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Adult motor coordination requires strong coincident cortical excitatory input to hyperpo-
larized medium spiny neurons (MSNs), the dominant neuronal population of the striatum.
However, cortical and subcortical neurons generate during development large ongoing pat-
terns required for activity-dependent construction of networks. This raises the question of
whether immature MSNs have adult features from early stages or whether they gener-
ate immature patterns that are timely silenced to enable locomotion. Using a wide range
of techniques including dynamic two-photon imaging, whole cell or single-channel patch
clamp recording in slices from Nkx2.1-GFP mice, we now report a silencing of MSNs that
timely coincides with locomotion. At embryonic stage (as early as E16) and during early
postnatal days, genetically identified MSNs have a depolarized resting membrane potential,
a high input resistance and lack both inward rectifying (IKIR) and early slowly inactivating
(ID) potassium currents. They generate intrinsic voltage-gated clustered calcium activity
without synaptic components. From postnatal days 5–7, the striatal network transiently
generates synapse-driven giant depolarizing potentials when activation of cortical inputs
evokes long lasting EPSCs in MSNs. Both are mediated by NR2C/D-receptors.These imma-
ture features are abruptly replaced by adult ones before P10: MSNs express IKIR and ID and
generate short lasting, time-locked cortico-striatal AMPA/NMDA EPSCs with no NR2C/D
component.This shift parallels the onset of quadruped motion by the pup.Therefore, MSNs
generate immature patterns that are timely shut off to enable the coordination of motor
programs.

Keywords: development, basal ganglia, striatum, immature activity, locomotion, patch clamp, two-photons

imaging, mouse pup

INTRODUCTION
Adult medium spiny neurons (MSNs), the GABAergic principal
neurons of the striatum, have unique features required for the
appropriate selection of motor programs (Grillner et al., 2005).
They are highly hyperpolarized at rest and require strong coinci-
dent excitatory glutamatergic inputs for the execution of appro-
priate movements (Wilson and Kawaguchi, 1996). These unique
features are due to strong inward rectifying (I KIR) and slow inac-
tivating (I D) potassium currents and feedforward and feedback
afferent inhibition that confer a low input resistance, hyperpolar-
ized resting potential, and a long delay to initial spiking (Tepper
et al., 2004). In a large range of animal species and brain structures,
immature neurons are highly excitable and developing networks
generate network-driven patterns that are instrumental in neu-
ronal growth, synapse formation, and the formation of functional
circuits (for review Ben-Ari, 2002; Spitzer, 2006; Huberman et al.,
2008; Blankenship and Feller, 2010). These observations raise the

question whether MSNs differ from other neuronal types and
are silent from early developmental stages and if not when and
how are the early patterns switched off to enable correct motor
coordination and quadruped motion.

Medium spiny neurons originate in the lateral ganglionic emi-
nence (Deacon et al., 1994; Olsson et al., 1998) and migrate radially
into the developing striatum compartments (Van Der Kooy and
Fishell, 1987). To understand MSN functional maturation, we tar-
geted embryonic and early postnatal MSNs with the use of Nk2
homeobox 1 (Nkx2.1)-GFP Mice. Nkx2.1, also known as thyroid
transcription factor-1 (TTF-1), is a protein that regulates tran-
scription of genes and is specifically expressed by interneurons
but not by MSNs in the striatum (Nobrega-Pereira et al., 2008).
We determined MSNs’ cellular properties using whole cell and
single-channel recordings. In parallel we performed two-photon
dynamic imaging that enables to determine the activity of large
neuronal samples in slice preparation (Crepel et al., 2007). We
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then used behavioral analysis to describe posture and onset of
locomotion in newborn pups. We report an abrupt switch of cel-
lular and synaptic properties in MSNs in parallel with the initiation
of locomotion.

MATERIALS AND METHODS
EMBRYONIC AND POSTNATAL SLICE PREPARATIONS
We performed experiments in embryonic (E14, E16, E18) or
postnatal (P0–P45) wild type C57BL/6 mice (Janvier, France) or
Nkx2.1-GFP mice of either sex obtained by crossing Nkx2.1-CRE
C57BL/6 mice (Jackson lab) and the RCE:LoxP reporter strain
(Sousa et al., 2009). We anesthetized pregnant mice with xylazine
(Rompun 2%; used at 0.05%) and ketamine (Imalgene 1000; used
at 50 g/l;Volume injected: 0.2 ml/g) and postnatal mice with isoflu-
rane. We kept brains in ice-cold oxygenated solution containing
(in mM): 110 choline, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 0.5
CaCl2, 25 NaHCO3, 7 glucose, and performed coronal, parasagit-
tal, or horizontal slices (400 μm thick) using a vibratome (VT1200
Leica Microsystems Germany). During the recovery period, slices
were placed at room temperature (RT) with standard artificial
cerebrospinal fluid (ACSF) saturated with 95% O2/5% CO2 and
containing (in mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4, 1.3 MgCl2,
2 CaCl2, 25 NaHCO3, 11 glucose.

CALCIUM IMAGING
Slices were incubated for 30 min in 2.5 ml of oxygenated ACSF (35–
37˚C) with 25 μl fura 2AM (1 mM, in DMSO + 0.8% pluronic
acid; Molecular Probes). Imaging was performed with a multi-
beam two-photon laser scanning system (Trimscope-LaVision
Biotec) coupled to an Olympus microscope with a high numerical
aperture objective (20×, NA 0.95, Olympus). Images of the scan
field (444 μm × 336 μm) were acquired via a CCD camera (4 × 4
binning; La Vision Imager 3QE) with a time resolution of 115–
147 ms (non-ratiometric 1000–3000 images, laser at 780 nm) as
previously described (Crepel et al., 2007). In slices from Nkx2.1-
GFP mice, we first took images of the GFP-expressing neurons
(laser at 910 nm) before acquiring spontaneous fura 2 fluores-
cence changes (laser at 780 nm). To patch clamp record particular
neurons Fura pentapotassium salt (30 μM; Invitrogen) was added
to the pipette solution to keep cells fluorescent.

PATCH CLAMP RECORDINGS
Cells were visualized with infrared-differential interference optics
(Axioskop2; Zeiss). We performed recordings at 35–37˚C. For
current clamp recordings, the pipette contained (in mM): 15
KCl, 5 NaCl, 125 KMeSO4, 10 HEPES, 2.5 Mg-ATP, 0.3 Na-
GTP. For whole cell voltage-clamp recordings of postsynaptic
GABAA (sIPSCs) and glutamatergic (sEPSCs) currents, the pipette
(6–10 MΩ) contained (in mM): 120 Cs-gluconate, 13 CsCl, 1
CaCl2, 10 HEPES, 10 EGTA, pH 7.2–7.4 (275–285 mOsm). We
recorded sIPSCs at the reversal potential of sEPSCs (+10 mV). To
record sEPSCs we continuously applied a GABAA receptor antag-
onist (bicuculline 20 μM or Gabazine 5 μM), and maintained
the membrane potential at −80 or +40 mV to separately detect
AMPA/kainate (KA) and NMDA sEPSCs, respectively (Groc et al.,
2002). We recorded AMPA/KA sEPSCs in the continuous pres-
ence of APV (40 μM), the selective NMDA receptor antagonist,

and separated AMPA from KA sEPSCs by applying NBQX at a
dose (1 μM) that preferentially blocks AMPA receptors. We iden-
tified NMDA sEPSCs at +40 mV by their kinetics (the NMDA
decay time is longer than the AMPA one) or insensitivity to the
AMPA/KA receptor antagonist, NBQX (10 μM).

To record unitary GABAA currents the pipette (4–5 MΩ) con-
tained (in mM): 120 NaCl, 20 TEA-Cl (tetraethylammonium
chloride), 5 KCl, 5 4-aminopyridine, 0.1 CaCl2, 10 MgCl2, 10 glu-
cose, 5 GABA, 5 isoguvacine, 3 CsCl, 10 HEPES-NaOH buffered to
pH 7.2–7.3; osmolality of 300–320 mOsm. When Gabazine 10 μM
was added to the above pipette solution no unitary currents were
recorded. To record unitary NMDA currents, the pipette (4–5 MΩ)
contained (in mM): 140 NaCl, 3.5 KCl, 1.8 CaCl2, 10 HEPES,
10 NMDA, 10 glycine, 1 strychnine, buffered to pH 7.43; osmo-
lality of 300–320 mOsm. When APV (40 μM) was added to the
pipette solution, no unitary currents were recorded. To identify
the morphology of neurons recorded in cell-attached configura-
tion, we re-patched them with a conventional whole cell electrode
containing neurobiotin (Abcys).

IDENTIFICATION OF IMMATURE MSNs VS. INTERNEURONS OR VS.
ASTROCYTES
Since embryonic and early postnatal MSNs lack their charac-
teristic adult K+ currents, they could not be identified from
their electrophysiological properties. We therefore identified them
as GFP-negative neurons (Sousa et al., 2009) in striatal slices
from Nkx2.1-GFP mice. To quantify the proportion of Nkx2.1-
positive striatal interneurons that faintly expressed GFP and were
therefore considered as MSNs, we performed immunocytochem-
istry of Nkx2.1 (see below; Figure 1A). From a total of 2767
Nkx2.1-expressing striatal neurons labeled with TTF-1 (red),
75% were also GFP positive (yellow, n = 2077), showing that
in perinatal slices from Nkx2.1-GFP mice, 25% of the Nkx2.1-
positive neurons, though GFP-negative, were not MSNs. In our
two-photon recordings, GFP positive/fura 2-loaded neurons rep-
resented 10–20% of all fura 2-loaded cells. Therefore instead
of 10–20% interneurons, we had around 13–27% interneurons
in the field. We thus overestimated the proportion of MSNs
by 3–7%.

To quantify the proportion of fura 2-loaded cells that were
astrocytes and not neurons in slices from P10 to P12 mice, and
could be erroneously considered as silent neurons, we performed
double loading of slices with sulforhodamine 101 (SR101, 1 μM),
a specific marker of astroglia (Nimmerjahn et al., 2004) dur-
ing 20 min at 35–37˚C and then with fura 2AM (Figure 1B). At
P12, astrocytes represented around 25% of all the imaged cells
(n = 201/815 from five slices). Among these astrocytes, around
40% were also positive for fura 2 (n = 86/201). Therefore around
10% of fura 2-loaded cells were astrocytes (n = 86/815). All these
fura 2-loaded astrocytes were silent and could be erroneously
counted as silent neurons.

IMMUNOCYTOCHEMISTRY AND DiI EXPERIMENTS
To reveal the neurobiotin injected during whole cell recordings, the
sections were left 12 h in paraformaldehyde (3%) at 4˚C, rinsed
in PBS, left 12 h in PB-sucrose 20%, and then at −80˚C for at
least 2 h. They were thawed at RT, rinsed in PB and incubated
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FIGURE 1 | Quantification of percent of GFP-negative/Nkx2.1-positive

neuron in perinatal striatal slices and of percent of fura 2-loaded

astrocytes in the P10–P12 striatal slices. (A1) Confocal image of the
GFP-expressing neurons in the dorso-lateral region of the striatum (slice
from a P2 Nkx2.1-GFP mouse). (A2) Nkx2.1-expressing neurons in the
same field revealed with the TTF-1/111–121 antibody (in red, see Materials
and Methods). (A3) The superimposition of the two images shows that of
the 161 Nkx2.1-expressing neurons 13 were GFP-negative meaning that in
this field 13 striatal interneurons out of 161 could be erroneously
considered as MSNs. (B) Two-photon images of a striatal slice first loaded
with sulforhodamine 101 (SR101, 1 μM) and then with fura 2AM. (B1) Fura
2 fluorescent cells (n = 196) imaged with excitation wavelength and
emission filter parameters specific for fura 2 (laser at 780 nm and emission
filter 535 ± 25 nm, parameters that give no images of cells loaded with
SR101 only). (B2) Manually detected contours of the cells from the
fluorescence images (n = 196 fura 2-loaded cells). (B3) SR101 fluorescent
astrocytes (n = 46) imaged with excitation wavelength and emission filter
parameters adjusted for SR101 (laser at 880 nm and emission filter
610 ± 37 nm, parameters that give faint images of few cells loaded with
fura 2 only); same field as in (A). (B4) Of these 46 SR101 loaded astrocytes
half (n = 22) were also fura 2-loaded (black-filled red circles obtained by
superimposition of 1 and 3) meaning that 22 cells out of the 196 fura
2-loaded cells were astrocytes. Scale bars 50 μm.

30 min in 1% H2O2 in PB. Slices were washed with PB and
KPBS and incubated for 12 h in ABC complex at a dilution of
1:100 in KPBS + 0.3% triton (Abcys). They were rinsed in KPBS
and incubated for approximately 10 min in 3,3′ diaminobenzidine
(DAB 0.7 mg/ml) with peroxide (0.2 mg/ml; Sigma Fast), rinsed,
mounted in Crystal/Mount (Electron Microscopy Sciences), cov-
erslipped, and examined. Dendritic and axonal fields were recon-
structed using the Neurolucida system (MicroBrightField Inc.,
Colchester, VT, USA).

To reveal the Nkx2.1-positive neurons we used the antibody
TTF-1/111–121. Slices were cryoprotected in PB with 20% sucrose,
freeze-thawed in isopentane, and rinsed in PB. Slices were then
incubated in PBS Triton 0.3% normal goat serum (NGS, 2%)
for 1 h and then in Nkx2.1 antibody (1:2500; TTF-1/111–121;
Biopat, Italy) for 4 days at RT. After thorough rinsing, slices
were incubated for 90 min at RT in alexa-488 goat anti-mouse
(1:300; Molecular Probes, Leiden, the Netherlands) in PBS and
NGS 2% overnight. After thorough rinsing, slices were mounted
in fluoromount, coverslipped, and examined with a confocal
microscope (Zeiss LSM 510). For double immunocytochemistry
Neurobiotin-Nkx2.1, slices were treated as above for the revelation
of Nkx2.1. Then after thorough rinsing, slices were again incu-
bated in PBS and Cy3 streptavidin (1:300; Jackson, USA) to label
the neurobiotin-loaded neuron(s) and then rinsed. After thor-
ough rinsing, slices were mounted in fluoromount, coverslipped,
and examined with a confocal microscope (Zeiss LSM 510).

To visualize cortico-striatal axons, we injected small amounts
of DiI crystals diluted in ethanol in the neocortex of 400 μm thick
slices from E16 to P2 brains postfixed by immersion for 2–4 weeks
in 4% paraformaldehyde. Slices were then incubated in the fixative
solution at 32˚C for 2–3 weeks, coverslipped, and examined with a
confocal microscope (Zeiss LSM 510).

ANALYSIS OF IMAGING DATA
We performed analysis of the calcium activity with custom-made
software written in Matlab (MathWorks; Bonifazi et al., 2009). The
contour of each loaded cell was semi-automatically detected and
its fluorescence measured as a function of time. Active cells are
neurons exhibiting any Ca2+ event of at least 5% DF/F deflec-
tion within the period of recording. Ca2+ spikes or Ca2+ plateaus
cells were neurons exhibiting at least one Ca2+ spike or one Ca2+
plateau within the period of recording. Ca2+ plateaus were intrin-
sic correlated Ca2+ events of long duration (see Results). Giant
depolarizing potentials (GDP) cells were cells generating synchro-
nized synapse-driven Ca2+ spikes (GDPs). To compute the activity
correlation of two cells, the onset of each event was represented
by a Gaussian (s = 1 frame, to allow some jitter). The inner prod-
uct of the resulting values was then calculated. The significance of
each correlation value was estimated by direct comparison with
a distribution computed from surrogate data sets, in which the
events were randomly reshuffled in time.

To compare both network-wide and single-neuron activity
between putative intrinsically driven activity at P2 (P2–P3 record-
ings) and synaptically driven activity at P6 (P5–P7 recordings),
we used standard k-means clustering to determine how well event
durations and frequencies distinguished P2 and P6 time-points.
The k-means algorithm used minimization of city-block distance,
with 30 replications from random starting positions, from which
we retained the replicate with the minimum mean distance. We
also sought evidence for differences in spontaneous neural ensem-
bles in network-wide activity. Each recording’s matrix of pair-wise
correlations, computed by Gaussian convolution as above was par-
titioned into groups using a modified community detection algo-
rithm, detailed in Humphries (2011), which finds the number and
size of groups within the matrix that maximize benefit function
Qdata = (similarity within groups) − (expected similarity within
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groups). The resulting partition thus corresponded to groups
of neurons that were more similar in activity patterns than was
expected given the total similarity of each neuron’s activity to the
whole data-set. We then ran a further stringent control for poten-
tially spurious groupings, by first shuffling the inter-event intervals
of each neuron in a recording, correlating the shuffled event onsets,
and then running the algorithm on the shuffled data-set. This was
repeated 100 times to get a distribution of Q for control data. The
95th percentile of these values was taken as the 95% confidence
interval Qctrl. Any network with Qdata > Qctrl thus contained sig-
nificant ensemble structure, compared to that expected from just
the firing statistics of the network.

ANALYSIS OF ELECTROPHYSIOLOGICAL DATA
We determined series resistance (Rs), membrane capacitance
(Cm), and input resistance (Rinput) by on-line fitting analysis of
the transient currents in response to a 5-mV pulse at −70 mV.
Criteria for considering a recording included Rinput > 100 MΩ,
Rs < 25 MΩ, with Rs < 30% change. We analyzed spontaneous
postsynaptic currents (sPSCs) in 180 s recordings at a given mem-
brane potential with the Mini-Analysis program (version 5.1.4;
Synaptosoft, Decatur, GA, USA). Events were characterized by the
following parameters: rise time (10–90%), amplitude, and decay
time (τ). We discriminated mixed AMPA/KA events in the absence
of specific receptor antagonists from the SD given by the fit of each
event to determine whether one or two exponentials best fitted the
decays (Epsztein et al., 2005). E16–P5 MSNs generating sEPSCs
(61 out of 131) or sIPSCs (33 out of 79) with a frequency lower
than 0.05 Hz were not included.

We filtered the single-channel currents at 1 kHz (GABAA chan-
nels) or 3 kHz (NMDA channels) and digitized them at 10 kHz.
We discarded multilevel and short (2 ms) openings during the
analysis. To obtain unitary current–voltage (I–V) relationships, we
measured the amplitude of unitary GABA and NMDA currents
evoked by steps from −120 to +40 mV. Histograms of cursor-
measured amplitudes allowed determination of the mean unitary
current amplitude at each voltage tested.

Measurements of V rest and EGABA(A): to determine the action
of GABA in a given neuron (depolarizing or hyperpolarizing),
one must measure the reversal potential of the GABAA-mediated
current [EGABA(A)] and the resting membrane potential (V rest).
However, conventional whole cell recordings introduce a number
of errors in these measures in particular in developing neurons. We
therefore estimated the value of V rest from cell-attached record-
ings of the single-channel NMDA current (iNMDA), which is
known to reverse at a membrane potential (V m) close to 0 mV.
We plotted the relationship between iNMDA and the extracellular
potential applied to the patch of membrane (V p) from experi-
mental data (see Figure 9B). This curve [iNMDA = f(V p)] gives
the value of V p when iNMDA = 0 pA. At this value of V p, single-
channel NMDA current is null because V m =V p −V rest = 0 mV.
This allows estimation of V rest (V rest =V p). To estimate
[EGABA(A)], we plotted the relationship between the single-channel
GABAA current (iGABAA) and V p. This curve [iGABAA =
f(V p)] gives the value of V p when iGABAA = 0 pA (see Figure 9A),
because by definition when iGABAA is null, V m = EGABA(A).
Therefore, when iGABAA = 0 pA, V m =V p −V rest = EGABA(A)

(i.e., EGABA(A) −V rest = −V p). By definition, EGABA(A) −V rest =
DFGABA, the driving force (DF) of chloride ions through
the GABAA channel (Tyzio et al., 2003). Therefore, when
iGABAA = 0 pA, DFGABA = −V p. Knowing V rest and DFGABA, it
is easy to calculate EGABA(A) = DFGABA +V rest.

To obtain whole cell current–voltage (I –V ) relationships, we
measured voltages at the end of each hyperpolarizing current
step (950 ms). The inward rectification was detected when the
I –V relationship was not linear between −90 and −120 mV. To
compare immature and adult MSNs delay of firing in response
to depolarizing steps, we measured the first interspike interval
(ISI) of the response. We then pooled the slope values of the lin-
ear regression lines and compared their distribution as a function
of time (Belleau and Warren, 2000). We estimated the threshold
potential for Na+ spikes in whole cell current clamp recordings at
V rest (−70 mV for E16–P7 slices and −80 mV for the adult slices)
by applying successive intracellular depolarizing steps (duration
950 ms) or in response to cortical stimulation.

DRUGS
Drugs were prepared as concentrated stock solutions and
diluted in ACSF for bath application: bicuculline 20 μM,
Gabazine 5 μM, GABAA receptor antagonists; (2R)-amino-5-
phosphonovaleric acid (APV) 40 μM, a NMDA receptor antag-
onist and (2S∗, 3R∗)-1-(Phenanthren-2-carbonyl)piperazine-2,
3-dicarboxylic acid (PPDA) 100 nM, a NR2C/D subunits antag-
onist; 6-cyano-7-nitroquinoxaline 2,3-dione (CNQX) 10 μM,
and (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,
3-dione)(NBQX) 1–10 μM, AMPA/kainate receptor antagonists.
Nifedipine, an L-type Ca2+ channel antagonist; Ω-Conotoxin
GVIA, an N-type Ca2+ channel antagonist; Ω-Agatoxin IVA a
P/Q type Ca2+ channel antagonist; Isoguvacine 100 μM, a GABAA

receptor agonist, was locally pressure-applied. All drugs were pur-
chased from Sigma (St. Louis, MO, USA) except PPDA from Tocris
and N or P/Q type antagonists from Alomone Labs.

MOTOR BEHAVIOR
Motion development was assessed in Swiss newborn mice (n = 16)
from two different litters (Janvier SAS, Le Genest Saint Isle, France)
between postnatal day 2 (P2, day of birth: P0) and P12. C57BL/6
pups could not be tested because of their low weight. We used an
open field test to assess overall activity. We tested each pup twice a
day, with a 20-min delay between the two tests. We placed the pup
on a translucid acrylic plate (24 cm × 16 cm) covered with a sili-
cone gel. Two cameras were placed below the plate. One acquired
the pup’s contact points with the floor which appeared as highly
contrasted areas, based on the frustrated total internal reflection
(FTIR) principle (Han, 2005). We identified the mouse abdominal
contact points using custom-made software. The second camera
acquired the trajectory of the pup. We calculated from this tra-
jectory the total distance traveled, and the total distance traveled
along straight line segments.

STATISTICS
Average values are presented as means ± SEM and we performed
statistical comparisons with Student’s t -test (SigmaStat 3.1, Ori-
gin 5.0), Mann–Whitney rank sum test (SigmaStat 3.1) or one way
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ANOVA (Tukey’s Test as post hoc test; SigmaStat 3.1, Origin 5.0).
The appropriate descriptive statistic was chosen on this basis, as
denoted in the text. We set the level of significance as p ≤ 0.05.
We grouped sets of data without statistical differences as follow:
P2 (P0–P2), P6 (P3–P6), P8 (P7–P8), P10 (P9–P10), and P12
(P11–P12) except for Figures 2, 6, and 8 where the ages indi-
cated correspond to the exact age (−5 = E14; −3 = E16; −1 = E18;
0 = P0; 2–30 = P2–P30).

RESULTS
Fura 2-loaded striatal neurons were already active at E14, the
youngest age tested. The percent of active cells was 16.8 ± 1.5%
between E14 and P0, and did not change significantly over the
first postnatal week (P0–P2: 17.5 ± 1.0% of imaged cells, P3–
P6:14.4 ± 1.1%; p = 0.07). There were significantly fewer active
cells at P7–P8 (8.3 ± 1.2%) and P9–P10 (4.2 ± 0.8%; p = 0.0004
between the two groups P3–P6 and P7–P8, one way ANOVA, n = a
total of 177 movies covering 47062 neurons). We then focused
specifically on the activity of striatal MSNs. They generated three
distinct patterns of activity: Intrinsic voltage-gated Ca2+ spikes
(E14–P10), correlated Ca2+ Plateaus (E14–P10) and correlated
Ca2+ spikes associated with (GDPs, P5–P7; Crepel et al., 2007;
Allene et al., 2008). Of these three, only the latter was sensitive to
blockers of glutamate and GABA synaptic transmission.

EMBRYONIC AND EARLY POSTNATAL MSNS SPONTANEOUSLY
GENERATE INTRINSICALLY DRIVEN CA2+ EVENTS IN THE ABSENCE OF
SUBTHRESHOLD K+ CURRENTS
Intrinsic voltage-gated Ca2+ spikes predominated between E14
(11.5 ± 4.3% of imaged cells, n = 2268 neurons in four fields,
referred to as 2268/4), and P6 (10.2 ± 2.1%, 3143/12), and were
significantly decreased at P10 (3.1 ± 0.9%, 2357/15; p = 0.0008,
one way ANOVA; Figure 2A left, Figure 2C). Ca2+ spikes were not
necessarily associated with Na+ spikes (Figure 2B left), had a low
frequency (0.028 ± 0.004 Hz, 777/18), and a longer time to peak at
E14–E18 (1.31 ± 0.08 s, 777/18) than at P0–P5 (0.053 ± 0.006 Hz;
0.92 ± 0.07 s, 207/7; p = 0.004 and p = 0.001 respectively, Stu-
dent’s t -test) suggesting different Ca2+ channels and/or Ca2+
clearance properties. There were no cell pairs showing corre-
lated Ca2+ spikes at any age (0.2% at E14, 0.6% at P6, and 0%
at P10).

Synchronized Ca2+ Plateaus were rare at E14 (1.5 ± 0.4%
of imaged cells, 2268/4), peaked at P4 (6.7 ± 1.5%, 1166/5),
and absent at P11–P12 (0%, 1350/11; Figure 2A right, C).
Ca2+ Plateaus were long lasting Ca2+ events (6.45 ± 2.01 s,
234/22, at E14–E18) that significantly differed from Ca2+
spikes (1.31 ± 0.08 s, 777/19, at E14–E18) in terms of duration
(p = 2.2 × 10−7, Student’s t -test). The percentage of cell pairs
with correlated Ca2+ plateaus was around 5% (6% at E14, 5%
at P4). Ca2+ plateaus had a similar mean frequency at E18 and P4
(0.014 ± 0.003 vs. 0.017 ± 0.002 Hz; p = 0.8, Student’s t -test) and
a similar mean duration (14.4 ± 1.9 vs. 14.5 ± 0.8 s; p = 0.1, Stu-
dent’s t -test; 107/10 and 89/5). Patch clamp recordings revealed
underlying recurrent depolarizations (22 ± 2 mV, 2.3 ± 0.6 s, at a
frequency around 0.4 Hz, n = 9) or a single long lasting depolar-
ization (23 ± 6 mV, 10.0 ± 3.7 s, n = 4) that generated Na+ spikes
(Figure 2B right).

FIGURE 2 | Intrinsically driven Ca2+ events in immature MSNs

(E14–P2). (A) Representative histograms (top) indicating the fraction of
MSNs evoking Ca2+ spikes (left) or Ca2+ plateaus (right) and corresponding
representative calcium fluorescence traces from single MSNs (bottom;
Ca2+ spikes in black, Ca2+ plateaus in red) in control ACSF or in the
presence of blockers of voltage-gated channels [TTX (1 μM)-Nifedipine (Nif)
10 μM]. In control ACSF, some Ca2+ plateaus were temporally correlated
(vertical line). (B) Simultaneous optical (top) and current clamp (bottom)
recordings of Ca2+ spikes (V m = −70 mV, left) and Ca2+ plateaus
(V m = −50 mV, right). (C) Mean percentage (±SEM) of fura 2-loaded cells
evoking at least one Ca2+ spike (black) or one Ca2+ plateau (red) as a
function of age. (D) Mean percentage (±SEM) of active cells generating at
least one Ca2+ spike (black) or one Ca2+ plateau (red) at P2 in control ACSF
(CTL) and in the presence of antagonists of ionotropic glutamate and
GABAA receptors (APV 40 μM-CNQX 10 μM-bicuculline 10 μM; Antag).

The blockers of Na+ and Ca2+ voltage-gated channels, TTX
(1 μM)–nifedipine (10 μM) decreased threefold the percent of
active cells (from 12.4 ± 2.9 to 4.6 ± 2.2% of imaged cells at P2
(Figure 2A). Nifedipine alone at a concentration specific for L-
type Ca2+ channels (3 μM) decreased the percent of active cells
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by 40% (from 13.9 ± 3.6 to 8.4 ± 3.1%; p = 0.04, paired Stu-
dent’s t -test, 897/4) and ω-Conotoxin GVIA (1 μM), the N-type
Ca2+ channel blocker, halved the percent of active cells (from
13.5 ± 1.4%, 9682/33 to 6.4 ± 0.8%, 1321/6; p = 0.0001, Student’s
t -test; not shown). In contrast, Ω-Agatoxin IVA (100 nM), the
specific blocker of P/Q type channels had no significant effect.
Ionotropic glutamate and GABA antagonists did not affect the per-
centage of Ca2+ spike cells (9.2 ± 1.1 vs. 9.0 ± 1.3% at P2, p = 0.79,
paired Student’s t -test) or Ca2+ plateaus cells (Figure 2D). These
antagonists also did not significantly affect the coherence between
calcium plateaus (4.5% pairs of plateaus cells correlated in the
presence of antagonists vs. 5% pairs in control at P2).

The time coherence between some Ca2+ plateaus could be
explained by the presence of gap junctions between imma-
ture neurons (Crepel et al., 2007). Single MSN recordings
with neurobiotin-containing pipettes revealed clusters of 6 ± 1
neurobiotin-labeled neurons at E14–E18 (n = 13/17 patches), but
of only two MSNs at P30–P40 (n = 3/38 patches). The majority of
clusters were exclusively composed of MSNs (E14–P2, n = 36/37
clusters) and were abundant until P0–P2 (Figure 3). This sug-
gested the presence of gap junctions permeable to neurobiotin
at perinatal stages as described in juvenile rodent MSNs (Tepper
et al., 1998; Venance et al., 2004) and required for the forma-
tion of synaptically connected networks (Todd et al., 2010). But
carbenoxolone (100 μM), like mefloquine (25 μM) applied dur-
ing 10–20 min, similarly reduced the probability of occurrence of
all types of immature Ca2+ activities (data not shown, E14–P4,
5653/17). This non-specific effect precluded their use for demon-
strating the role of gap junctions in Ca2+ plateaus’ occurrence.
These results suggested that Ca2+ spikes and Ca2+ plateaus are
non-synaptic, intrinsic, voltage-gated events generated by Na+
and L and N-types Ca2+ channels. To understand how MSNs
spontaneously generate intrinsically driven calcium events, we
next investigated the development of their intrinsic membrane
properties.

The membrane potential trajectory attributable to the activa-
tion of the inwardly rectifying K + current (I KIR) was not detected
in any MSNs at E14, was present in 17% of MSNs at P7 (n = 3/44)
and in all MSNs at P10 and P30 (n = 8/8 and 6/6, respectively).
It greatly increased from P10 to P30 (Figures 4A,B). Accordingly,
bath application of cesium (3 mM), a blocker of I KIR, increased
the proportion of active cells by 240% at P6–P10 (from 4.3 ± 1.1
to 10.4 ± 1.7%, 1349/6; p = 0.04 paired Student’s t -test; data not
shown). The mean input resistance (Rm) of MSNs was high until
P6 and significantly decreased by approximately 75% between
P6 and P10 (from 982 ± 129 MΩ at P6, n = 21 to 263 ± 19 MΩ

at P10, n = 11; p = 0.004, one way ANOVA; Figure 4C). Spik-
ing threshold (V threshold) did not change from P2 to P30 (P2:
−32.2 ± 1.7 mV, n = 14 and P30: −30.8 ± 0.8 mV, n = 10; p = 0.51
one way ANOVA) but the instantaneous firing frequency did. The
first ISI of a firing train as a function of injected current was
stable until P6 and was then significantly reduced between P6
and P10 (1.44 ± 0.14 Hz/pA, n = 11 at P6 vs. 0.91 ± 0.08 Hz/pA,
n = 7 at P10; p = 0.03, one way ANOVA) showing an increased
delay to spiking at P10 (Figures 4D,E). The depolarization needed
to generate spikes calculated as (V threshold −V rest) from whole
cell recordings (Figures 4F,G) was significantly lower until P6

FIGURE 3 | Morphology of embryonic and early postnatal MSNs. (A)

Cluster of seven neurobiotin-filled (left) and Nkx2.1-negative (middle) MSNs
(merge) revealed by double immunocytochemistry performed after whole
cell recording of a single MSN in a P2 striatal slice. (B) Neurolucida
reconstruction of neurobiotin-filled Nkx-negative neurons (MSNs) at the
indicated ages. Dendrites and axons were MSNs had 2.8 ± 0.3 primary
dendrites at E16–E18 (n = 23), 3.9 ± 0.4 at P0 (n = 19), 5.1 ± 1.1 at P2
(n = 9), and 5.8 ± 0.3 at P7 (n = 11). They gave rise to 6–25 dendritic ends (6
at E16–18, 13 at P0, 17 at P2, 18 at P5, and 25 at P7). The total dendritic
length was multiplied by 5 between E16–18 and P7 (339 ± 64 μm at
E16–18, 646 ± 148 μm at P0, 574 ± 123 μm at P2, 818 ± 161 μm at P5, and
1751 ± 219 μm at P7). Dendritic spines were virtually absent at all ages.
Average cell capacitance progressively increased from E16 to P7 (14.3 ± 0.9
pF at P2, n = 47, compared to 51.7 ± 5.3 pF, n = 74 at P30; p < 0.001). Axons
coursing down to the globus pallidus were identified in few E18 MSNs but
were consistently observed for P5–P7 MSNs. Same scale bar (50 μm) from
E14 to P5.

than after (23 ± 3 mV at P6, n = 15 and 37 ± 2 mV at P10, n = 6;
p = 0.023, one way ANOVA). V rest measured from unitary NMDA
currents was also significantly hyperpolarized between P2 and
P10. Using single-channel recordings of NMDARs to provide an
accurate measure of V rest in young neurons (Tyzio et al., 2003;
see Results of Figure 9), we found a significant decrease in V rest

between P2 and P10 (−70.0 ± 1.7 mV at P2, −77.0 ± 1.3 mV at
P10; n = 11 and 11, respectively; p = 0.009, one way ANOVA test;
see Dehorter et al., 2009 for extensive discussion of the method;
Figure 4G). These results suggest that until P6, MSNs lack K+ cur-
rents like KiR, KD, and probably leak K+ currents as well, including
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FIGURE 4 | Intrinsic membrane properties of MSNs as a function of

age. (A) Representative whole cell current clamp responses of embryonic
and postnatal MSNs to intracellular hyperpolarizing steps (V m = −70 mV).
Note the absence of inward rectification before P10. Scale bars: 25 mV;
200 ms. (B) Whole cell I–V relationships at the indicated ages, obtained
from experiments in (A). (C) Input membrane resistance (Rm) as a function
of age obtained from experiments in a. (D) Representative whole cell
current clamp responses to intracellular depolarizing steps (V m = −70 mV).
At E16–E18 few MSNs generated suprathreshold Na+ spikes (14%, n = 1/8),

50% at P0 (n = 3/6), 64% at P2 (n = 16/25), 87% at P5 (n = 21/24), and
100% at P7 (n = 12/12). Scale bars: 25 mV; 200 ms. (E) Instantaneous firing
frequency to the first interspike interval (ISI) of a firing train as a function of
injected current (insert, scale: 20 Hz, 100 pA). Slope values given by each
linear regression lines fitted to frequency curves (correlation coefficient
were all >0.9) as a function of postnatal age. (F) Threshold potential
(V threshold) as a function of age calculated from experiments in d. (G) Resting
membrane potential (V rest) determined from the reversal potential of unitary
NMDA currents in MSNs.

members of the KCNK class expressed in adult MSNs (Shen et al.,
2007). Consequently, Rm is high (900 MΩ), V rest is only 20 mV
more hyperpolarized than V threshold and there is no spiking delay.
Because of this, spontaneous Ca2+ channel openings may occur
and give rise to spontaneous Ca2+ events.

EARLY POSTNATAL MSNs GENERATE CORRELATED Ca2+ SPIKES WHEN
THEY EXPRESS THE NR2C/D NMDA SYNAPTIC CURRENT AND
MEMBRANE PROPERTIES ARE STILL IMMATURE
The first synapse-driven pattern observed in postnatal MSNs was
correlated Ca2+ spikes (GDPs), that appeared at P5–P7 (10% of
the recordings, 969/5; mean frequency: 0.10 ± 0.05 Hz and mean
duration: 0.70 ± 0.10 s, 102/5), and subsequently disappeared. The
vast majority of active striatal neurons (84.0 ± 9.7%) were engaged
in this activity with a large number of correlated cell pairs (24%),

attesting to the large neuronal ensemble that fired together during
these events (Figure 5A left). Electrophysiological activity under-
lying each GDP consisted of bursts of 2–3 Na+ spikes (Figure 5B).
Ionotropic glutamate and GABA receptor antagonists abolished
GDPs, but left other Ca2+ events (uncorrelated Ca2+ spikes or
Ca2+ plateaus) intact (p = 0.02 and 0.52 respectively, paired Stu-
dent’s t -test; Figures 5A–D). Since GDPs were also suppressed by
APV (40 μM) alone, suggesting that NMDA receptors were heavily
involved, we tested their sensitivity to PPDA (Feng et al., 2004), the
preferential antagonist of NR2C/D NMDA receptors. At 100 nM
PPDA removed most of the correlations between neurons (from
45 to 11%). Most of the GDP cells stopped their activity and the
few who did not, evoked Ca2+ spikes at a much lower frequency
(from 0.17 ± 0.01 to 0.07 ± 0.01 Hz; p = 0.0003, Mann–Whitney
test; Figures 5C,D).
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FIGURE 5 | Synapse-driven, correlated Ca2+ events in immature

MSNs. (A) Representative histograms (top) indicating the fraction of
active MSNs in the field and representative calcium fluorescence traces
from MSNs (GDPs, in blue; bottom) in control ACSF (left) or in the
presence of antagonists of ionotropic glutamate and GABAA receptors. (B)

Simultaneous optical (top) and current clamp (bottom) recordings of GDPs
(V m = −60 mV). (C) Same as in (A) but in the presence of PPDA 100 nM.

Note the specific disappearance of correlated GDPs (blue traces) during
PPDA application, but not of Ca2+ spikes generated at a different
frequency (black trace). (D) Left: mean percentage (±SEM) of active cells
generating GDPs (blue) or Ca2+ plateaus (red) in control ACSF (CTL) and in
the presence of antagonists of ionotropic glutamate and GABAA receptors
(Antag). Right: mean percentage of cells participating in GDPs in control
(CTL) or in the presence of PPDA.

To understand the time course of development of the sponta-
neous synaptic activities afferent to MSNs and that could play
a role in the transiently expressed GDPs, we performed sepa-
rate recordings of glutamatergic and GABAergic synaptic events.
Glutamatergic events: the fraction of MSNs exhibiting AMPA- or
KA-mediated sEPSCs steadily increased from E16 to E18 (38 and
50%) to a maximum at P5–P7 (100%). The mean frequency of
AMPA or KA receptor-mediated EPSCs gradually increased from
E16 to E18 (0.11 ± 0.04 and 0.3 ± 0.1 Hz; n = 5 and 5 MSNs)
to P30 (1.3 ± 0.7 and 0.9 ± 0.2 Hz; n = 5 and 6 MSNs; p = 0.03
and p = 0.004 respectively, one way ANOVA) but their ampli-
tude (p = 0.3 for AMPA, p = 0.07 for KA, one way ANOVA), rise
times and decay times remained constant (Figures 6A–E left and
middle). In contrast, the fraction of MSNs showing spontaneous
NMDA receptor-mediated EPSCs shifted from 40% at P0 (5/12
cells) to more than 90% at P5–7 (16/18), and decreased thereafter
to 30% at P30 (4/12; Figures 6A,B right). Their frequency stayed
constant and low (around 0.1 Hz, p = 0.9; one way ANOVA) and
also their amplitude (p = 0.9) and rise times but their decay time
significantly decreased in the same period (Figures 6C–E right).

Since the cortex provides a major source of glutamatergic inputs
to MSNs, we studied the development of these inputs. DiI labeling

of the neocortex (n = 5) revealed fiber staining in the striatum as
early as E16 (Figure 7A). These inputs are functional, because cor-
tical stimulation evoked glutamatergic EPSPs in 10% of MSNs
at E16 (n = 2/18), 64% at P0–P2 (n = 20/31), 75% at P5–P7
(n = 9/12), 80% at P10 (n = 9/11), and 86% at P30 (n = 12/14).
This was associated with a dramatic decrease in EPSP duration
between P6 and P30 (−82%) and of the number of spikes they
generated. At P2, EPSPs (311 ± 32 ms; n = 6) generated 1 spike
or spikelet, at P6 (420 ± 41 ms; n = 8) 2–5 spikes, while by P10
EPSPs had shortened to 276 ± 36 ms (n = 7; p = 0.03, between P6
and P10, one way ANOVA) and only gave rise to one spike as at
P30 (74 ± 7 ms, n = 7; Figure 7B). At P6, the large EPSPs (and
GDPs) were mostly blocked by the NMDA receptor antagonist
APV, suggesting that NMDA receptors were heavily involved in
early cortico-striatal activity. The long decay of P6 EPSPs sug-
gested a preferential contribution of NR2C/D subunits of NMDA
receptors with their long kinetics and reduced voltage-dependent
magnesium block (Monyer et al., 1994). The NR2C/D subunit
inhibitor PPDA (100 nM; Feng et al., 2004) significantly reduced
evoked EPSPs at P6 (−54%; p = 0.01, n = 6; paired Student’s t -
test) but not at P2 (−13%; p = 0.18, n = 5; paired Student’s t -test)
or P10 (−9%; p = 0.15, n = 5; paired Student’s t -test; Figure 7C),

Frontiers in Cellular Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 24 | 8

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Dehorter et al. Immature patterns in the striatum

FIGURE 6 | Spontaneous AMPA, KA, and NMDA receptor-mediated

postsynaptic currents (EPSCs) from E16 to P30 MSNs. (A)

Representative voltage-clamp recordings of spontaneous AMPA
(V H = −80 mV), KA (V H = −80 mV under NBQX 1 μM), and NMDA
(V H = + 40 mV under NBQX 10 μM) receptor-mediated EPSCs (CsGlu
intrapipette solution) at P6. Scale: 100 pA, 200 ms (AMPA and KA), and 2 s
(NMDA). (Top) Close up of each spontaneous current (Insets: 50 pA,
125 ms). (B) Fraction of the recorded MSNs which displayed AMPA, KA,
and NMDA sEPSCs, as a function of age (n = 43, 54, and 36 MSNs). (C)

Frequency and (D) amplitude of AMPA, KA, and NMDA receptor-mediated
sEPSCs as a function of age. (E) Kinetics of the three types of sEPSCs. The
rise times remained stable from E18 to P30 for AMPA (0.7 ± 0.1 vs.
0.8 ± 0.2 ms; p = 0.83), KA (1.0 ± 0.3 vs. 1.1 ± 0.2 ms; p = 0.84), and NMDA
(7.1 ± 0.8 vs. 5.2 ± 1.1 ms; p = 0.33) currents. The decay times (τ) stayed
constant for AMPA (1.8 ± 0.3 ms at E18 vs. 2.9 ± 0.5 ms at P30, p = 0.16)
and KA (2.1 ± 0.3 ms at E18 vs. 2.9 ± 0.3 at P30, p = 0.08) currents
whereas it significantly decreased for NMDA currents (203 ± 16 ms at P7,
n = 9/11 vs. 87 ± 9 ms at P30, n = 4/12; p = 0.009).

FIGURE 7 | Embryonic presence of cortico-striatal EPSPs and postnatal

transient expression of the NR2C/D-mediated NMDA component. (A)

DiI injections in neocortex in an E16 sagittal slice (left). DiI-labeled cortical
fibers observed in the striatum after 15 days of incubation, as shown in the
confocal image (right) of the region indicated by a square (middle). Scale
bars: 500, 200, and 50 μm. (B) Whole cell current clamp responses of
embryonic and postnatal MSNs to intra-cortical stimulation in the absence
of synaptic blockers (V m = −70 mV), scale bars: 25 mV, 100 ms. (C) Effect of
PPDA (100 nM, 15 min, blue) and APV (40 μM, green) on the NBQX
(10 μM)/gabazine (GBZ, 10 μM) insensitive whole cell EPSP (black) at P2
(n = 5), P6 (n = 6), and P10 (n = 5), scale bars 10 mV, 250 ms.

showing a restricted participation of NR2C/D before and after P6.
The presence of a large NR2C/D-mediated NMDA component
enables cortico-striatal synapses to generate large EPSCs associated
with bursts of spikes at P5–P7, but not at P10.

GABAergic events
The fraction of MSNs exhibiting spontaneous GABAAR-mediated
currents steadily increased from E16 to a maximum at P5–P7 and
the mean frequency of these currents (GABAA PSCs) progres-
sively increased from E16 up to P30 (519 MSNs; Figures 8A–C).
The DF of GABA (DFGABA), determined from single-channel
recordings of GABAARs (see Materials and Methods; Tyzio et al.,
2003), was similarly depolarizing by 15 mV at P2 (+15.3 ± 3.4 mV;
n = 8 MSNs, Figures 9A,B) and P30 (Dehorter et al., 2009;
+16.1 ± 1.9 mV, n = 11; p = 0.8, Student’s t -test). To estimate
(EGABAA), we plotted the relationship between the single-channel
GABAA current (iGABAA) and the pipette potential (V p).
This curve [iGABAA = f(V p)] gives the value of V p when
iGABAA = 0 pA (Figures 9A,B right), because when iGABAA is
null, Vm = EGABAA . Therefore, when iGABAA = 0 pA, Vm =
Vp − Vrest = EGABAA (i.e., EGABAA − Vrest = −Vp). By def-
inition, EGABAA − Vrest = DFGABAA , the DF of chloride ions
through the GABAA channel (Tyzio et al., 2003). Therefore, when
IGABAA = 0pA, DFGABAA = −Vp. Knowing V rest and DFGABAA ,
we can calculate the reversal potential for GABAA, EGABAA =
DFGABAA + Vrest. The reversal potential of GABAA currents was
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FIGURE 8 | Spontaneous GABAA postsynaptic currents (GABAA-sPSCs)

from E16 to P30 MSNs. (A) Voltage-clamp recordings of GABAA-sPSCs at
the indicated ages with CsGlu intrapipette solution (V H = +10 mV). Scale:
50 pA, 500 ms. (B) Fraction of recorded MSNs which displayed
GABAA-sPSCs and frequency of GABAA-sPSCs (R > 0.9) from E16 to P30
(for comparison, 2.1 ± 0.4 Hz at P7 vs. 5.4 ± 1.0 Hz at P30, n = 22 and n = 10,
respectively; p < 0.01, one way ANOVA). (C) Amplitude and kinetics of

GABAA-sPSCs did not significantly change from E16 to P30 (p > 0.05 for
both, one way ANOVA; 30.3 ± 2.0 pA at E16 vs. 30.0 ± 4.3 pA at P30, n = 19
and n = 10, respectively; one way ANOVA). Neither the rise or decay time
constants of GABAergic PSCs differed significantly during development: rise
time (ν) around 2 ms (2.3 ± 0.1 ms at P7 vs. 2.4 ± 0.2 ms at P30), and decay
time (Δ) around 35 ms (39.3 ± 2.1 ms at P7 vs. 32.0 ± 4.2 ms at P30; n = 22
at P7 and n = 10 at P30).

10 mV more depolarized at P2 than at P30 (Figure 9C). These val-
ues are based on the assumption that the NMDA current reverses
at 0 mV in MSNs. Although an error of 5 mV may exist (Tyzio
et al., 2003), the comparison of V rest and EGABA obtained with
the same methods at P2 and P30 confirms the validity of our con-
clusions. Therefore, GABAergic synapses depolarize MSNs from
V rest to a value closer to the action potential threshold than in
the adult (Misgeld et al., 1982; Koos and Tepper, 1999). How-
ever, GABA does not excite immature MSNs. Focal applications of
the GABAA receptor agonist isoguvacine failed to generate action
potentials in cell-attached recordings from P2 (n = 6, Figure 9D)
or P5 (n = 7, data not shown) MSNs. Similarly, stimulation of the
striatal neuropil failed to evoke action potentials in cell-attached
recordings of MSNs in the continuous presence of ionotropic
glutamate receptors antagonists (data not shown).

The above data show that striatal neurons generate GDPs dur-
ing a transient period when all MSNs are connected to glutamater-
gic and GABAergic neurons and still exhibit immature membrane
properties (see Figure 4). There is a more efficient GABAergic
depolarizing drive than at P30 that may participate in the GDPs
of P5–P7 MSNs (together with glutamatergic EPSPs; Bracci and
Panzeri,2006) but these events are mainly driven by cortico-striatal
synapses at a time where cortical neurons also generate GDPs
(Allene et al., 2008).

INTRINSIC AND SYNAPSE-DRIVEN IMMATURE ACTIVITY DERIVE FROM
DISTINCT NEURAL ENSEMBLES
Because approximately 90% of the P5–P7 striatal networks did not
generate GDPs at the time of recording, we wanted to understand
whether synapse formation in some way altered the dynamics of
the network. We compared network-wide activity at P2–P3 (when
synapse density is low) to that at P5–P7 (when all MSNs are

innervated by glutamatergic and GABAergic inputs). We found
that both frequency and duration of events changed from P2–P3
to P5–P7 (Figures 10A,B). The distributions of mean event fre-
quency significantly differed between P2–P3 and P5–P7 (Mann–
Whitney U -test; nP2 = 18, nP6 = 33; U = 320; p = 0.02). Similarly,
the distributions of median event duration significantly differed
between P2–P3 and P5–P7 (U = 569.5, p = 0.0046). To gage the
size of these differences between P2–P3 and P5–P7, we used k-
means clustering to assign each recording to either P2–P3 or P5–P7
on the basis of its event statistics. We found that both duration
(70% correct assignments) and frequency (64% correct) reliably
indicated a recording’s developmental stage. Thus, the switch from
intrinsically to synaptically driven activity reliably decreased dura-
tion and increased the frequency of calcium events in the immature
striatal network.

Both P2–P3 and P5–P7 networks were capable of showing
spontaneous formation of neural ensembles (Figures 10C,D).
We found markedly more P5–P7 (43%, 9/21) than P2–P3 (29%,
4/18) recordings with significant ensemble structure. Conversely,
these P2–P3 recordings contained more ensembles (range 5–9)
than the P5–P7 recordings (range 2–6). We also found that the
P5–P7 recordings with GDP-driven, network-wide synchroniza-
tion could be sub-divided into ensembles that indicated the delay
in a neuron’s participation of the network-wide synchronization
(Figure 10E). These results suggest that the transition from intrin-
sic to synaptically driven activity promoted the appearance of
putative cell assemblies.

ABRUPT LOSS OF GDPs AND SWITCH TO ADULT-LIKE INTRINSIC
PROPERTIES OCCURS BEFORE COORDINATED LOCOMOTION
As shown in Figures 11A–E, many MSN characteristics changed
abruptly between P6 and P10. MSNs become mostly silent
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FIGURE 9 | Resting membrane potential (Vrest) and reversal potential

for GABAA-mediated currents [EGABA(A)] of immature MSNs. (A)

Representative cell-attached recordings of unitary GABAA currents at the
indicated pipette potential (V p in mV) and corresponding I–V relationship of
the recorded GABAA currents to determine the driving force (DF) for GABA
(DFGABA = +17 mV). (B) Representative cell-attached recordings of unitary
NMDA currents at the indicated V p (in mV) and corresponding I–V
relationship of the recorded currents to determine V rest (−67 mV). (C)

DFGABA was around 15 mV at P2 and P30 (Dehorter et al., 2009), which gives
EGABA(A) = −55 mV at P2 and −65 mV at P30. (D) Pressure application of
isoguvacine (iso, 100 μM) during cell-attached recordings. Inset shows the
depolarization evoked by the same pressure application of isoguvacine
during whole cell recording of the same MSN, to test the pressure
application of isoguvacine. For DFGABA calculation Section “Materials and
Methods,” analysis of electrophysiological data.

at P10, entering an adult-like phase. AMPA or KA receptor-
mediated signals are probably not involved in the extinction
of early spontaneous activity in MSNs because their frequency
continuously increases with age. In contrast, the switch in
other properties such as the abrupt loss of NR2C/D, expres-
sion of I KIR, decrease in Rm, hyperpolarization of V rest, and
hyperpolarization of EGABAA all coincided with the silencing
of MSNs.

In order to identify when the transition of MSNs from imma-
ture to adult-like state occurs in relation to a motor behavioral
output, we quantified the maturation of pup body contacts and
motion. At P2, prior to the onset of quadruped ambulation,
the duration of abdominal contact with the cage surface was
high (35.3 ± 4.9% of total time), then progressively decreased at
P3–P6 (17.8 ± 1.6%) and P7–P8 (2.9 ± 0.7%), disappearing by
P9–P10 (n = 16; p = 1 × 10−8 between P3–P6 and P7–P8; one
way ANOVA; Figures 11F,G, top). Body motion was practically
absent at P2, with pivoting and crawling predominating in P3–P7

FIGURE 10 | Comparison of intrinsically (P2–P3) and synaptically

(P5–P7) driven immature spontaneous Ca2+ activity. (A,B) Distributions
of each recording’s mean event frequency and median event duration for
P2–P3 (P2) and P5–P7 (P6). (C,D) Example recordings at P2 (C) and P6 (D)

with significant neural ensemble structure; both contain five groups. (E)

Neural ensembles within GDP-driven network-wide synchronization at P6.
In (C–E), neuron activity is color-coded by ensemble membership, as
determined by the algorithm of Humphries (2011) – Section “Materials and
Methods.”

pups. The total distance pups traveled along straight line seg-
ments underwent a marked increase from P3 to P6 (0.2 ± 0.1 cm,
n = 56) to P9–P10 (7.9 ± 1.6 cm, n = 28; p = 0.0002, one way
ANOVA test). By P12 pups traversed relatively large distances
(28.9 ± 3.5 cm, n = 14; p = 1 × 10−12 compared to P9–P10; one
way ANOVA test; Figures 11F,G, bottom). Thus, spontaneous dis-
placement with the ventral surface of the body held above the
floor was first observed in P9–P10 mouse pups, in parallel with
the chronology of MSN silencing.
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FIGURE 11 | Medium spiny neurons have entered the adult-like phase

before pups start quadruped locomotion. (A–E) Immature (light orange)
and adult-like (gray) phases are separated by a transitory immature period
(orange). Development of MSN intrinsic and synaptic properties from
experiments of Figures 1–7. (F) Photos of representative postnatal mice
showing the number and extent of pressure points (in blue) at P2, P6, and
P10 (top). Body motion of the same pups in the open field (calibration bars
3 cm) during a 1-min test (bottom). (G) Mean percentage (±SEM) of belly
contact time (n = 16, top) and total distance traveled along straight line
segments (n = 14, bottom) as a function of postnatal age (see Movies
S1–S3 in Supplementary Material).

DISCUSSION
Our results show that MSNs, the dominant neuronal population
of the striatum, generate immature patterns of activity at embry-
onic and early postnatal stages that are reminiscent of the patterns
observed in developing cortical structures (Garaschuk et al., 2000;
Corlew et al., 2004; Allene et al., 2008). This confirms the similar-
ity between developmental activities of networks independently
of their neuronal structure and final function (Ben-Ari, 2001). In
the middle of the second postnatal week, MSNs shift to an adult-
like pattern characterized by little activity in vitro (Carrillo-Reid
et al., 2008), just before pups lift their body and begin to walk.
Underlying this transition is a change in the fundamental charac-
teristics of MSNs (Figure 11). This suggests that the development

of MSNs and striatal network activity parallels the development
of locomotor structures and pathways (Grillner et al., 2005).

Two features of immature MSNs emerge as central players in
this progression. (i) Intrinsic voltage-gated Ca2+ currents: we pro-
pose that the reduced K+ currents and the consequent depolarized
resting membrane potential allow spontaneous opening of N and
L-type voltage-gated Ca2+ channels, then quieted near P10 by rest-
ing membrane potential hyperpolarization and/or developmental
changes of Ca2+ channel properties; (ii) The transient NR2C/D-
mediated cationic current: the expression of long lasting NMDA
EPSCs mediated by the NR2C/D receptor subunit is a general fea-
ture of different developing brain structures (Monyer et al., 1994;
Nansen et al., 2000; Logan et al., 2007; Dravid et al., 2008). NMDA
receptor-mediated EPSCs are conspicuous in cortico-striatal neu-
rons as early as P2 (see Hurst et al., 2001) for contradictory
results). Using a dose of PPDA (100 nM) that preferentially antag-
onizes NR2C/D subunits (KD = 0.096 and 0.130 μM, respectively;
Traynelis et al., 2010), we demonstrate that the window of oper-
ation of NR2C/D-mediated events is highly restricted to P5–P8
(Dunah et al., 1996). Therefore, as in other brain structures, imma-
ture neurons first generate long lasting synapse-driven patterns of
activity that include large NMDA receptor driven currents. These
currents, together with voltage-gated Ca2+ currents, trigger the
large calcium fluxes needed for a wide range of essential develop-
mental functions including neuronal growth, synapse formation,
and the formation of neuronal ensembles (Spitzer, 2006). Indeed,
we demonstrated that during this P5–P8 window, network-wide
changes in calcium event statistics correlated with the reliable
formation of neural ensembles.

Our observations also provide interesting insights concerning
the generation of GDPs that have been observed in a wide range
of brain networks but investigated primarily in cortical structures
(Ben-Ari et al., 2007). GDPs are generated both by depolarizing
GABAergic and glutamatergic notably NMDA receptors-mediated
currents. The striatum is an interesting site to investigate the
debated role of glutamate in GDPs generation because it has
in contrast with other investigated structures no internal gluta-
matergic neurons. Clearly, the maturation of the glutamatergic
cortico-striatal inputs is instrumental in the emergence of GDPs
and particularly the long lasting NR2C/D component.

Adesnik et al. (2008) suggested that modest activity through
NMDA receptors prevents the constitutive trafficking of AMPA
receptors to the postsynaptic density via an LTD type mecha-
nism. This ensures that synapses become functional only after
strong or correlated activity, when enough calcium entry through
these NMDA receptors overrides the inhibitory pathway and dri-
ves AMPA receptor insertion. This surge is provided by bursts
of action potentials during GDPs and NMDA-mediated cortico-
striatal EPSPs as shown here. From this perspective the elimination
of the long lasting NR2C/D component in cortico-striatal EPSPs
would constitute a gating device to induce the expression of
AMPAergic currents in MSNs.

Therefore, our results suggest an intrinsic program that
switches MSN activity from an immature low threshold activa-
tion state to a high threshold state in the adult with a low activity
profile during resting conditions, coincident with the emergence of
locomotion. In a more conceptual frame, in addition to ubiquitous
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developmental patterns of activity, there would be a superimposed
sequence, unique to each brain structure, which takes over at an
appropriate time to enable the generation of patterns required for
specific functions. The adult-like state described here is accom-
panied by several additional factors including the development of
the dendritic arbor and spines of MSNs and the increased density
of asymmetric glutamatergic synapses (Tepper et al., 1998; Belleau
and Warren, 2000), a second wave of nigro-striatal dopaminergic
innervation (Moon and Herkenham, 1984), the development of
thalamo-cortical loops, and sensori-motor cortex (Gianino et al.,
1999; Vinay et al., 2002; Allene et al., 2008; Evrard and Ropert,
2009). It is also accompanied functionally by a dopamine- and
D2 receptor-dependent decrease in the efficacy of glutamatergic
transmission that takes place in vivo during weeks 2–3 of postnatal
development and is a consequence of a number of physiologi-
cal changes in the maturing striatum (Choi and Lovinger, 1997;
Tang et al., 2001). Also, comparison of the present data with that
obtained in rodents lacking dopaminergic substantia nigra neu-
rons (pitx3−/− mice for example, Smidt et al., 2004), will allow
understanding of the early role of endogenous dopamine on the
development of the striatal network (Ohtani et al., 2003; Goffin
et al., 2010).

Finally, present observations may be of clinical relevance
because adult MSNs from the R6/2 rodent model of Huntington’s

disease resemble immature MSNs described here in several
respects, including an increased input resistance, depolarized rest-
ing membrane potential, low level of inwardly and outwardly
rectifying K+ currents (Ariano et al., 2005), increased sensitivity
to NMDA receptor activation (Cepeda et al., 2001) and decreased
sensitivity of NMDA receptors to Mg2+ block (Starling et al.,
2005).
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