see Table 1 for a description of these syndromes).

Phenotype/genotype studies have suggested that there is a cor-
relation between the genotype and the observed phenotype: pre-
mature termination mutations [large deletions, frameshift (fs), 
nonsense mutations or splice sites mutations] lead to the more 
severe phenotypes in the malformation group. In addition, non-
conservative missense mutations within the homeobox or nuclear 
localization sequences (as for example p.R332C or p.P353R) also 
cause XLAG, while conservative substitutions in the homeodo-
main (p.T333N) cause Proud syndrome (Figure 1). In contrast, 
missense mutations outside the homeobox or expansions/deletions 
of polyalanine tracts lead to the non-malformation group (Sherr, 
2003; Kato et al., 2004). Although several studies have generally con-
fi rmed this correlation, recent case reports show evidence of strong 
phenotypic heterogeneity (Hartmann et al., 2004; Van Esch et al., 
2004; Kato et al., 2007; Wallerstein et al., 2008; Absoud et al., 2009; 
Fullston et al., 2010), including in female carriers who have been 
reported to have in some cases partial or complete agenesis of the 
corpus callosum, cognitive levels spanning from normal to severely 
impaired and associated epilepsy (Bonneau et al., 2002; Uyanik 
et al., 2003; Kato et al., 2004; Okazaki et al., 2008; Wallerstein et al., 
2008; Marsh et al., 2009). This phenotypic heterogeneity is prob-
ably due to differences in genetic and environmental backgrounds 
which are specifi c to each family.

ARX MUTATIONS EXPANDING POLYALANINE TRACTS
The vast majority of ARX mutations identifi ed so far affect the two 
fi rst polyalanine tracts in the ARX protein, and most are expan-
sions that result in highly variable phenotypes (Figure 1). In par-
ticular, the most frequent and recurrent mutation (representing 
approximately 45% of all ARX mutations reported to date), the 
in-frame 24 bp duplication (c.428_451dup24), has been associated 
with PRTS, West syndrome and mental retardation with  seizures 

or non-specifi c XLMR (Turner et al., 2002; Szczaluba et al., 2006; 
Guerrini et al., 2007; Laperuta et al., 2007). To date, various types 
of seizures have been reported in patients with this mutation, 
including infantile spasms (Strømme et al., 2002; Turner et al., 
2002), tonic-clinic seizures (Turner et al., 2002; Partington et al., 
2004; Szczaluba et al., 2006), complex partial seizures (Partington 
et al., 2004) and in one instance, absence of seizures (Szczaluba 
et al., 2006). Two longer expansions have also been described, a 
33- and 27-bp duplication (Demos et al., 2009; Reish et al., 2009). 
Interestingly, only the 27 bp duplication gives a more severe phe-
notype when compared to the spectrum of clinical presentations 
associated with the dup24 bp mutation (Reish et al., 2009).

Similarly, several pathogenic variations have been reported to 
expand the fi rst polyalanine tract of ARX. In particular, an expansion 
of seven residues [c.333_334(GCG)

7
] has been reported to cause 

X-linked West syndrome (Strømme et al., 2002), IEDE (Guerrini 
et al., 2007) and Ohtahara syndrome (Absoud et al., 2009). The 
largest reported expansion, which adds eleven alanines [c.298_
330dupGCGGCA(GCG)

9
], also produces Ohtahara syndrome 

(Kato et al., 2007). It is interesting to note that despite having only 
a short expansion of seven alanine residues, the patient described 
in Absoud’s report displays one of the most severe phenotype, 
Ohtahara syndrome with progressive and severe neurodegenera-
tion, resulting in death during the fi rst year of life. This clinical 
presentation and course represent a much more severe phenotype 
than previously described for this mutation, suggesting that there is 
no real correlation between the expansion length of the polyalanine 
tract and phenotypic severity.

It has been suggested that these mutations, although reces-
sive, may cause protein aggregation, similar to other polyalanine 
disorders (for review, see Albrecht and Mundlos, 2005). Indeed, 
some ex vivo data seem to confi rm this hypothesis, at least for 
the c.333_334(GCG)

7
 mutation (Nasrallah et al., 2004; Friocourt 

et al., 2006; Shoubridge et al., 2007). In vitro transfection of the 
c.333_334(GCG)

7
 construct causes protein aggregation, fi lamen-

tous nuclear inclusions, and an increase in cell death. Similarly, 

Table 1 | Short phenotypic description of the syndromes associated with ARX mutations.

Non-syndromic XLMR X-linked mental retardation without any specifi c features apart from IQ < 70 and a defi cit in adaptive skills

Partington syndrome Mild to moderate X-linked mental retardation and dystonic movements of the hands

XMESID Myoclonic seizures, spasticity, mental retardation

West syndrome Infantile spasms (clusters of sudden fl exion or extension of the trunks and limbs), specifi c electroencephalographic pattern of 

hypsarrhythmia, mental retardation

IEDE Early-onset infantile spasms, severe generalized dystonia, profound mental retardation

Ohtahara syndrome Early infantile epileptic encephalopathy (within days of birth or even prenatally) with frequent minor generalized seizures and 

burst suppressions (high-voltage bursts alternating with almost fl at suppression phase) on the electroencephalogram, severe 

psychomotor retardation, poor prognosis (about one in three patients dies before the second year of life)

Proud syndrome X-linked mental retardation, agenesis of corpus callosum, abnormal genitalia

HYD-AG Hydranencephaly, abnormal genitalia

XLAG Severe congenital or post-natal microcephaly, lissencephaly with a posterior to anterior gradient, agenesis of the corpus 

callosum, hypothalamic dysfunction (disturbed temperature regulation), pancreatic insuffi ciency, thalamic/midbrain dysplasia, 

neonatal-onset intractable epilepsy, severe hypotonia, ambiguous or underdeveloped genitalia in genotypic males (micropenis 

and cryptorchidism, sometimes retention of testes), death within the fi rst few weeks or months of life
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cortical neurons, transfected with this mutant construct using 
whole-brain electroporation, form neuronal nuclear inclusions in 
vivo (Nasrallah et al., 2004). More recently, Shoubridge et al. (2007) 
showed that, in addition to increase the propensity of protein 
aggregation, the c.333_334(GCG)

7
 mutation results in a shift from 

nuclear to cytoplasmic localization of ARX protein. Interestingly, 
two recent reports of knock-in mice for the same mutation show 
the absence of neuronal inclusions in vivo (Kitamura et al., 2009; 
Price et al., 2009). However, Price et al. (2009) reported that in the 
parietal cortex of the (GCG) + 7 mutant mice, 45% of cells show 
cytoplasmic localization of mutated Arx compared to only 28% in 
wild-type mice. These results suggest that, although protein aggre-
gation is not detectable in vivo, polyalanine expansions may cause 
Arx protein mislocalization in the cytoplasm and thus, a partial loss 
of function, which may contribute to the pathogenesis.

ARX ACTS AS BOTH A TRANSCRIPTIONAL REPRESSOR 
AND ACTIVATOR
Both in vitro and in vivo studies have demonstrated that Arx is 
a potent transcriptional repressor, but that it can also act as an 
activator (Collombat et al., 2003; Seufert et al., 2005; McKenzie 
et al., 2007; Fullenkamp and El-Hodiri, 2008). In particular, the 
highly conserved octapeptide domain and another C-terminal 
region (aa 432–483) including the fourth polyalanine tract, have 
transcriptional repressor activity while the aristaless-related domain 
(aa 527–542) has transcriptional activator activity (McKenzie et al., 
2007; Fullenkamp and El-Hodiri, 2008). Some of Arx co-factors 
have even been identifi ed: the Groucho/transducin-like enhancer 
(TLE) of split family of co-repressors interacts with Arx octapep-
tide, whereas repression by the second domain occurs through the 
interaction with C-terminal binding proteins (CtBPs) (Fullenkamp 
and El-Hodiri, 2008). Moreover, it was shown that, although the 
domain encompassing polyalanine tracts 1 and 2 of ARX does 
not seem to signifi cantly contribute to the repression activity, the 
expansions of either polyalanine tract 1 or 2 enhance transcrip-
tional repression activity in a manner dependent on the length 
of the alanine expansion, suggesting that the expansion of ARX 
polyalanine tracts may be harmful to neurons in a size-dependent 
manner (McKenzie et al., 2007). Thus, these results suggest that 
ARX dysfunction due to expanded polyalanine tracts may arise 
from increased repression activity of the mutant protein. Changes 
in the transcriptional activity of ARX may thus have subtle effects 
on neuronal organization and may contribute to the pathogenesis 
of ARX-related disorders.

ARX IS EXPRESSED IN GABAergic CELLS
Pyramidal neurons, the projection cells of the neocortex, derive 
from the primitive neuroepithelium and, between embryonic 
day 12 (E12) and the time of birth in mouse, migrate radially as 
sequential waves to take their positions in the developing cortex in 
an orderly fashion. The fi rst wave of postmitotic neurons migrates 
to form a subpial preplate (or primitive plexiform zone). The 
second wave, which will form the cortical plate (CP), splits the 
preplate into the superfi cial molecular layer (or marginal zone) 
and the deep subplate. Then, the following waves of migrating 
neurons pass the subplate and generate cell layers in an “inside-
out” sequence, such that neurons that are generated early reside 

in the deepest layers, whereas later-born cells migrate past the 
 existing layers to form the more superfi cial layers (reviewed in 
Rakic, 1990; Nadarajah and Parnavelas, 2002; Kriegstein and 
Noctor, 2004; Ayala et al., 2007). The other neuronal cell type 
of the cortex, the GABA-containing interneurons, are generated 
for the most part from progenitors in the medial and caudal gan-
glionic eminences (MGE and CGE) of the ventral forebrain and 
reach the cortex by tangential migration (for reviews, see Marin 
and Rubenstein, 2003; Métin et al., 2006).

In mouse, Arx expression is fi rst detectable at the 3-somite stage 
and, after the 10-somite stage, it appears confi ned to a specifi c area 
in the anterior neural plate (Colombo et al., 2004). At later stages, 
it is widespread throughout telencephalic structures such as the 
GE, the cerebral cortex and the hippocampus (Miura et al., 1997; 
Bienvenu et al., 2002; Colombo et al., 2004; Poirier et al., 2004). 
No expression is detected in most of the mesencephalic and dien-
cephalic structures, except the ventral thalamus (Bienvenu et al., 
2002; Poirier et al., 2004). Outside the brain, Arx is detected in 
endocrine pancreas, developing testes as well as in heart, skeletal 
muscle, and liver (Miura et al., 1997; Bienvenu et al., 2002; Kitamura 
et al., 2002; Collombat et al., 2003; Biressi et al., 2008). In the telen-
cephalon, it is strongly expressed in the subventricular zones (SVZ) 
and mantle zones of the developing LGE and MGE, but not in the 
ventricular zones (VZ) of these structures. On the contrary, in the 
developing cortex, Arx is expressed in progenitors in the VZ/SVZ, as 
well as in tangentially migrating interneurons emanating from the 
GE, but not in radially migrating cells. In addition, double-labelling 
experiments, performed in both dissociated cultures and sections 
of embryonic or adult cortex, revealed extensive co-localization 
between Arx and GABA (Colombo et al., 2004; Poirier et al., 2004; 
Cobos et al., 2005; Friocourt et al., 2006, 2008). The protein is still 
present in the adult, but is confi ned primarily in regions that are 
known to be rich in GABAergic neurons such as the amygdala and 
the olfactory bulb (Colombo et al., 2004; Poirier et al., 2004). Thus, 
it has been suggested that the observed seizures in the great major-
ity of patients with ARX mutations, probably result from absence 
and/or dysfunction of GABAergic interneurons. Consistent with 
these results, Arx expression was shown to be regulated by several 
members of the Dlx (Distal-less) family of homeobox proteins, 
particularly Dlx2 (Cobos et al., 2005; Colasante et al., 2008). Indeed, 
Arx expression is ectopically induced following electroporation of 
plasmids expressing Dlx1, Dlx2 or Dlx5 in the chick neural tube 
and in mouse dorsal thalamus. These results are strengthened by 
the fact that, in vivo, Arx expression is severely reduced in Dlx1/2 
double knockout mice (Cobos et al., 2005).

PLEIOTROPIC ROLES FOR ARX
MULTIPLE EFFECTS RESULTING FROM ARX LOSS OF EXPRESSION IN 
MOUSE AND HUMAN
Arx knock-out mice have been shown to display a variety of defects 
(Kitamura et al., 2002; Colombo et al., 2007). For example, Arx-
defi cient brains were found to be dramatically altered, exhibiting 
poorly developed olfactory bulbs and reduced volumes of the cer-
ebral cortex and hippocampus (Kitamura et al., 2002). In particular, 
mutant brain sections revealed an accumulation of newly born 
interneurons near their proliferative zones in the MGE and CGE, 
resulting in a major loss of GABAergic interneurons in the cortex, 
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hippocampus and striatum, similar to the human XLAG (Bonneau 
et al., 2002; Uyanik et al., 2003; Forman et al., 2005; Okazaki et al., 
2008). Colombo et al. (2007) showed that the early differentiation 
of the basal ganglia appeared normal, whereas subsequent differen-
tiation was impaired, leading to the periventricular accumulation 
of immature neurons in both LGE and MGE. Neuronal migra-
tions towards the cortex and basal ganglia were greatly reduced in 
mutants, causing a periventricular accumulation of NPY+ (neu-
ropeptide Y) or calretinin+ neurons in the MGE. Altogether, these 
data suggest that Arx has major roles in promoting neuronal migra-
tion and regulating basal ganglia differentiation in mice. As a likely 
secondary effect of these malformations, Arx mutants also displayed 
altered connectivity between the cortex and thalamus. In particular, 
major axonal tracts failed to cross the LGE/MGE border, probably 
as a result of the loss of LGE corridor cells that guide thalamic 
axons through the MGE (López-Bendito et al., 2006) and/or the 
severe reduction of the ventral thalamus and lack of eminentia 
thalami, an area connecting the diencephalon to the caudoventral 
telencephalon (Kitamura et al., 2002; Colombo et al., 2007).

In human, XLAG is typically characterized by severe congenital 
or postnatal microcephaly, lissencephaly with a posterior-to-ante-
rior gradient, an agenesis of the corpus callosum and dysgenesis of 
the hippocampal dentate gyrus, midbrain malformations, hypotha-
lamic dysfunction, neonatal-onset intractable epilepsy, severe hypo-
tonia and ambiguous or underdeveloped genitalia in genotypic 
males (Dobyns et al., 1999; Ogata et al., 2000; Kitamura et al., 2002). 
Histopathological studies revealed poorly delineated and atrophic 
basal ganglia with small fragmented caudate nuclei and hypodense 
cavitations within the striatum, the absence or hypoplasia of the 
olfactory bulbs, hypoplastic optic nerves, a selectively enlarged 
third ventricle and temporal lobe as well as hippocampal dysplasia. 
Histological analysis described a cortex organized into 3 distinct 
layers (a marginal layer, an intermediate layer and a less organ-
ized deep layer) instead of the usual six, and a strong decrease in 
the number, sometimes even a complete absence, of interneurons. 
Moreover, numerous heterotopic neurons can be observed in the 
white matter without any clear organization (Bonneau et al., 2002; 
Uyanik et al., 2003; Forman et al., 2005; Okazaki et al., 2008). These 
neuropathological features are very similar to those observed in 
Arx-/y mice (Kitamura et al., 2002; Colombo et al., 2007).

ROLE OF ARX IN CELL PROLIFERATION AND NEURONAL MIGRATION
The extensive co-localization between Arx and GABA, its absence of 
expression in radially migrating neurons, as well as the absence of 
interneurons documented in the cortex of XLAG patients (Bonneau 
et al., 2002; Forman et al., 2005; Okazaki et al., 2008) and in Arx 
mutant mice (Kitamura et al., 2002; Colombo et al., 2007) have 
led to the idea that XLAG syndrome was the result of defective 
interneuron migration and function, and the proposal of a new 
term “interneuronopathy” to describe this pathology (Kato and 
Dobyns, 2005). However, some data suggest that ARX expression 
in cortical progenitors may also be critical for radial migration 
(Friocourt et al., 2008). Using in utero electroporation in mouse 
to knock-down or overexpress ARX in the developing cortex, we 
recently showed that targeted inhibition of the gene causes cortical 
progenitor cells to exit the cell cycle prematurely, whereas overex-
pression increases the length of the cell cycle, showing that ARX is 

important to maintain progenitor proliferation. In  addition, RNA 
interference-mediated inactivation of ARX results in decreased 
neuronal motility, with an accumulation of cells in the SVZ/inter-
mediate zone (IZ) (Friocourt et al., 2008). These results are in agree-
ment with the microcephaly and the misplacement of pyramidal 
neurons observed in the cortex of Arx knockout mice (Kitamura 
et al., 2002), and in the cortex and white matter of XLAG syndrome 
(Bonneau et al., 2002).

Interestingly, we observed that arrested cells due to ARX inacti-
vation appeared oval or round in shape, with very few or no proc-
esses (Friocourt et al., 2008), very different from the multipolar 
morphology normally exhibited when cells exit the VZ and enter 
the lower IZ (Tabata and Nakajima, 2003). Since the fi rst descrip-
tion of the multipolar stage during radial migration, several stud-
ies have suggested that the transition into and out of this stage is 
particularly vulnerable, and that it is disrupted in several disorders 
of neocortical development, including lissencephaly (LoTurco and 
Bai, 2006). Cell morphology defects, very similar to those induced 
by RNAi-mediated inactivation of ARX, have been reported fol-
lowing inactivation of Filamin A (Nagano et al., 2004), Rac1 (Chen 
et al., 2009) or p27kip1 (Kawauchi et al., 2006) and gain of func-
tion of MARK2 (Sapir et al., 2008) or Rnd2 (Heng et al., 2008). 
Interestingly, all these proteins interact with the actin cytoskel-
eton or are involved in neuronal polarity, suggesting that ARX 
may play a role in cell morphology through the regulation of the 
cytoskeleton. Consistently, we observed that ARX overexpression 
in radially migrating cells promotes tangentially orientated migra-
tion in the SVZ and lower IZ, although these cells do not express 
GABAergic markers (Figure 2). Interestingly, these cells exhibit 
complex branching and very long processes, which confi rm that 
ARX may have a role in cell morphology and especially in process 
formation (Friocourt et al., 2008).

In Arx-null embryos, migration from (i) the LGE to the striatum 
and other structures and (ii) the MGE to the cortical IZ and MZ are 
nearly absent, whereas migration through the cortical SVZ is only 
partially impaired. As a consequence, calbindin- and calretinin-
expressing cells are severely reduced and NPY+ interneurons are 
nearly absent throughout the brain (Kitamura et al., 2002; Colombo 
et al., 2007). Defective tangential migration is similarly observed 
after electroporation into the MGE of rat brain slices (Friocourt 
et al., 2008). Both inactivation and overexpression of ARX result 
in impairment of cortical interneuron migration from the MGE. 
Thus, these results suggest that this defect in tangential migration 
is cell autonomous and not the consequence of the absence of 
Arx earlier in development (Colombo et al., 2007; Friocourt et al., 
2008). Indeed, studies on Arx knock-out mice described regional 
defi ciencies and mis- and/or ectopic expression of several transcrip-
tion factors, potentially important for migration and differentiation 
of certain population of neurons, as well as abnormal axonal tracts 
which may have been the reason for the impaired tangential migra-
tion (Kitamura et al., 2002; Colombo et al., 2007). Interestingly, we 
observed that many tangentially migrating neurons overexpress-
ing ARX had one unusually long process (Friocourt et al., 2008). 
Morphological defects were also observed in migrating interneu-
rons derived from Arx mutant mice (Colombo et al., 2007). These 
authors observed that Arx-mutant interneurons failed to migrate 
from small fragments of mutant LGE to the cortex both on mutant 
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and wild-type slices. Similarly, in Matrigel experiments, Arx mutant 
explants exhibited more than 70% reduction in mean migration 
distance from the edge of the explant. In addition, the mutant 
leading processes exhibited an increase in length and branching, 
further suggesting that Arx may regulate the cytoskeleton dynamics 
during interneuron migration, similar to what was shown for Dcx 
and Lis1, two genes responsible for lissencephaly (McManus et al., 
2004; Kappeler et al., 2006; Friocourt et al., 2007). It is interesting 
to note that Arx has also been found to be necessary for neuronal 
migration in the rostral migratory stream, a structure that con-
tains newly generated neurons migrating towards the olfactory bulb 
(Yoshihara et al., 2005).

Recently, Colasante et al. (2009) performed a gene expression 
profi le analysis comparing E14.5 wild-type and Arx mutant ventral 
telencephalic tissues and identifi ed Ebf3 among the 35 genes whose 
expression is consistently altered in Arx mutant GE. This gene is 
normally not (or only marginally) expressed in the developing tel-
encephalon, but it was found strongly misexpressed in the MGE 
and LGE of Arx mutant mice (Colasante et al., 2009). It is also 
known to be expressed in the developing hindbrain and spinal cord 
where it promotes neuronal differentiation and radial migration 

(Garcia-Dominguez et al., 2003). More importantly, these authors 
observed that electroporation of a construct expressing Ebf3 into 
the MGE prevented neuronal tangential migration. Conversely, 
focal electroporation of a short hairpin RNA (shRNA) targeting 
Ebf3 into the MGE of brain slices taken from Arx mutants at E14.5 
rescued the migration, although only partially. Electroporated cells 
were found to migrate away from the site of injection and spread 
following both a radial migration towards the mantle zone of the 
basal ganglia and a tangential route to the cortex. However, very 
few cells were able to move through the cortico-striatal boundary 
and reach the lateral cortex, suggesting that long distance migration 
capability was not rescued by this means. These results suggest the 
implication of Ebf3 in neuronal migration although the underlying 
mechanisms are still unknown.

ROLE OF ARX IN NEURONAL DIFFERENTIATION
Several studies have suggested that ARX may play important roles in 
neuronal maturation and/or differentiation. Indeed, Okazaki et al. 
(2008) reported the presence of ectopic cells expressing nestin in 
the SVZ of a patient with XLAG, suggesting some neural matura-
tion defects. Similarly, Colombo et al. (2007) observed that many 

FIGURE 2 | Tangential migration of a few ARX-overexpressing cells in the 

cortex. (A,B) Examination of coronal sections of E16.5 mouse brains 
electroporated at E13.5 with an ARX-overexpressing construct. Tangentially 
orientated cells migrating away from the site of electroporation are detectable in 
the IZ (see arrows). Some of these cells have long and complex processes, 

orientated tangentially. (C,D) Examination of E18.5 coronal sections of mouse 
brains electroporated at E13.5 with an ARX-overexpressing construct. Five days 
after electroporation, the number of tangentially orientated cells observed was 
reduced, but some had migrated long distances (see arrows). Scale bars: (A,B) 
100 µm, (C,D) 200 µm.
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immature neurons produced after E11.5 in Arx mutants, that had 
failed to migrate out of the subpallial germinal layers, expressed 
only weakly MAP2, a marker of differentiated and mature neu-
rons. These cells were also negative for various striatal markers 
such as Ebf1 or enkephalin mRNAs and calbindin, DARPP32 and 
dopamine 2 receptor, suggesting that they are unable to differenti-
ate (Colombo et al., 2007). Interestingly, these cells, when dissected 
from E18.5 LGE and MGE SVZ, expressed MAP2 as well as stri-
atal markers (DARPP32, calbindin, and EBF), suggesting that Arx 
mutant SVZ cells of the LGE are capable of differentiation, and that 
the maturation defects observed in mutant mice may result from 
non-adapted local factors in the SVZ.

These observations as well as the high degree of co-localization 
that exists between Arx and GABA in embryonic and adult brains, 
and the observation that Arx expression is regulated by Dlx genes 
which are strong candidates for regulating the differentiation of 
most, if not all, telencephalic GABAergic neurons (Stuhmer et al., 
2002), have led to the suggestion that Arx might be involved in the 
specifi cation of the GABAergic phenotype. However, this hypoth-
esis has not been confi rmed. In a previous report, we observed 
that the co-localization of ARX and GABA in cortex or GE is not 
complete (Friocourt et al., 2008). In particular, we observed that 
61–65% of ARX-positive cells expressed GABA and 58–72% of 
GABAergic cells expressed ARX in dissociated cultures from E16 
striatum. Moreover, ARX overexpression in cortical progenitors in 
vivo or in dissociated cultures from E16 rat cortex or GE does not 
induce GABA or calbindin expression, suggesting that even if ARX 
is involved in GABAergic specifi cation, it does not appear to be 
suffi cient by itself to induce the GABAergic phenotype and thus, it 
may act in combination with other genes (Friocourt et al., 2008). In 
addition, the observation that the introduction of an ARX-overex-
pressing construct into the VZ of the dorsal telencephalon induces 
tangential migration within the IZ, although these cells do not 
express GABA (Figure 2), suggests that ARX may be involved in 
migration rather than cell specifi cation or differentiation. These 
results are further reinforced by recent fi ndings which show that Arx 
re-expression in a Dlx1/2 mutant background is suffi cient to rescue 
neuronal migration activity. In contrast, Dlx2 electroporation in 
Arx-defi cient brain slices induces GAD65 expression, suggesting 
that Arx is necessary to promote Dlx-dependent GABAergic cell 
migration, but is dispensable for Dlx ability to induce GABAergic 
cell fate commitment (Colasante et al., 2008).

However, it is still possible that ARX controls the specifi cation of 
distinct subsets of GABAergic neurons in the subpallium. Indeed, 
different studies have reported a decrease in the number of cholin-
ergic neurons in the basal forebrain of Arx mutants (Kitamura 
et al., 2002; Colombo et al., 2007), suggesting that ARX, uniquely 
or in combination with other transcription factors, may play a role 
in the specifi cation of at least this subpopulation of GABAergic 
cells. In addition, the observation that ARX is still expressed in 
GABAergic cells in the mouse adult brain suggests that it may also 
have a role in more mature neurons. Interestingly, using a genome-
wide transcriptomic screen to identify transcriptional changes in 
the subpallium between wild-type and Arx mutant mice, two 
recent studies isolated genes encoding calbindin and calretinin as 
up-regulated, suggesting that Arx may repress the expression of 
these genes (Fulp et al., 2008; Colasante et al., 2009). However, it 

is also possible that, in the case of calbindin, this up-regulation 
may result from the accumulation of interneurons which fail to 
reach the cortex, and that calbindin is not a direct target of Arx. 
On the contrary, the Lhx7/8 gene, which is required for cholinergic 
differentiation and maturation, was found down-regulated in Arx 
mutant striatum, suggesting that Arx normally promotes cholin-
ergic neuron differentiation through the activation of this gene 
(Colasante et al., 2009).

Recently, Kitamura et al. (2009) published 3 knock-in mice for 
mutations found in human: P353L (a mutation responsible for 
XMESID), P353R (a mutation responsible for XLAG), as well as 
(GCG)+7

 (expansion in the fi rst polyalanine tract). They observed 
that the phenotype of the ArxP353R mutant mice is quite severe and 
very similar to Arx-null mice (Kitamura et al., 2002; Colombo et al., 
2007). Similarly, the abnormal cortical layer formation, abnormal 
structure of the striatum, and defi ciency of GABAergic neurons in 
the cortex and striatum caused by P353R mutation closely mimic 
XLAG (Bonneau et al., 2002; Okazaki et al., 2008). In contrast, the 
two other mutant lines survived and had milder phenotypes: mice 
with the (GCG)+7

 mutation showed severe seizures and impaired 
learning performance, whereas mice with the P355L mutation 
exhibited mild seizures and only slightly impaired learning per-
formance. All these mutants exhibited fewer GABAergic and cholin-
ergic neurons in the striatum, medial septum and ventral forebrain 
nuclei when compared with wild-type mice (Table 2).

Interestingly, the severity of the phenotype, as well as the decrease 
in specifi c GABAergic subpopulations in mutant brains, seem to 
correlate quite well with the decreased ability of transcriptional 
repression (Figure 3), suggesting that even subtle transcriptional 
changes may be a potential basis for the neurological symptoms 
and cognitive impairment observed in the patients.

PATHOPHYSIOLOGY OF PHENOTYPES RESULTING 
FROM ARX MUTATIONS
To test the hypothesis that the epilepsy phenotype observed in 
children with ARX mutations results primarily from a defi cit in 
forebrain cerebral cortical interneuron function, Marsh and col-
leagues recently generated a mouse line with a genetic ablation of 
Arx specifi cally in subpallial derived neurons (Marsh et al., 2009). 
They found that both male and female mutant mice demonstrated 
early onset epilepsy resembling the one observed in patients with 
ARX mutations. Although the postnatal brains of these mutant 
mice appeared grossly normal, they identifi ed interneuron subtype 
specifi c defects, again suggesting that Arx is necessary for the devel-
opment of specifi c populations of interneurons in mice (Table 2). 
The fi nding that these mutant mice, who have an Arx expression left 
intact in the developing neocortex, recapitulate many key character-
istics of ARX-related disorders, suggests a critical role for interneu-
rons in the pathogenesis of epilepsy in these patients and strongly 
support the concept of “interneuronopathy” (Kato and Dobyns, 
2005), as the cause of epilepsy, specifi cally infantile spasms. The 
proposed pathophysiological mechanism of the observed pheno-
type in these animals is thus a specifi c loss of interneurons resulting 
in an overall increase in excitation.

Indeed GABA, the principal inhibitory neurotransmitter, has 
been shown to synchronize activity in cortical neuronal circuits, 
reduce cell hyperexcitability, and prevent epileptiform activity 
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in the cerebral cortex and hippocampus. In the developing and 
 newborn rodent brains, it has been shown that this neurotrans-
mitter was excitatory (for review, see Represa and Ben-Ari, 2005). 
This excitatory action is supposed to play important roles during 
brain maturation and may transiently regulate neuronal growth, 
cell proliferation in the germinative zones, neuronal migration and 
cell differentiation (for reviews, see Represa and Ben-Ari, 2005; 
Heng et al., 2007). Abnormalities of GABAergic function have 
already been associated with epilepsy in humans and subcortical 

structures rich in GABAergic neurons, such as the basal ganglia, 
have also been implicated in the generation of epileptic spasms 
(for review, see Dulac, 2001). So, in conclusion, although the pre-
cise mechanisms of action of ARX and the signalling pathways 
involved are still unknown, both the descriptions of the patient 
clinical conditions and the GABAergic defects characterized in dif-
ferent Arx mutant lines strongly suggest a functional impairment 
of GABAergic interneurons in the basal ganglia as the major cause 
of ARX-related phenotypes.

Table 2 | Summary of the defects reported by studies on different Arx mutant lines. The percentages of cells are expressed by comparison to the 

number of cells in wild-type mice.

Tangential migration 

from MGE to ctx 

(Kitamura et al., 2009)

Arx KO

Arx P353R

Arx P353L

Arx (GCG) + 7

E12.5: no initiation of migration

E12.5: no initiation of migration

E12.5: Initiation of migration

E12.5: Initiation of migration

E14.5: stream only in the SVZ

E14.5: stream only in the SVZ

E14.5: streams OK

E14.5: streams OK

P0: no ARX+ in CP

P0: 28.5% ARX+ in CP

P0: 92.8% ARX+ in CP

P0: 88.4% ARX+ in CP

Radial + tangential 

migration in striatum 

(P0) (Kitamura et al., 

2009)

Arx KO

Arx P353R

Arx P353L

Arx (GCG) + 7

Thickened SVZ in striatum

Loss of GABAergic interneurons in striatum

VZ + SVZ thicker (ARX+/MAP2−)

Accumulation of SST+ cells in SVZ of ventral striatum, No SST cell in the 

mantle zone of the striatum

No increase in VZ/SVZ thickness

↓ Number of SST+ cells in the mantle zone of the striatum

No increase in VZ/SVZ thickness

Most of SST+ cells visible in the VZ of the striatum

Defect in radial migration

Defect in tangential migration

Defect in radial migration

Defect in tangential migration

Normal radial migration

Defect in tangential migration

Normal radial migration

Defect in tangential migration

Radial migration in ctx 

(P0) (Kitamura et al., 

2009)

Arx KO

Arx P353R

Arx P353L

Arx (GCG) + 7

Arx KO

Arx P353R

Arx P353L

Arx (GCG) + 7

Thinner CP without severe abnormal structure

Tbr1+ deep layer a bit bigger, 

Foxp1+ middle layer abnormal, 

Satb2+ upper layer thinner

No difference with wild-type

No difference with wild-type

No ChAT+ cells in the forebrain

No Lhx8 expression at P0

Slight ↓ of Lhx8 expression

No Lhx8 expression at P0

Severe loss of ChAT+ cells in basal ganglia, 39% in striatum

Defect in radial migration

Defect in radial migration

Normal radial migration

Normal radial migration

Cholinergic neuron 

differentiation (Kitamura 

et al., 2009; Price et al., 

2009)

Somatosensory cortex Striatum

↓ of GABAergic neurons 

(4–6 weeks post-natal) 

(Kitamura et al., 2009; 

Marsh et al., 2009; Price 

et al., 2009)

Arx KO

Arx P353L

Arx (GCG) + 7

Absence of NPY+ cells

↓↓ in CB+ cells

↓CR+ cells

No change in PV+ cells

92.7% GAD67+
74% SST+
100% NPY+
100% PV+
87.5% GAD67+
100% SST+
100% NPY+
81–100% PV+
100% CR+
58% CB+
58–100%ARX+

Loss of NPY+ cells

45% NOS+
47.8% SST+
60% MPY+
85.2% PV+
45% NOS+
52.4% SST+
60–69% NPY+
70.6% PV+

47% CB+

Ctx, cortex; KO, knock-out; SST, somatostatin; VZ, ventricular zone; SVZ, subventricular zone; CP, cortical plate; ChAT, choline acetyltransferase; CB, calbindin; CR, 
calretinin; PV, parvalbumin; NOS, nitric oxide synthase.
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FIGURE 3 | Measure of the transcriptional repression capacity of different 

ARX mutants corresponding to identifi ed mutations in human. The capacity 
of transcriptional repression of mutant forms of ARX was tested on Lmo1 
enhancer, which was cloned upstream TK-luciferase in a similar design as Fulp 
et al. (2008). ARX wild-type or mutant constructs were transfected in Neuro2a 

cells and the luciferase activity was measured. Luciferase data were normalized 
to Renilla expression and data are presented as the percentage of transcriptional 
activity compared to an empty vector control. Although P353L mutation does 
not have a detectable effect on ARX transcriptional repression, (GCG) + 7 and 
P353R both decrease ARX capacity to repress expression of the reporter gene.
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