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Midbrain dopaminergic neurons (mDA neurons) are essential for the control of diverse
motor and cognitive behaviors. However, our understanding of the activity of immature
mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in
embryonic life and dopaminergic axons enter the striatum and contact striatal neurons
a few days before birth, but when these are functional is not known. Here, we recorded
Ca2+ transients and Na+ spikes from embryonic (E16–E18) and early postnatal (P0–P7)
mDA neurons with dynamic two-photon imaging and patch clamp techniques in slices
from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the
striatum with amperometry. We show that half of identified E16–P0 mDA neurons
spontaneously generate non-synaptic, intrinsically driven Ca2+ spikes and Ca2+ plateaus
mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18–P0, half of the
mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation
at birth (P0 = E19). At that stage (E18–P0), dopaminergic terminals release dopamine in a
calcium-dependent manner in the striatum in response to local stimulation. This suggests
that mouse striatal dopaminergic synapses are functional at birth.
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INTRODUCTION
Dopaminergic neurons located in the ventral midbrain (mDA)
give rise to the mesostriatal, mesocortical, and mesolimbic path-
ways. The vast majority (around 80%) of mDA neurons are
born at E12 in rats (Gates et al., 2006) in the ventral aqueduc-
tal ventricular zone. Then they become post-mitotic, enter into
a differentiation and specification program, and migrate ventro-
laterally and rostrally along radial glia processes to their final
location in the tegmental mantle to form the A8–A10 subgroups
(Kawano et al., 1995; Hall et al., 2003). They start extending pro-
cesses at E13 in rats (Moon and Herkenham, 1984; van der Kooy
and Fishell, 1987; Voorn et al., 1988; Fishell and van der Kooy,
1989; Gates et al., 2006; van den Heuvel and Pasterkamp, 2008).
Tyrosine hydroxylase (TH), the rate limiting enzyme for cate-
cholamine synthesis, is localized in the growing tips of axons,
and TH-positive (TH+) axonal processes are first detected within
the ventrolateral developing striatum at E14.5 where they form

a few specialized contacts with striatal somas or near the ori-
gin of dendrites (Specht et al., 1981a,b). Accordingly, dopamine
is first detected in the forebrain at E13 in mice and DA binding
sites (D1-like and D2-like) are present in the embryonic rodent
neostriatum from E14 (Ohtani et al., 2003; Goffin et al., 2010). In
addition, antidromic activation of rat substantia nigra compacta
(SNc, A9) neurons from the striatum at P0 in vivo confirms the
presence of the nigro-striatal DA pathway at birth (Tepper et al.,
1990; Trent et al., 1991). Collectively, these studies suggest that the
nigro-striatal system is ready to operate at late embryonic stages
but the functionality of this pathway and whether it does release
dopamine has not been established. This information is impor-
tant as it conditions our understanding of the operation and role
of this system during development.

Here, we combined electrophysiological and imaging studies
to describe the developmental sequences of neuronal and net-
work activity, with dopamine release experiments to detect the
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earliest evoked release of DA in the striatum. Since perinatal mDA
neurons cannot be always identified by their adult electrophysio-
logical characteristics (Washio et al., 1999) or their localization,
we performed our experiments in brain slices from TH-GFP mice
(Sawamoto et al., 2001). Our results show that at birth (P0), a sub-
population (20%) of mDA neurons spontaneously generate full
amplitude Na+ spikes, in an intrinsically drive tonic or bursting
pattern. At the same age, dopaminergic fibers release dopamine
in a calcium-dependent manner in the striatum upon stimula-
tion. Therefore, this suggests that mouse striatal dopaminergic
synapses are functional at birth.

METHODS
ANIMALS AND SLICES
We performed experiments on wild-type or TH-GFP C57BL/6
mice (Matsushita et al., 2002) maintained in our institutional
animal facility. Female mice were examined for the presence of
a vaginal plug the morning after mating. The day of plug dis-
covery was designated as embryonic day 0 (E0). Experiments
were performed on mice of either sex. We removed E16 and E18
mice from deeply anesthetized dams [subcutaneous injection of a
mixture of xylazine (Rompun 2%; used at 0.05%) and ketamine
(Imalgene 1000 used at 50 g/L) volume injected: 0.1 mL/10 g].
The embryos were kept in an ice-cold oxygenated solution con-
taining (in mM): 110 choline, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2,
0.5 CaCl2, 25 NaHCO3, 7 glucose. Postnatal mice (P0–P7) were
killed by decapitation under isofluorane anaesthesia. Coronal
and parasagittal slices (400 μm thick) were cut in the ice-cold
oxygenated choline solution using a vibratome (VT1200 Leica
Microsystems Germany). During the recovery period, slices were
placed at room temperature with standard artificial cerebrospinal
fluid (ACSF) saturated with 95%O2/5%CO2 and containing the
following (in mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4, 1.3 MgCl2,
2 CaCl2, 25 NaHCO3, 11 glucose.

CALCIUM IMAGING
Slices were incubated in the dark with 25 μL of a fura-2 AM
solution (1 mM in DMSO + 0.8% pluronic acid; Molecular
Probes). We performed imaging studies with a multibeam two-
photon laser scanning system (Trimscope-LaVision Biotec) cou-
pled to an Olympus microscope. Slices were imaged using a
high numerical aperture objective (20×, NA 0.95, Olympus).
Images (4 × 4 binning) were acquired via a CCD camera (La
Vision Imager 3QE) with a time resolution of 115–147 ms per
frame. Size of the scan field (444 × 336 μm) and duration of
the movies (1000 frames) were unchanged. We first took images
of the GFP-expressing neurons located in the mesencephalon
(laser at 910 nm) before acquiring spontaneous fura-2 fluores-
cence changes (laser at 780 nm). To verify the location of the
recorded field, at the end of the imaging session we bleached the
fura-2 fluorescence from the field and observed its corresponding
location on the GFP image. During the analysis, GFP-expressing
fura 2-loaded neurons were identified by superposing the two
fields. We performed analysis of the calcium activity with custom-
made software written in Matlab (MathWorks) (Bonifazi et al.,
2009). Active cells were neurons exhibiting any Ca2+ event of at
least 5% DF/F deflection within the period of recording. Ca2+

spike or Ca2+ plateau cells were neurons exhibiting at least one
Ca2+ spike or one Ca2+ plateau within the period of recording.
A calcium plateau sustained a calcium level for at least 30 frames
as opposed to a calcium spike which started decaying at the peak.
We computed the activity correlation of cell pairs as previously
described (Crepel et al., 2007; Dehorter et al., 2011).

PATCH CLAMP RECORDINGS
We performed all recordings at 32◦C. Cells were visualized
with infrared–differential interference optics (Axioskop2; Zeiss).
For whole-cell current clamp recordings the pipette (6–10 M�)
contained the following (in mM): 128.5 K-gluconate, 11.5 KCl,
1 CaCl2, 10 HEPES, 10 EGTA, 2.5 MgATP and 0.3 NaGFP, pH
7.2–7.4 (275–285 mOsm). We determined input membrane resis-
tance (Rm) by on-line fitting analysis of the transient currents in
response to a 5–10 mV pulse at VH = –60 mV. Criteria for consid-
ering a recording included Rm > 100 M�. The input resistance
(Rm) of mDA neurons decreased significantly from 355 ± 39 M�

before birth (E18, n = 8) to 203 ± 31 M� at P5–P7 (n = 5, p <

0.05, Mann–Whitney test). In parallel, the percentage of mDA
neurons displaying the hyperpolarization-activated cationic cur-
rent Ih increased from 61% at E18 to 100% at P7. Amplitude of
action potentials was measured from peak to after spike hyperpo-
larization (AHP) potential and their duration half-way between
threshold and peak (half-width duration).

AMPEROMETRY
Coronal slices were placed in a chamber and perfused with O2

saturated ACSF at 32◦C. We measured the evoked and not the
spontaneous release of dopamine as performed in P9–14 pri-
mary cultures of mDA neurons (Kim et al., 2008) or 30–40 days
organotypic slices of the striatum (Cragg et al., 1998) because
the high perfusion rate of ACSF needed to keep slices healthy
prevents such a measure. Stimulation was performed with a bipo-
lar tungsten electrode with a tip separation of 100 μm (World
Precision Instruments TST33C05KT, stereo tungsten electrode,
in vitro impedance of 1 M�) inserted into the striatum. We did
not study DA overflow in response to median forebrain bun-
dle (MFB) stimulation because medial sagittal slices containing
the MFB cannot be reliably obtained at embryonic stages. To
evoke a reproducible DA release, we used a train of four 100 Hz
square pulses of 50 V amplitude and 100 μs duration. To moni-
tor the electrically evoked dopamine release, we used continuous
amperometry with carbon fiber electrodes because it gives simi-
lar results as cyclic voltammetry in the striatum (Schmitz et al.,
2001). The carbon fiber electrode (active surface 10 μm in diam-
eter and 500 μm long; World Precision Instruments, CF10) was
implanted into the striatum at an angle of 60◦ from vertical so
that the entire length of the active surface was inside the slice
at a depth of about 50 μm from the surface. This was done in
the ventrolateral and dorsomedial striatum where the evoked
DA release was maximal and minimal respectively. The carbon
fiber electrode was connected to a potentiostat (MicroC, World
Precision instruments) to apply voltage and measure current. To
measure DA release, the imposed voltage between the carbon
fiber electrode and the Ag/AgCl pellet was 0.5 V. In response to
the stimulus train, the current generated by oxidation of evoked
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dopamine released was recorded. To separate the evoked cur-
rent from an artefact, the same stimulus protocol was done with
0V applied between the carbon electrode and the Ag/AgCl refer-
ence. At this voltage, no oxidation of DA should occur. Signals
were digitized using a Digidata data acquisition system (Digidata
1440A) coupled to a PC running the clampex nine program
responding to the Multiclamp700A amplifier. Results are pre-
sented as maximum response obtained per brain hemisphere. To
measure DA release during the blockade of dopamine reuptake,
we incubated the slices in nomifensine (10 μM) for a mini-
mum of 20 min. To test the calcium-dependence of dopamine
release, we used a modified ACSF containing the following (in
mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4, 3.3 MgCl2, 25 NaHCO3,
11 glucose.

IMMUNOCYTOCHEMISTRY
To visualize the TH-positive fibers in the striatum we performed
immunocytochemistry of TH in embryonic and early postnatal
slices, and to identify the recorded cells we revealed the neuro-
biotin injected during whole-cell recordings in recorded slices, as
previously described (Dehorter et al., 2009). Dendritic and axonal
fields were reconstructed for morphological analysis using the
Neurolucida system (MicroBrightField Inc., Colchester, VT).

DRUGS
Drugs were prepared as concentrated stock solutions and diluted
in ACSF for bath application. Gabazine, D-amino pyruvate
(D-APV), 6-cyano-7-nitroquinoxaline 2,3-dione (CNQX),
Tetrodotoxin (TTX), Nifedipine, Thapsigargin and Nomifensine
maleate were purchased from Sigma (St. Louis, MO, USA).
ω–conotoxin GVIA was purchased from Alomone Labs
(Jerusalem, Israel).

STATISTICAL ANALYSIS
Statistical results are given as means ± SEM. We performed sta-
tistical analysis using GraphPad Prism (GraphPad Software, Inc.,
La Jolla, CA): one-way ANOVA (Tukey’s Test as post hoc test),
Mann–Whitney test (non-parametric t-test), and paired t-tests as
indicated in the results section. Differences were considered sig-
nificant at p ≤ 0.05 (∗∗∗ for p ≤ 0.001, ∗∗ for p ≤ 0.01 and ∗ for
p ≤ 0.05). We grouped the P5 and P7 sets of data since they did
not present a statistical difference. In the box plots of Figures 1A
and 5B the bottom and top of the boxes represent the 25th and
75th, the band inside the box is the 50th percentile (median) and
the top and bottom vertical bars (whiskers) denote the maximum
and minimum values.

RESULTS
EMBRYONIC mDA NEURONS PROJECT TO THE DEVELOPING STRIATUM
Axons of E16 neurobiotin-filled mDA neurons project rostrally
toward the striatum even when their somas do not have dendrites
yet (Figure 1A). The dendritic length and number of dendritic
ends of mDA neurons significantly increase from E16 (90 ±
31 μm; 1.5 ± 0.4 ends; n = 13) to E18 (245 ± 66 μm; 3.9 ± 0.6
ends; n = 7; p < 0.05, Mann–Whitney test), and from E18 to P0
(1031 ± 287 μm, 12 ± 3 ends; n = 6; p < 0.05, Mann–Whitney
test) (Figure 1A). Accordingly, a substantial diffuse innervation

FIGURE 1 | Morphology of embryonic TH-positive midbrain neurons

and distribution of TH-positive axons in the developing striatum.

(A) (Top) Reconstructed neurobiotin-filled, GFP-positive, mDA neurons at
the indicated ages. Somas and dendrites are in black, axons in gray.
(Bottom) Box plots of dendritic length (left) and number of dendritic ends
(right) as a function of age. ∗Compared from E16 to E18 and from E18 to
P0, Mann–Whitney test. (B) TH-positive axons (black staining) in the
developing striatum (arrow) at the indicated ages.

of the striatum by TH+ fibers is already present at E14–E16
in the ventro-lateral part of the striatum (Ohtani et al., 2003)
(Figure 1B). Later at E18–P0, TH+ fibers invade the more dor-
sal regions of the striatum. Therefore, mDA neurons extend long
axons that reach the striatum already at E16 before developing
their dendritic tree.

EMBRYONIC mDA NEURONS SPONTANEOUSLY GENERATE
INTRINSICALLY DRIVEN Ca2+ EVENTS
From the 1052 fura-2-loaded/GFP-positive (mDA) imaged neu-
rons recorded in a total of 45 movies, 412 spontaneously gener-
ated calcium events (Figures 2A,B). mDA neurons were already
active at E16, the youngest age tested (Figures 2C,D). Embryonic
(E16–E18) and early postnatal (P0–P7) mDA neurons gener-
ated two patterns of activity (Crepel et al., 2007): Ca2+ spikes
that were sporadic brief Ca2+ events (1.41 ± 0.08 s duration,
n = 264 neurons in 45 fields referred as 264/45) and long last-
ing Ca2+ plateaus (9 ± 0.3 s duration, 106/45; Figure 2C). These
two patterns of activity significantly differed in duration (p <

0.05, Mann–Whitney test). The percent of mDA neurons gen-
erating Ca2+ spikes was stable between E16 (28 ± 4% of fura-2
AM-loaded GFP neurons, 131/11), and P0 (32 ± 4%, 87/13),
significantly decreased at P3 (11 ± 5%, 30/4, p < 0.001, Mann–
Whitney test, data not shown) and then remained stable until P7
(13 ± 3%, 11/12; Figure 2D). Ca2+ spikes had a low frequency
at E16–E18 (0.05 ± 0.01 Hz, 166/16) that increased at P0 (0.09 ±
0.01 Hz) and P7 (0.16 ± 0.04 Hz, data not shown). The percent of
mDA neurons generating Ca2+ plateaus was low at E16 (11 ± 3%,
37/11) and remained stable until P0 (10 ± 2%, 43/13) before
decreasing at P7 (4 ± 2%, 5/12; Figure 2D). Ca2+plateaus had
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FIGURE 2 | Spontaneous Ca2+ activities of embryonic and early

postnatal mDA neurons. (A) Photomicrograph of the same fura 2-loaded
sagittal slice from a P0 TH-GFP mouse excited with UV (left) or blue light
(right) to show the slice loaded with the calcium dye fura 2-AM and the
location of the GFP-positive structures, respectively. Recordings were
performed in the midbrain, in the region of the substantia nigra (SN, white
arrow). (B) Fluorescence images of the cells in the same fura 2-loaded
(top left) and GFP-positive (top right) SN region. Manually detected
contours of the cells from the corresponding fluorescence images
(Middle). Superimposition of the two fields (Bottom, left). Open

contours indicate fura 2-loaded cells and green-filled contours are fura
2-loaded/GFP-positive neurons. Rasterplot of the Ca2+ activity of the
active fura 2-loaded/GFP-positive neurons from the field shown in
(B) (Bottom, right). (C) Representative calcium fluorescence traces from
GFP-positive neurons at the indicated ages showing spontaneously
generated Ca2+ spikes (black) or Ca2+ plateaus (red). (D) Mean
percentage (±SEM) of all active neurons (green), fura 2-loaded/GFP-positive
midbrain neurons evoking at least one Ca2+ spike (black) or one Ca2+
plateau (red), as a function of age. ∗Compared to E16, E18, and P0,
One-Way ANOVA.

a similar mean frequency (0.040 ± 0.004 Hz vs. 0.08 ± 0.04 Hz;
p = 0.28 Mann–Whitney test) and a similar mean duration
(8.9 ± 1.7 s vs. 8.6 ± 3.7 s; p = 0.67 Mann–Whitney test) at E16
and P7 (data not shown). Overall, the percent of spontaneously
active mDA neurons generating at least one Ca2+ spike and/or
one Ca2+ plateau did not change significantly between E16, E18,
and P0 (39.5 ± 3.6%, 50.6 ± 10.5%, and 45 ± 4% of imaged
mDA neurons, respectively, p = 0.4 between E16 and E18, and
p = 0.7 between E18 and P0), and then significantly declined
from P0 to P7 (17 ± 5% at P7; p < 0.01, Mann–Whitney test).
Ca2+ spikes and Ca2+ plateaus were poorly correlated between
neurons (0.2% cell pairs significantly correlated, see materials and
methods) at all ages tested.

Ca2+spikes and Ca2+plateaus were sensitive to blockers of
Na+/Ca2+ voltage-gated channels since TTX (1 μM) + nifedipin
(10 μM) dramatically decreased the percent of active mDA
neurons from 30.2 ± 7.7% to 4.3 ± 1.3% at E16 (p < 0.05,
paired t-test, n = 4 slices), i.e., it decreased the activity of

94 ± 4% of the previously active E16 mDA cells (Figure 3A).
Nifedipin alone at a concentration that specifically blocks
L-type Ca2+ channels (3 μM) decreased the calcium activity of
44 ± 14% of the previously active P1 mDA neurons (n = 8 slices,
Figure 3B). Furthermore, ω-conotoxin GVIA (1 μM), a specific
blocker of N-type Ca2+ channels, decreased the calcium activ-
ity of 57 ± 7% of the previously active P1 mDA neurons (n =
4 slices, Figure 3C). In contrast, Ca2+ events recorded at P0
were totally insensitive to ionotropic GABA and glutamate recep-
tor antagonists (44.9 ± 2.3% active vs. 37.2 ± 3.7% at P0, p =
0.7, paired t-test, i.e., 76.5 ± 6% of the previously active cells
remained unaffected, Figure 3D). A few days later, at P3 the
same synaptic blockers decreased the calcium activity of 69 ± 8%
of the previously active mDA neurons (n = 4 slices, Figure 3E).
In contrast, depletion of intracellular Ca2+ stores with thapsi-
gargin (10 μM) did not affect the number of cells generating
Ca2+spikes and Ca2+plateaus, nor the frequency of these events
(24.5 ± 4.1% control active vs. 24.6 ± 4.3% at P1, p = 0.9, paired
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FIGURE 3 | Pharmacology of the spontaneous Ca2+ activities of

embryonic and early postnatal mDA neurons. Representative
calcium fluorescence traces from mDA neurons and corresponding
quantitative data at the indicated ages showing the effect of TTX

(1 μM)—nifedipin (10 μM) (A) nifedipin (3 μM) (B) ω-conotoxin
GVIA (1 μM) (C) and blockers of ionotropic glutamate
and GABA receptors [APV (40 μM)—CNQX (10 μM)—Gabazine
(5 μM), D and E].

t-test, i.e., 76 ± 10% of the active GFP-positive cells identified
before thapsigargin treatment had their activity unaffected by the
treatment, data not shown). These results showed that E16-P1
mDA neurons spontaneously generate intrinsically driven,

L- and N-type mediated Ca2+ events. Only starting from P3, are
these Ca2+ events sensitive to synaptic blockers suggesting that
synapse-driven inputs to mDA neurons operate during the first
postnatal week but not before.
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FIGURE 4 | Firing patterns of embryonic and early postnatal mDA

neurons. Spontaneous (A) and evoked (B) membrane potential changes
recorded in whole-cell configuration, current clamp mode from midbrain

GFP-positive neurons at the indicated ages. Distribution of the amplitude
(C) half-width duration (D) and frequency (E) of spontaneous Na+ action
potentials as a function of age. ∗Compared to E18 and P0.

AT BIRTH, HALF THE mDA NEURONS SPONTANEOUSLY GENERATE
INTRINSICALLY DRIVEN Na+ ACTION POTENTIALS
In contrast to their capacity to generate Ca2+ events (Figures 2B
and 3), E16 embryonic mDA neurons (n = 16) did not gener-
ate spontaneous (Figure 4A) or evoked (Figure 4B) Na+ spikes.
They started to generate spontaneous Na+ spikes around birth
since 28% and 50% of the recorded mDA neurons at E18 and P0,
respectively, (n = 18; n = 12), spontaneously fired action poten-
tials with a mean amplitude of 44.8 ± 5.4 mV and 52.6 ± 3.3 mV
(Figures 4A–C). At P7, 100% of the recorded mDA neurons
were spontaneously active (amplitude: 73.6 ± 4.5 mV; n = 10).
Spike half-width duration significantly decreased from E18–P0
(3.8 ± 0.6 ms, n = 5; 4.2 ± 0.6, n = 6) to P7 (2.2 ± 0.2 ms, n =
10; p < 0.05, Mann–Whitney test; Figure 4D) but mean sponta-
neous firing frequency did not significantly increase from E18–P0
to P7 (0.2 ± 0.1 Hz at E18; 0.4 ± 0.2 Hz at P0; 0.6 ± 0.2 Hz

at P7; Figure 4E). Therefore, half of the mDA neurons are already
capable of generating spikes at birth (see Figure 2).

WHEN STIMULATED, TYROSINE-HYDROXYLASE POSITIVE FIBERS
RELEASE DOPAMINE IN THE STRIATUM AT BIRTH
In agreement with the presence of TH+ fibers in the embryonic
striatum, we detected from E18 DA release in the stria-
tum in response to local stimulation (19.7 ± 1.5 pA, n = 13;
Figures 5A,B). This evoked DA release significantly increased
at birth (P0) to 43.1 ± 4.3 pA (p < 0.001, One-way ANOVA;
n = 25) and stayed stable during the first postnatal week. The
evoked DA release observed at E18 and P0 was entirely depen-
dent on external Ca2+ ions, since the response disappeared in the
absence of Ca2+ ions, and was rescued in the presence of Ca2+ ions
(Figures 5A,B) To further support the view that the changes in oxi-
dation current evoked by striatal stimulation actually correspond
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FIGURE 5 | Evoked dopamine release in the developing striatum as a

function of age. (A) Example traces of dopamine overflow (in pA) evoked by
a train of four pulses in control ACSF (control, black), in the absence of
external Ca2+ ions (0 mM Ca2+, blue) or in the presence of nomifensine
(10 μM, green) in the bath, at the indicated ages. (B) Box plots of the peak
amplitude of evoked dopamine (DA) release in the striatum as a function of
age (left), its relative decrease in the absence of external Ca2+ ions at E18

and P0 with recovery after returning to control ACSF (middle), and its
half-decay in the presence of nomifensine as a function of age (right). DA
release: ◦p < 0.05 compared to E18; ###p < 0.001 compared to P0, P7,
P26–40; ∗∗∗p < 0.001 compared to P26–40; one-way ANOVA.
Calcium-dependence: ∗p < 0.05, ∗∗∗p < 0.001 compared to 2 mM Ca2+,
paired t-test. Nomifensine: ∗p < 0.05, ∗∗∗p < 0.001 compared to control,
paired t-test.

to an evoked dopamine overflow (Benoit-Marand et al., 2000),
nomifensine (10 μM) was added to the perfusion medium to
inhibit dopamine reuptake. This did not alter the rising phase
of dopamine overflow which corresponds to dopamine release,
but slowed the kinetics of the decreasing phase which depends
on dopamine reuptake (Figure 5A). Dopamine half-decay was
significantly increased by nomifensine treatment (20 min) at P7
(0.4 ± 0.1 to 3.7 ± 0.3 s, p < 0.001 paired t-test, n = 5), and
P25–40 (0.5 ± 0.2 to 3.7 ± 1 s, p < 0.05 paired t-test, n = 5;
Figure 5B). These results confirmed the perinatal expression of
the dopamine transporter in rodents (Galineau et al., 2004). At
E18 and P0, the decay phase in the presence of nomifensine was too
long and precluded its measure. This could be due to the fact that
at these young ages the competitive inhibitor nomifensine, at the
dose used, could not be rapidly displaced from its binding sites on
the dopamine transporter (Tuomisto, 1977; Jones et al., 1995; Katz
et al., 2000) by the small amount of evoked dopamine overflow.

DISCUSSION
Here we show that mouse mDA neurons project to the stria-
tum and spontaneously generate intrinsically driven Ca2+ events
mediated by N- and L-type Ca2+ channels during embryonic life.
At birth, they generate Na+ spikes and release dopamine in the
developing striatum in a Ca2+-dependent manner.

The dynamic two-photon calcium imaging technique enabled
us to record the activity of large neuronal populations when
compared to patch-clamp recordings of single neurons. Around
50% of mDA neurons generated spontaneous voltage-gated Ca2+
spikes and/or Ca2+ plateaus already at E16. Both types of activ-
ity previously described in the developing cortex, hippocampus
and striatum, correspond to single action potentials and bursts

of spikes, respectively, (Crepel et al., 2007; Allene et al., 2008;
Dehorter et al., 2011). The general sequence of patterns generated
by mDA neurons is not without similarities with that reported
in cortical and basal ganglia structures in these earlier studies.
Clearly, non-synapse-driven, voltage-gated currents precede the
operation of synapse-driven events. However, in contrast to cor-
tical and striatal networks, Ca2+ plateaus were not correlated
between mDA neurons. Since correlated calcium plateaus in small
cell assemblies depend on gap junctions required for the for-
mation of synaptically connected networks (Todd et al., 2010),
their absence might be accounted for by the absence of con-
nections (recurrent collaterals) between adult A9 mDA neurons
(Chen et al., 2011). This can also be due to the small number
of mDA neurons generating Ca2+ plateaus in each imaged field,
thus reducing the probability of correlation. Also, whether the
synapse-driven patterns recorded from mDA neurons are similar
to the giant depolarizing potentials (GDPs) described in cor-
tical and more recently in striatal structures (Dehorter et al.,
2011) remains to be clarified. The difficulty of finding mDA neu-
rons generating synchronized synapse-driven events most likely
reflects the maturation of incoming fibers to the structure inves-
tigated. In contrast to the hippocampus and neocortex, but simi-
larly as the striatum, there are no intrinsic glutamatergic neurons
in the SN, thereby conditioning the generation of synchronized
patterns by the arrival of external inputs: here the pedunculopon-
tine and subthalamic nuclei that may have a delayed maturation.
The other source of glutamate could arise from the recurrent col-
laterals of the midbrain dopaminergic neurons that co-release
glutamate in the adult striatum (Tecuapetla et al., 2010). At any
rate, the development of an in vitro embryonic slice with enough
intact inputs from these structures is needed to solve this issue.
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Although we cannot completely exclude the possibility that
a subthreshold calcium-dependent dopamine release is present
before E18–P0 this would be without functional consequence
since Na+ spikes required to that effect are not generated by
most mDA neurons before E18. Interestingly, around birth, mDA
neurons generate Ca2+ events partly mediated by N-type Ca2+
channels, the same channels involved in synaptic DA release in the
adult rodent striatum in vivo and in vitro (Herdon and Nahorski,
1989; Bergquist et al., 1998).

What could be the functional role of dopamine signals in
the developing striatum? Dopamine has been suggested to mod-
ulate multiplication, migration, and wiring of target neurons.
The activation of dopamine receptors by exogenous dopamine or
dopamine agonists regulates the cell cycle of striatal progenitors
in the lateral ganglionic eminence in explant cultures or in mice
in vivo from E13 (Ohtani et al., 2003). From E15, dopaminergic
agonists, or the invalidation of D1 or D2 receptors, differen-
tially modulate the migration of GABAergic interneurons to the
cerebral wall in embryonic mouse forebrain organotypic slices
(Crandall et al., 2007). In addition, the activation of dopamine
receptors in primary striatal neuronal cultures (7–14 days cul-
tures obtained from E16–17 striata) limits the extent of collateral
GABAergic synaptogenesis between developing medium spiny
neurons (Goffin et al., 2010). Early effects of dopamine before
E18 could result from activity-independent release of dopamine
in the ganglionic eminences as described for glutamate and GABA
in the developing hippocampus and shown to be quite efficient

in modulating migration (Demarque et al., 2002; Manent and
Represa, 2007). The possible implications of activity-dependent
release of DA on striatal maturation remain to be investigated.
But, interestingly, the fraction of medium spiny neurons gen-
erating glutamate and GABA spontaneous synaptic activity in
the developing striatum also considerably develops during the
first postnatal week in mice (Dehorter et al., 2011), suggest-
ing an important stimulation of the developmental process
after birth.

To conclude, the present work suggests a developmental
sequence of mDA neurons with features that are common and
specific to these neurons. In a previous study, we showed that
striatal neurons follow an abrupt alteration of their properties in
time to start controlling motricity in pups (Dehorter et al., 2011).
Future studies will have to interconnect these events and deter-
mine the impact of dopaminergic synapses on the operation of
early striatal neurons.
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