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The potency of GABA is vitally important for its primary role in activating GABAA recep-
tors and acting as an inhibitory neurotransmitter. Although numerous laboratories have
presented information, directly or indirectly, on GABA potency, it is often difficult to com-
pare across such studies given the inevitable variations in the methods used, the cell
types studied, whether native or recombinant receptors are examined, and their rele-
vance to native synaptic and extrasynaptic GABAA receptors. In this review, we list the
most relevant isoforms of synaptic and extrasynaptic GABAA receptors that are thought
to assemble in surface membranes of neurons in the central nervous system. Using
consistent methodology in one cell type, the potencies of the endogenous neurotrans-
mitter GABA are compared across a spectrum of GABAA receptors. The highest potency
for GABA is measured when activating extrasynaptic-type α6 subunit-containing recep-
tors, whereas synaptic-type α2β3γ2 and α3β3γ2 receptors exhibited the lowest potency,
and other GABAA receptor subtypes that are found both in synaptic and extrasynaptic
compartments, showed intermediate sensitivities to GABA. The relatively simple potency
relationship between GABA and its target receptors is important as it serves as one of the
major determinants of GABAA receptor activation, with consequences for the development
of inhibition, either by tonic or phasic mechanisms.
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INTRODUCTION
The neurotransmitter γ-aminobutyric acid (GABA) targets
GABAA and GABAB receptors which, in the mature central ner-
vous system (CNS), provide the main basis for inhibitory neuro-
transmission and the subsequent integration of neuronal excita-
tion (Luscher and Keller, 2004). When considering how effective
an inhibitory GABAergic synapse will be in terms of reducing cell
excitation, a number of factors are important. At the presynaptic
terminal, this includes the GABA concentration and time profile
in the synaptic cleft following GABA release. In addition, GABA
overspill from inhibitory synapses to perisynaptic GABAA recep-
tors will also be important. Postsynaptically, other factors come
into consideration such as the subunit composition of GABAA

receptors; the number and density of these receptors and their
targeting to precise inhibitory synaptic compartments; and their
residence time at synapses before endocytosis or lateral mobil-
ity causes them to exit the synaptic environment – these are all
of equal significance (Moss and Smart, 2001; Jacob et al., 2008;
Luscher et al., 2011). Many of the above factors will also be rel-
evant to the effectiveness of extrasynaptic GABAA receptors in
underpinning tonic inhibition.

One further factor that remains paramount to the effectiveness
of GABA in activating specific isoforms of synaptic and extrasy-
naptic GABAA receptors is the potency of GABA. The activation of
the receptor by GABA will depend on several factors, including the
speed of the initial binding reaction, the potential for a shut but
pre-activated receptor state, the final gating reaction that causes
the channel to open, and the potential for the receptor to rapidly

enter into one or more desensitized states. These factors will all
impact on the potency of GABA to varying extents. Despite know-
ing that GABA can appear more potent on some receptor isoforms
compared to others, what is currently lacking is a controlled and
consolidated comparison, under identical conditions, of a series
of receptor isoforms that are regarded as physiologically relevant
to inhibitory synaptic and extrasynaptic GABAA receptors.

GABAA receptors are pentamers formed from a selection of 19
subunits: α(1–6), β(1–3), γ(1–3), δ, ε, θ, π, and ρ(1–3; Sieghart,
1995; Korpi et al., 2002). Although the potential for receptor diver-
sity in neurons is considerable this is naturally contained by two
principle factors: differential gene expression, whereby specific
neuronal subtypes usually express a subset of GABAA receptor
subunit genes (Wisden et al., 1992; Pirker et al., 2000); and the
imposition of receptor subunit assembly rules that cause particu-
lar subunits to preferentially co-assemble (Taylor et al., 1999, 2000;
Klausberger et al., 2000, 2001), e.g., α6 and δ subunits in cerebel-
lar granule neurons (Jones et al., 1997). Despite the potential for
receptor heterogeneity, the majority of GABAA receptors will con-
tain two α subunits, two β subunits, and a γ subunit (Farrar et al.,
1999). This is particularly relevant for synaptic αβγ GABAA recep-
tors since a number of intracellular proteins have been shown to
interact with these subunits regulating GABAA receptor transport
to synaptic sites, their anchoring at synapses, turnover and degra-
dation, and possibly assembly (e.g., α1–3 subunits and gephyrin,
Tretter et al., 2008, 2011; Mukherjee et al., 2011; α, β subunits
and Plic1, Bedford et al., 2001; β subunits and Hap1, Kittler et al.,
2004; γ2 subunits and gephyrin and GABARAP, Wang et al., 1999;
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Kneussel et al., 2000; and GODZ, Keller et al., 2004; see Luscher
et al., 2011 for review). In addition, it should be noted that αβγ

GABAA receptors also diffuse laterally in the surface membrane
(Thomas et al., 2005; Triller and Choquet, 2005; Bogdanov et al.,
2006), where they can also be found in significant numbers in
extrasynaptic compartments of neurons (Kasugai et al., 2010).

GABAA receptors that are specifically considered to populate
the extrasynaptic domain principally contain the δ subunit and
often a specific α subunit, such as α4 (e.g., thalamic relay cells
or dentate granule cells) or α6 (cerebellar granule cells; Sieghart
and Sperk, 2002). However, extrasynaptic GABAA receptors are
not restricted to those containing δ subunits as further evidence
suggests that α5βγ and other αβγ receptors will be present in
this domain (Thomas et al., 2005; Glykys et al., 2008). More-
over, αβ GABAA receptors can also form a constituent part of the
extrasynaptic GABAA receptor population (Sieghart and Sperk,
2002; Mortensen and Smart, 2006). It is presently unclear whether
homomeric GABAA receptors (e.g., β), apart from those contain-
ing ρ subunits, are expressed in significant numbers compared to
more frequent αβγ and αβδ isoforms.

Ascertaining the most physiologically relevant GABAA recep-
tors that are expressed in the CNS is not straightforward. Extensive
in situ hybridization, immunocytochemical, and immunoprecip-
itation studies, using complementary DNA or RNA probes and
subunit-selective antisera, together with transgenic mice, have
been used to deduce the distribution profiles for the majority of
individual GABAA receptor subunits (Wisden et al., 1992; Whiting
et al., 1995; Pirker et al., 2000; Korpi et al., 2002). From such studies,
GABAA receptor subunit compositions have been deduced with
the aid of corroborating functional and pharmacological data. As
a result, it is now possible, to tentatively list the likeliest native
GABAA receptor subtypes that are expressed in the CNS (Sperk
et al., 1997; Hutcheon et al., 2004; Olsen and Sieghart, 2008).

For native GABAA receptors in situ, one of the most impor-
tant factors determining their functional response to released
GABA is the potency of the neurotransmitter at specific recep-
tor isoforms. Although over previous decades, some studies have
examined the action of GABA in detail on a variety of GABAA

receptor isoforms, some of which (e.g., α1β2γ2) are clearly rele-
vant neuronal isoforms (Sigel et al., 1990; Verdoorn et al., 1990),
these predate the wealth of immunocytochemical and immuno-
precipitation data that is now available. These studies have mod-
ified our perception of physiologically relevant neuronal GABAA

receptor isoforms. Here, we reappraise the potency of GABA at
recombinant GABAA receptor isoforms designed to emulate the
most prevalent GABAA receptors that are expressed in neuronal
tissues, and also discuss the relative importance of the various
subunits.

METHODS FOR ASSESSING GABA POTENCY
In providing an assessment of GABA potency, the relevant GABAA

receptor isoforms can be conveniently expressed in heterologous
expression systems such as Xenopus oocytes or human embryonic
kidney cells (HEK293). Normally, HEK293, CHO, Ltk, and other
such immortalized cell lines are preferred, not only because they
efficiently accommodate protein assembly and cell-surface inser-
tion, but also because of their smaller cell size compared with
oocytes, where the speed of drug application can be compromised

often leading to an underestimation of ligand potency. By using
HEK cells, the GABAA receptors are not exposed to endogenous
regulators such as neurosteroids or Zn2+ that may affect GABA
potency and pH is closely controlled. It is possible that phos-
phorylation may alter GABA potency, but under basal conditions,
where kinases are not specifically and directly activated, this is
unlikely to be a confounding factor. Moreover, phosphorylation
often involves a change in GABA current amplitude rather than
an alteration to GABA sensitivity (e.g., Krishek et al., 1994).

HEK CELL CULTURE AND EXPRESSION OF RECOMBINANT GABAA

RECEPTORS
HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% v/v fetal calf
serum (FCS), 2 mM l-glutamine, 100 units/ml penicillin-G, and
100 mg/ml streptomycin, and maintained at 37˚C in a humidified
95% air/5% CO2 atmosphere (Krishek et al., 1994; Wooltorton et
al., 1997). Cells were transfected with equimolar ratios of cDNAs
encoding for α1–6,β1–3,γ2S, δ, ε, and θ GABAA receptor subunits,
representing the predominant GABAA receptor subunits expressed
in the CNS.

WHOLE-CELL VOLTAGE-CLAMP ELECTROPHYSIOLOGY
Whole-cell GABA-activated and spontaneous currents were
recorded from transfected HEK cells using patch clamp recording
with electrodes filled with a solution containing (mM): 120 KCl, 1
MgCl2, 11 EGTA, 30 KOH, 10 HEPES, 1 CaCl2, and 2 K2ATP; pH
7.2 with 1 M NaOH. The HEK cells were constantly superfused
with a Krebs solution containing (mM): 140 NaCl, 4.7 KCl, 1.2
MgCl2, 2.52 CaCl2, 11 Glucose, and 5 HEPES; pH 7.4. Membrane
currents were recorded from voltage clamped cells at −60 mV, and
routinely compensated for series resistance (Rs) of >70%, and
filtered at 5 kHz. For assessing GABA potency on physiologically
relevant GABAA receptor isoforms we used a U-tube fast drug
application system (Mortensen and Smart, 2007). The recording
parameters were designed to ensure near identical experimental
conditions and thus valid comparative determinations of GABA
potency.

MEASURING GABA POTENCY
This requires GABA concentration response relationships to
be determined by normalizing GABA currents to the response
induced by a maximal, saturating concentration of GABA (I max)
and subsequently curve fitting the data using the Hill equation:

I/Imax = (
1/(1 + (EC50/ [A])n)

,

where the GABA potency, EC50, represents the concentration of
the agonist ([A]) inducing 50% of the maximal current evoked by
a saturating concentration of the agonist and n is the Hill coeffi-
cient. The potency of GABA can then be simply deduced from the
relative EC50 values for each curve and potency ratios can also be
derived from these data.

Given that dose response data are distributed on a logarith-
mic scale, EC50 values are converted to pEC50 values using:
pEC50 = −log(EC50). Unlike EC50s, the pEC50 values are distrib-
uted on a linear scale from which mean ± SEM values can be
obtained. To facilitate data interpretation, mean pEC50 values can
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be transformed into EC50 values. The potency histograms shown
in this review depict left ordinate axes corresponding to mean
pEC50 values ± SEM, and right ordinate logarithmic axes for EC50

values (note that the error bars only relate to pEC50).
Finally, some receptor subunit combinations can exhibit spon-

taneous channel activity in the absence of GABA. To determine the
level of spontaneous activity of, for example, ε subunit-containing
receptors, the maximal inhibition of spontaneous channel activity
was observed as a decrease in the membrane holding current in
the presence of a saturating concentration of the allosteric GABAA

receptor blocker, picrotoxin (1 mM; I PTX, Max). This was quanti-
fied by dividing I PTX, Max by the total range of GABA channel
activity (I PTX, Max + I GABA, Max), according to the following ratio:

% spontaneous activity = IPTX,Max/
(
IPTX,Max + IGABA,Max

)
,

where I GABA, Max, is the maximal current activated by a saturat-
ing concentration of GABA at the same spontaneously opening
receptors (Mortensen et al., 2003).

RESULTS
COMPARISON OF GABA POTENCY ON GABAA RECEPTOR α-SUBUNITS
All six α subunits were sequentially expressed with β3 and γ2
subunits to compare GABA potency by determining the GABA
EC50s. GABA concentration response curves have been estab-
lished by measuring whole-cell currents (Figure 1Aa) for a range
of GABA concentrations on α1–6 subunit-containing receptors

FIGURE 1 | Assessing the impact of α, and β GABAA receptor subunits on

GABA potency. (Aa) Superimposed membrane currents activated by GABA
concentrations ranging from 0.1 μM to 1 mM for α1–6β3γ2 GABAA receptors
expressed in HEK293 cells. Note the slow desensitization for α3β3γ2 and
slow deactivation for α5β3γ2. (Ab) GABA concentration response curves for

α1–6β3γ2. Points are mean ± SEM (5–7 cells). (Ac) Bar chart of mean GABA
pEC50 values ± SEM (left ordinate) and equivalent EC50 values (right ordinate)
for α1–6β3γ2 receptors. (Ba) Displays GABA concentration response curves
for α1β1–3γ2 receptors (n = 5–34 cells), and (Bb) depicts the pEC50 values
(mean ± SEM) and the equivalent EC50 values (mean).
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(Figure 1Ab). It is apparent from the EC50 values for each iso-
form that the α-subunit-containing receptors form three dis-
tinct groups, with GABA exhibiting its lowest potency at α2
and α3 containing receptors (EC50: 13.4 and 12.5 μM, respec-
tively; Figure 1Ac; Table 1), increasing to an intermediate potency
for activating α1, α4, and α5-containing receptors (2.1, 2.1, and
1.4 μM, respectively; Figure 1Ac; Table 1), with the highest
potency measured for α6 subunit-containing receptors (0.17 μM;
Figure 1Ac; Table 1). The difference in potency between α2/3- and
α6-containing receptors is ∼80-fold.

Although in such experiments GABA is usually delivered to sin-
gle GABAA receptor expressing cells with a latency of 20–30 ms,
it is clear from the current profiles that the rate of desensitiza-
tion was not simply related to GABA potency as both α2 (low
GABA potency) and α6 (high potency) receptor isoforms showed
relatively fast current desensitization, whilst α3 (low potency)
exhibited the slowest desensitization kinetics (Figure 1Aa). By
comparing between α subunit isoforms, it is clear that only α5
showed a dramatically slow current deactivation (Figure 1Aa). All
these recombinant GABAA receptor isoforms (and others reviewed
below) that incorporate the γ2 subunit, display robust expression
in HEK293 cells with maximal GABA currents in the range of
2–4 nA (Table 1) without exhibiting any spontaneous activity.

GABA BINDS MOST TIGHTLY TO SYNAPTIC-TYPE β3
SUBUNIT-CONTAINING RECEPTORS
The importance of the β subunit (1–3) for GABA potency has been
examined in receptors co-expressing α1 and γ2 (Figures 1Ba,b).

GABA EC50 values for α1β1γ2 (10.9 μM), α1β2γ2 (6.6 μM),
and α1β3γ2 (2.1 μM) were significantly different (ANOVA,
P = 0.0022), with the β3-containing isoform being the most sen-
sitive to GABA. Membrane current profiles were similar and all
isoforms showed robust expression in HEK cells after only 14–
18 h (GABA I max values (pA) for α1β1γ2: 3575 ± 799, α1β2γ2:
2230 ± 193, and α1β3γ2: 3367 ± 662; Table 1). A similar rank
order of GABA potency has been observed from compara-
tive expression studies of human GABAA receptor constructs
expressed in Xenopus oocytes, although the EC50 values were
higher overall by ∼2–3-fold (Hadingham et al., 1993).

GABA POTENCY AT α4 AND α6 SUBUNIT-CONTAINING GABAA

RECEPTORS
Some of the most abundant extrasynaptic GABAA receptors are
formed from α4βδ (Jia et al., 2005; Belelli et al., 2009) and α6βδ

subtypes (Farrant and Nusser, 2005). There is also evidence in sup-
port of extrasynaptic α4β and α6β receptors in the CNS (Bencsits
et al., 1999; Sinkkonen et al., 2004) as well as synaptic and/or
extrasynaptic α4βγ and α6βγ GABAA receptors (Quirk et al.,
1994; Peng et al., 2004). Whereas α4-containing receptors have
a wide distribution throughout the brain, α6 subunits are exclu-
sively expressed in cerebellar granule cells and the cochlear nucleus
(Pirker et al., 2000). GABA EC50 values for α4β3 (0.97 μM),
α4β3γ2 (2.1 μM), and α4β3δ (1.7 μM) GABAA receptors dis-
played similar sensitivities to GABA, although GABA is slightly
more potent in activating α4β3 compared to α4β3γ2 (P = 0.0172;
Figure 2A; Table 1). Similarly, for α6-containing receptors, GABA

Table 1 | GABA potencies and maximum currents.

Isoform Cellular location Main brain areas/cell types GABA pEC50 (EC50) GABA max currents (pA)

α1β3γ2S S/(E) Widespread in the brain 5.679 ± 0.0932 (5), 2.1 μM 3367 ± 662 (5)

α2β3γ2S S/(E) Widespread 4.874 ± 0.1308 (5), 13.4 μM 3056 ± 435 (5)

α3β3γ2S S/(E) Reticular thalamic nucleus, hypothalamic nuclei, dentate

granule cells, noradrenergic cells in locus coeruleus

4.904 ± 0.1592 (5), 12.5 μM 3776 ± 305 (5)

α4β3γ2S S/(E) Thalamic relay cells (weak) 5.689 ± 0.0930 (5), 2.1 μM 2574 ± 292 (8)

α5β3γ2S E/S Hippocampal pyramidal cells 5.869 ± 0.1782 (7), 1.4 μM 2642 ± 938 (5)

α6β3γ2S (S)/E Cerebellar granule cells, cochlear nucleus granule cells 6.772 ± 0.1034 (5), 0.17 μM 2446 ± 445 (5)

α1β1γ2S S/(E) Restricted distribution 4.965 ± 0.0149 (5), 10.9 μM 3575 ± 799 (5)

α1β2γ2S S/(E) Widespread and most abundant 5.180 ± 0.0593 (34), 6.6 μM 2230 ± 193 (18)

α4β3 E Thalamic relay cells 6.014 ± 0.0559 (5), 0.97 μM 328 ± 67 (5)

α4β3δ E Thalamic relay cells 5.776 ± 0.1147 (5), 1.7 μM 1224 ± 264 (7)

a6β3 E Cerebellar granule cells 7.122 ± 0.0954 (5), 0.076 μM 490 ± 125 (5)

α6β3δ E Cerebellar granule cells 6.760 ± 0.1174 (5), 0.17 μM 706 ± 148 (5)

α1β2 E Widespread distribution 5.771 ± 0.0624 (5), 1.7 μM 1863 ± 333 (5)

a3β3 E Thalamus, hypothalamus, locus coeruleus 5.346 ± 0.0556 (5), 4.5 μM) 3924 ± 288 (6)

α1β2δ E Hippocampal interneurons 5.430 ± 0.0738 (5), 3.7 μM 398 ± 147 (5)

α4β2δ E Hippocampal dentate granule cells 6.040 ± 0.1227 (5), 0.91 μM 1544 ± 263 (5)

a3β3θ E Hypothalamic nuclei, locus coeruleus 5.473 ± 0.0886 (5), 3.4 μM 1680 ± 508 (5)

a3β3ε E Hypothalamic nuclei, locus coeruleus 6.064 ± 0.0738 (5), 0.86 μM 811 ± 300 (5)

GABA potency data for isoforms of the GABAA receptor representing the most likely subtypes found in the CNS. Their putative cellular locations are indicated (S,

synaptic, or E, extrasynaptic; and when this is noted in parentheses, the location and/or distribution is assumed based on the available literature). GABA potency is

represented as a pEC50 (mean ± SEM) and the number of experiments (n) is shown in parentheses. For easier interpretation, mean pEC50 values are also transformed

into EC50 values. Mean maximum currents are provided as mean ± SEM.
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FIGURE 2 | GABA potencies and maximum currents at α4- and

α6-containing GABAA receptors. Bar charts showing pEC50 (mean ± SEM)
and EC50 (mean) values for: (A) α4β3, α4β3γ2, and α4β3δ, and (B) α6β3,
α6β3γ2, and α6β3δ GABAA receptors. Note that α6-containing receptors

consistently display a higher potency for GABA than α4-containing
receptors. (C) Bar charts of the maximum GABA-induced currents
(mean ± SEM) for α4- and α6-containing GABAA receptors expressed in
HEK293 cells.

is again more potent at α6β3 (EC50: 0.076 μM) than either α6β3γ2
(0.17 μM; P = 0.0377) or α6β3δ (0.17 μM; P = 0.0437; Figure 2B;
Table 1).

Interestingly, by comparing α4- with α6-containing receptors,
GABA consistently exhibited a higher potency at α6-containing
receptors (P = 0 < 0.001; Figures 2A,B; Table 1). Furthermore,
α4β3γ2 or α6β3γ2 receptors also showed significantly higher
expression levels compared appropriately with either α4β3 and
α6β3 or α4β3δ and α6β3δ receptors (P < 0.01; Figure 2C; Table 1).

GABA POTENCY AT EXTRASYNAPTIC-TYPE αβ RECEPTORS
In addition to α4 and α6 subunit-containing receptors, there is
now evidence supporting the existence of αβ GABAA receptors
at extrasynaptic locations in cerebellar granule cells and hip-
pocampal pyramidal cells (Brickley et al., 1999; Mortensen and
Smart, 2006). The genes encoding for α1, β2, and γ2 subunits
are clustered on human chromosome 5q34 (mouse: 11, rat:10;
Simon et al., 2004) and following their co-expression, could be
one reason why α1β2γ2 receptors are one of the most abun-
dant GABAA receptor isoforms in CNS neurons (Sieghart, 1995;
McKernan and Whiting, 1996; Mehta and Ticku, 1999), and
potentially why α1β2 receptors can be assembled and inserted in
extrasynaptic membrane compartments in the same neurons and
brain regions as α1β2γ2 receptors. However, gene clusters are not
absolute predictors of receptor subunit combinations since the α6

subunit gene, GABRA6, also clusters with those for α1, β2, and
γ2 (Simon et al., 2004) yet has a much more restricted expression
profile.

In noradrenergic locus coeruleus cells and hypothalamic and
thalamic nuclei, α3, θ, and ε subunits are expressed (Sinkkonen
et al., 2000; Pape et al., 2009) and it is possible that extrasynaptic
α3β2/3 receptors form in these brain areas. In addition, there is
indeed evidence for α4β3 (Bencsits et al., 1999) and α6β3 isoforms
(Sinkkonen et al., 2004) being present extrasynaptically in thala-
mic and cerebellar neurons respectively, where α4β3δ and α6β3δ

are also expressed.
When comparing the potency of GABA in activating these αβ

receptors, GABA was least potent at α3β3 (4.5 μM, P < 0.01),
exhibited intermediate potency at α1β2 (1.7 μM) and α4β3
(0.97 μM), and displayed the highest potency at α6β3 receptors
(0.076 μM, P < 0.001; Figures 3Aa,b; Table 1).

Curiously, the maximum GABA currents obtained with α4β3
(328 ± 67 pA) and α6β3 (490 ± 125 pA) receptors were signifi-
cantly smaller than those obtained with α1β2 (1863 ± 333 pA)
and in particular with α3β3 (3924 ± 288 pA, P < 0.01; Table 1).

COMPARISON OF GABA POTENCIES AT EXTRASYNAPTIC-TYPE
δ-CONTAINING RECEPTORS
The δ-containing receptors are generally considered to be extrasy-
naptic. By contrast with the limited distribution of α6βδ receptors
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FIGURE 3 | GABA potencies at αβ and αβδ GABAA receptors. (Aa) GABA
concentration response curves for α1β2, α3β3, α4β3, and α6β3 (n = 20). (Ab)

Bar chart of pEC50 (mean ± SEM) and equivalent EC50 values for αβ receptors.

(Ba) GABA concentration response curves for α1β2δ, α4β2δ, α4β3δ, and α6β3δ

(n = 20). (Bb) Bar chart of pEC50 (mean ± SEM) and equivalent EC50 values for
αβδ GABAA receptors expressed in HEK293 cells.

in cerebellar granule cells (Jechlinger et al., 1998), α4βδ is
found in dentate granule cells and thalamic relay cells, and
also expressed at lower levels in striatum and the cerebral cor-
tex (Pirker et al., 2000). Current evidence indicates that the
α4β2δ isoform predominates in dentate granule cells (Herd et
al., 2008), whereas α4β2δ and α4β3δ are found in thalamic
relay cells (Pirker et al., 2000). A novel δ-containing GABAA

receptor, α1βδ, has also been proposed as a naturally expressed
extrasynaptic receptor in hippocampal interneurons (Glykys et al.,
2007).

GABA EC50 values revealed a higher potency for GABA at
α6β3δ receptors [EC50: 0.17 μM compared to α1β2δ (3.7 μM),
α4β2δ (0.91 μM), and α4β3δ (1.7 μM); ANOVA: P < 0.0001;
Figures 3Ba,b; Table 1]. GABA potency at α1β2δ was also sig-
nificantly lower than that at α4β2δ and α4β3δ GABAA receptors
(P = 0.0028 and P = 0.0349, respectively). The largest GABA I max

currents were observed for α4β2δ and α4β3δ (1544 ± 263 and
1224 ± 264 pA, respectively), which were significantly higher than
those observed for α1β2δ (398 ± 147 pA; P < 0.05); α4β2δ also
displayed higher currents than α6β3δ (706 ± 148 pA, P = 0.024;
Table 1).

GABA POTENCIES AT α3β3 SUBUNIT-CONTAINING RECEPTORS WITH
γ2, θ, OR ε

The potential co-expression of α3, θ, and ε subunits in noradren-
ergic cells of the locus coeruleus and also hypothalamic nuclei
(primarily ventromedial and dorsomedial; Sinkkonen et al., 2000),
further suggests the existence of neuronal GABAA receptor iso-
forms such as α3β3, α3β3γ2, α3β3θ, and α3β3ε. In accord with our
previous observations of GABA displaying a higher potency at αβ

compared to αβγ receptors, the GABA EC50 for α3β3 (4.5 μM) was
significantly higher than that for α3β3γ2 (12.5 μM; P = 0.0306;
Figures 4A,B; Table 1).

The mean GABA EC50 for α3β3θ (3.4 μM) was not signifi-
cantly different from that determined with the α3β3 (4.5 μM)
isoform, which could have been due to the θ subunit not being
incorporated efficiently into the α3β3θ receptor. However, from
the maximal GABA currents, it was clear that I max was signif-
icantly reduced for α3β3θ compared with α3β3, indicative of θ

being assembled into the receptor (1680 ± 508 and 3924 ± 288 pA,
respectively; P = 0.003; Figure 4C; Table 1). For this group of
receptors, GABA had the highest potency at α3β3ε (EC50: 0.86 μM;
P < 0.01; Figures 4A,B). Similarly to α3β3θ, the GABA I max for

Frontiers in Cellular Neuroscience www.frontiersin.org January 2012 | Volume 6 | Article 1 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mortensen et al. GABA potency at GABAA receptors

FIGURE 4 | Impact of θ or ε on GABA potency and spontaneous channel

opening. (A) GABA concentration response curves for α3β3, α3β3γ2, α3β3θ,
and α3β3ε GABAA receptors expressed in HEK293 cells (n = 20). (B) Bar chart
of pEC50 (mean ± SEM) and EC50 values for α3β3x receptors. (C) Membrane

currents activated by 1 mM GABA for α3β3, α3β3γ2, α3β3θ, and α3β3ε (black
traces), including an example of outward current (red trace) generated by
picrotoxin (PTX) blocking the spontaneous current of α3β3ε in the absence of
GABA.

α3β3ε (811 ± 300 pA) was also reduced compared with that for
α3β3 and α3β3γ2 (P < 0.001).

Of all the GABAA receptors that have been reviewed, the only
isoform that displayed significant spontaneous channel activity in
the absence of GABA was α3β3ε receptors. This was blocked by
1 mM picrotoxin (PTX; Figure 4C). The PTX-sensitive sponta-
neous current accounted for 24 ± 5% (n = 8) of the maximum
total current that could be passed by these receptors.

DISCUSSION
The purpose of this review has been to consider the comparative
potency data for GABA in activating 18 of the most likely iso-
forms of the GABAA receptor to be expressed in the CNS (Olsen
and Sieghart, 2008). This catalog of neuronal GABAA receptor iso-
forms was accrued from in situ hybridization (Laurie et al., 1992;
Wisden et al., 1992), immunocytochemical (Fritschy and Mohler,
1995; Pirker et al., 2000; Fritschy and Brunig, 2003), and immuno-
precipitation (Khan et al., 1994) data, with supporting evidence
from electrophysiological studies (Whiting et al., 1995; McKernan
and Whiting, 1996). Of necessity however, the composition of the
less common neuronal GABAA receptor isoforms is still subject to
speculation given the difficulties of precisely determining native
receptor subunit composition.

It is apparent that significant variations in potency can occur
when comparing the same ligand against receptors expressed
in different cell types. In particular, potencies measured with

receptors expressed in Xenopus oocytes have yielded results that
differ from similar determinations conducted in mammalian cell
types (e.g., HEK293, COS, and NG108-15 cells). Variable deter-
minations of potency can also arise from using different DNA
transfection ratios, which might influence receptor subunit com-
position, and by using different speeds of drug application. This
makes exact comparison of EC50 values from different isoforms
of the receptor more difficult if they are not measured under
exactly the same experimental conditions. In this review, we
have ensured that experimental conditions are consistent, thereby
enabling exact comparisons between neuronally relevant GABAA

receptor isoforms.
Previous extensive and comparative studies of the effects of

GABA and other GABAA receptor specific ligands on a range of
GABAA receptor isoforms have been conducted on oocytes (Sigel
et al., 1990; Ebert et al., 1994), but since this period, our under-
standing of GABAA receptor assembly and naturally occurring
isoforms in the CNS has changed considerably.

Xenopus oocytes offer a robust expression system perfectly
suited for screening the pharmacology of multiple receptor iso-
forms; however, due to their large size, drug application speeds are
often slower than expected with mammalian cells, which may be
the most likely reason why EC50 values from oocyte studies for
a specific receptor isoform are usually notably higher than those
determined with smaller immortalized cell lines (e.g., HEK293)
more akin to a neuron (Verdoorn et al., 1990). Indeed, the EC50
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values, noted in this review obtained from HEK293 cells were
consistently lower than those reported from oocyte studies.

It is clear from appraising GABA potency on different GABAA

receptor isoforms that the identity of the α-subunit is most impor-
tant with an almost 80-fold difference in EC50 values from the
low potency α2β3γ2 and α3β3γ2 receptors, to the high potency
isoform, α6β3γ2. The low potency of α2/α3βγ receptors would
be suited to inhibitory synaptic compartments where the GABA
concentration transient in the synaptic cleft will rise to >1 mM
during vesicular release (Mozrzymas et al., 2003). For extrasynap-
tic receptors that are likely to be exposed to much lower basal and
spillover GABA concentrations of ∼20–500 nM (Mortensen and
Smart, 2006; Lee et al., 2010), a higher GABA potency is advan-
tageous. The high potency of α6β3γ2 indicates that this isoform
may be mainly located extrasynaptically in cerebellar granule cells
and the cochlear nucleus, similar to α6βδ, although α6 subunit-
containing receptors are also reported to access inhibitory synapses
(Tia et al., 1996; Mellor et al., 2000; Santhakumar et al., 2006).

Interestingly, α1-, α4-, and α5-containing receptors assembled
with βγ subunits displayed intermediate potencies for GABA sug-
gesting these receptors could participate equally at inhibitory
synapses as well as in extrasynaptic compartments. It has been
previously demonstrated that α1βγ receptors are also located in
extrasynaptic domains (Thomas et al., 2005). Similarly, it has been
shown that α5-containing GABAA receptors play an important
part in tonic inhibition in hippocampal pyramidal neurons, and
that these can also contribute to synaptic inhibition (Caraiscos et
al., 2004; Serwanski et al., 2006). By contrast, α4βδ receptors are
regarded as important extrasynaptic receptors in the thalamus and
the dentate gyrus, and there is also evidence for an α4βγ isoform,
which has been reported to be located both within and outside
inhibitory synapses (Peng et al., 2004).

Previous evidence suggests that extrasynaptic αβ receptors are
present on hippocampal pyramidal cells and play a part (∼10%)
in tonic inhibition (Mortensen and Smart, 2006). The presence
of α6β receptors has similarly been observed in Thy1α6 trans-
genic mice with ectopic α6-expression, outside of the cerebellum
(Sinkkonen et al., 2004). Although this is an abnormal expres-
sion pattern, it indicates that α6β receptors have the ability to be
expressed and may, under normal conditions, be present in cere-
bellar granule cells where the expression of α6 is high. Similarly,
there is evidence for the presence of α4β receptors in the brain
(Bencsits et al., 1999) and this suggests the possibility that vari-
ous αβ isoforms may be present in other brain areas could have
been previously underestimated (e.g., α1β2 throughout the CNS,

α4β2/3 in thalamus and dentate gyrus, α3β3 in the hypothalamus
and locus coeruleus, and α6β2/3 in the cerebellum). The observa-
tion that αβ always displays a higher GABA potency than its αβγ

counterpart, underlines the potential value of these γ-lacking αβ as
extrasynaptic receptors, helping to set the level of tonic inhibitory
tone. However, it is expected that their single channel conduc-
tances will be smaller compared with αβγ or αβδ counterparts
(Moss et al., 1990; Angelotti and MacDonald, 1993; Mortensen
and Smart, 2006).

Typically, prevalent forms of extrasynaptic GABAA receptors
are those containing the δ-subunit that populate the dentate gyrus
(α4β2δ), thalamus (α4β2δ and α4β3δ), and cerebellar granule
cells (α6βδ). In addition, α1βδ receptors may also be expressed
in the dentate gyrus (Glykys et al., 2007). Comparing the four
δ-containing isoforms, GABA potency was highest at α6β3δ com-
pared to α1β2δ, α4β2δ, and α4β3δ. These potency differences
may reflect regional differences in ambient GABA concentrations,
where the highly GABA sensitive α6β3δ would be ideally suited to
an environment where the GABA concentration was lower.

The less abundant GABAA receptor subunits, ε and θ, which
have defined expression patterns in the locus coeruleus, hypo-
thalamus, tegmentum, and pontine nuclei, have been proposed to
assemble as α3βε and α3βθ isoforms due to the co-localization of
α3, ε, and θ on the same chromosome (Pape et al., 2009). These
receptors have not previously been subject to a full characteri-
zation, but their relatively high potency for GABA (in particular
α3β3ε) indicates that they would also be likely contributors to tonic
inhibition and thus candidates for being located at extrasynaptic
sites.

Of all the 18 GABAA receptor isoforms reviewed in this study,
only α3β3ε receptors showed significant spontaneous activity.
Spontaneous activity has been reported before for α1β3ε (Nee-
lands et al., 1999; Mortensen et al., 2003) suggesting that the ε

subunit is mainly responsible for spontaneity given that the α1 or
β3 subunits do not impart this profile onto α1β3γ2 receptors.

In summary we have observed differences in GABA potency
ranging up to 175-fold between GABAA receptor isoforms with
GABA being most potent at extrasynaptic α6-containing receptors
and least potent at synaptic-type α2β3γ2 and α3β3γ2 receptors.
This range of GABA potency will clearly impact on the activation
of GABAA receptors and influence the roles they play in controlling
excitability from either synaptic or extrasynaptic locations.
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