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In the last few decades great thrust has been put in the area of regenerative neurobiology
research to combat brain injuries and neurodegenerative diseases. The recent discovery
of neurogenic niches in the adult brain has led researchers to study how to mobilize
these cells to orchestrate an endogenous repair mechanism. The brain can minimize
injury-induced damage by means of an immediate glial response and by initiating repair
mechanisms that involve the generation and mobilization of new neurons to the site of
injury where they can integrate into the existing circuit. This review highlights the current
status of research in this field. Here, we discuss the changes that take place in the
neurogenic milieu following injury. We will focus, in particular, on the cellular and molecular
controls that lead to increased proliferation in the Sub ventricular Zone (SVZ) as well as
neurogenesis. We will also concentrate on how these cellular and molecular mechanisms
influence the migration of new cells to the affected area and their differentiation into
neuronal/glial lineage that initiate the repair mechanism. Next, we will discuss some
of the different factors that limit/retard the repair process and highlight future lines
of research that can help to overcome these limitations. A clear understanding of the
underlying molecular mechanisms and physiological changes following brain damage and
the subsequent endogenous repair should help us develop better strategies to repair
damaged brains.
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INTRODUCTION
In 1848, an almost fatal accident occurred to an American rail-
road worker, Phineas P. Gage, when a large iron rod went through
his forehead leading to the destruction of most of his left frontal
lobe. This has created an immense stir in the field of neurobiology,
particularly brain injury, as it was the first evidence that dam-
age to the brain can lead to changes in personality and behavior.
In the second half of the nineteenth century, a major fundamen-
tal dogma of neuroscience pertaining to Central Nervous System
(CNS) damage evolved when Paul Broca introduced the concept
of neuronal plasticity. He postulated that the right hemisphere
can function as an alternative speech center when the actual cen-
ter in the left hemisphere is absent. Although the concept of
neuronal plasticity attempted to address the issue of functional
compensation after injury, it could not provide any answer to
how a damaged area could be repaired by healthy cells to attain
sustained recovery. This led to the beginning of the era of tissue
transplantation to replace injured tissue. The first attempt at brain
tissue transplantation was performed in 1890 by WG Thompson.
The occipital brain tissue from an adult dog was transplanted
homotypically into another dog and survival of the transplanted
tissue within the host was reported after 7 weeks (Thompson,
1890). Several attempts of tissue transplantation (both successful
and unsuccessful) were then carried out in the first half of twen-
tieth century using mature, neonatal, and even embryonic CNS
tissue (for review see Dunnett, 2009).

Transplantation studies were an important historical mile-
stone for tissue/cell replacement therapy in response to brain
injury. But, another fundamental question that remained unan-
swered was whether the brain on its own could repair damage
caused by an injury. This is primarily because of the initial general
belief that new neurons are not generated in adults. A 100 years
following Broca’s postulation, Joseph Altman and Gopal Das first
described the presence of a large pool of germinal cells in the wall
of the third and lateral ventricle in adult brain (Altman and Das,
1962). Using thymidine-H3 incorporation in the hippocampus of
young adult rats they established the evidence for neurogenesis
in the adult brain. They also showed that neurogenesis occurs
in the sub ventricular zone (SVZ) where newborn progenitor
cells are generated and then move to the olfactory bulb (OB)
through the Rostral Migratory Stream (RMS). Later, in the 1990s,
by injecting lacZ expressing retroviral tracer into the neonatal
rat SVZ (Luskin, 1993) and by grafting β-gal expressing donor
SVZ cells into normal mice (Lois and Alvarez-Buylla, 1994), it
was convincingly shown that progenitor cells migrate through a
restricted pathway to the OB and differentiate into granule and
periglomerular cells. Ultra structural analysis of the SVZ in mam-
mals established that the germinal zone in the adult consists of
three cell types: type “B” cells are astrocytes and are considered as
the “stem cells” that form transiently proliferating type “C” cells,
which in turn generate type “A” neuroblasts that migrate along
the RMS to the OB (Doetsch et al., 1997). Functional relevance

Frontiers in Cellular Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 14 | 1

CELLULAR NEUROSCIENCE

http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/10.3389/fncel.2012.00014/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BhaskarSaha&UID=43447
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MohamedJaber&UID=40817
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AfsanehGaillard&UID=9266
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Saha et al. Neural stem cells in cortical repair

of adult neurogenesis was established from studies in songbirds,
where seasonal turnover of neurogenesis and recruitment of new
cells to the song control nuclei was found to be correlated with
seasonal song learning behavior (Alvarez-Buylla and Nottebohm,
1988; Alvarez-Buylla et al., 1988; Scharff et al., 2000; Barnea and
Pravosudov, 2011).

The discovery of neural stem cell niches in the adult brain has
raised the possibility of endogenous neuronal replacement after
injury or disease. It is now established that following CNS injury,
a plethora of changes in the brain takes place at the proliferative
niche, the SVZ and also near the damaged area. Different classes
of molecules such as trophic factors, morphogens, cytokines, and
other cell signaling molecules have been identified as key players
regulating this process. Studies have shown that vasculature and
neuroblast migration patterns go hand-in-gloves. In response to
neuronal damage the vasculature pattern is changed in the cor-
tex and this can be correlated with changes in the migration of
the progenitor cells. In this review, we will discuss recent find-
ings about the physiological and molecular aspects of generation
of new neurons, their migration to the lesion site and integra-
tion into the existing circuitry. Our main focus is on cerebral
cortex lesion/injury, which we discuss with reference to cerebral
ischemia, an injury model that has been studied extensively. We
will also discuss the limitations of endogenous repair and, there-
fore, the necessity of cell/tissue transplantation as a measure of
cell replacement therapy.

BRAIN INJURY AND NEUROGENIC NICHE PROLIFERATION
In a normal adult brain, two distinct regions continuously pro-
liferate to generate new neurons, the SVZ and the sub granu-
lar zone (SGZ) of the hippocampus. We will discuss here the
changes occurring in the SVZ after an injury to the cerebral
cortex. Studies using different models of experimental lesions
in the cerebral cortex suggest that injury leads to an increase
in the SVZ cell proliferation. These include controlled corti-
cal impact (CCI) (Ramaswamy et al., 2005); fluid-percussion
injury (FPI) (Carbonell et al., 1998; Chirumamilla et al., 2002;
Chen et al., 2003); aspiration lesions (Szele and Chesselet, 1996)
and focal acute injury (FAI) (Blizzard et al., 2011). Despite a
general agreement that cortical lesions result in an increase in
cell proliferation within the SVZ, observations on finer aspects
of proliferation are somewhat contradictory. For instance, it is
still debated whether unilateral brain damage leads to higher
proliferation in both hemispheres and whether this prolifera-
tion is a long-term/persistent or a short-term/transient change.
Enhancement of cell proliferation in both the ipsilateral and con-
tralateral SVZ, relative to the site of injury, was observed in an
FPI model (Chen et al., 2003) as well as in intracerebral hem-
orrhage (Masuda et al., 2007) in rats. In contrast, another study
using CCI model reported that proliferation was observed only in
the ipsilateral hemisphere 3 days after injury (Ramaswamy et al.,
2005). One of the possible reasons for this discrepancy is that
changes in the SVZ following lesion is not instantaneous, but
gradual. Therefore, the 3 days post-injury time (as mentioned in
Ramaswamy et al., 2005) may just be too short to induce changes
in the contralateral SVZ after lesion. Increases in the proliferation
were also reported to be persistent (three to sixfold increase in

the proliferation was observed in lesion animals) and last up to 1
year after lesion (Chen et al., 2003). This observation suggests that
although aging reduces the capacity of SVZ proliferation in nor-
mal adults, the factors necessary for proliferation continue to be
present (probably in a dormant state). Cortical lesion can reacti-
vate these factors leading to an increase in proliferation. Contrary
to previous observations mentioned above, Goings et al. (2002)
have reported a biphasic reduction in the SVZ proliferation fol-
lowing aspiration lesions in the mice cerebral cortex. The authors
suggested that the reduction in the SVZ proliferation is possibly
due to a reduction in serotonergic neurotransmission follow-
ing lesion as serotonin can increase SVZ proliferation (Banasr
et al., 2004). However, this conclusion is not in line with a pre-
vious report indicating that extracellular release of serotonin is
increased in the cortex following traumatic brain injury (TBI)
(Busto et al., 1997).

Available literature till date clearly indicates an increase in
the SVZ progenitor proliferation in response to cortical lesions.
However, variations in the observation by different groups call for
an explanation. Previously, it has been suggested that the observed
differences in the SVZ proliferation (increased vs. reduced) may
be due to species variation where rats, but not mice, exhibit an
increased proliferation (Romanko et al., 2004). However, this
explanation is not satisfactory as CCI lesion model in mice also
showed an increase in SVZ proliferation (Ramaswamy et al.,
2005). A more probable reason may be that the extents of damage
in different lesion paradigms are different and can result in vari-
ations in molecular responses both near the lesion area as well as
the SVZ leading to differences in the SVZ cellular proliferation.

DOES ENHANCED PROLIFERATION RESULT IN NEW NEUROGENESIS?
Neurogenesis in the SVZ above basal level is an important pre-
requisite for neuronal replacement after injury. Experimental data
being scarce, it is as of yet still not clear whether increased prolif-
eration leads to increased neurogenesis in the SVZ after cortical
lesion. Sundholm-Peters et al. (2005), using BrDU and dou-
blecortin (Dcx, a neuroblast marker) immunostaining in mice,
reported no significant increase in BrDU+/Dcx+ cell number in
the SVZ 15 days after an aspiration lesion suggesting that there is
no enhancement in neurogenesis in the SVZ. On the contrary,
a previous finding by the same group demonstrated a delayed
increase (after 25 days of lesion) in the number of PSA-NCAM
(neuroblast marker) positive cells in the SVZ (Goings et al., 2002).
A temporal difference in the generation of different cell types
in the SVZ cannot be ruled out and it is possible that most of
the early proliferating cells contribute to astrocytes generation
whereas neurogenesis starts at a later time point. The knowledge
of enhancement of neurogenesis within the SVZ is promising and
constitutes an important initial step toward endogenous repair
process. However, effective repair strategies do require that these
neuroblasts migrate to the injured area, differentiate into mature
neuron and integrate into the existing circuitry.

DO NEW NEURONS FORM IN THE CORTEX AFTER LESION?
It is established that the cerebral cortex of normal adults is non-
neurogenic (Kornack and Rakic, 2001; Koketsu et al., 2003; Rakic,
2004; Bhardwaj et al., 2006). Several groups have reported that
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in response to either TBI (Magavi et al., 2000; Dash et al., 2001;
Lu et al., 2003; Rice et al., 2003; Covey et al., 2010; Vessal and
Darian-Smith, 2010) or stroke (Jiang et al., 2001; Arvidsson et al.,
2002; Parent et al., 2002; Jin et al., 2003; Zhang et al., 2006; Leker
et al., 2007; Masuda et al., 2007; Ziv et al., 2007), neurogene-
sis can be induced in non-neurogenic areas such as the cortex.
Magavi et al. (2000) argued that proliferation occurs both in nor-
mal and injured cortex. In normal cortex most of these dividing
cells form glia, remain undifferentiated or undergo apoptosis.
However, after degeneration of layer VI corticothalamic projec-
tion neurons, some of the new neurons in the cortex were found
to be derived from precursors present in the cortex, while some
originated from the nearby SVZ. A few recent studies used more
direct approaches to ascertain that these new neurons are indeed
generated in the cortex. Application of Cytosine Arabinosine
[(Ara-C), which blocks SVZ “type C” cell proliferation] for 7 days
post-ischemia resulted in a reduction, but not complete absence
of proliferative response around peri-infarct area and almost 15%
of those proliferating cells were non-microglial and nestin posi-
tive (Leker et al., 2007). In another study, 3 days after a unilateral
infrared-laser lesion in the rat visual cortex, BrDU positive cells,
which also expressed cell surface 473HD-epitope (a marker for
embryonic and adult neural progenitor cells), were found to be
around the lesion penumbra (Sirko et al., 2009). The 3 day time
window is not long enough for cells to generate in the SVZ and
migrate to the visual cortex in response to lesions. In non-human
primates, newborn mature neurons in the somatosensory cortex
exhibit multiple neuronal phenotypes (Vessal and Darian-Smith,
2010). Indeed, BrDU-positive newborn neurons were shown to
co-express NeuN, calbindin, and GABA. Although a majority of
the neurons are presumably inhibitory (due to the smaller size
of their soma), a small percentage of pyramidal neurons could
also be found. Taken together, these reports demonstrate that
endogenous neural precursors can be induced in non-canonical
neurogenic regions to differentiate into CNS neurons in a region-
specific manner.

Contrary to this view, the contribution of SVZ-derived cells
in cortical neurogenesis following ischemia was established con-
vincingly by using 5HT3A-GFP mice where GFP is expressed
by postnatal SVZ-derived cells (Kreuzberg et al., 2010). GFP
labeling together with BrDU incorporation revealed that fol-
lowing ischemic lesion, new neurons in the cortex are in fact
derived from the SVZ. In a more recent study, focal injury in the
somatosensory cortex of rats resulted in generation of astrocytes
and microglia/macrophages, but no mature neurons in the neo-
cortex near the lesioned area (Blizzard et al., 2011). Thus, a clear
determination of whether SVZ is the only source of new neu-
rons in TBI or stroke-induced lesion is lacking. Direct approaches,
such as delivery of viral vector-mediated markers into SVZ cells
and following their migration in real time using various micro-
scopic techniques may yield more convincing results to ascertain
the source of new neurons near the injury.

MOLECULAR CHANGES REGULATING SVZ PROLIFERATION
AFTER LESION
In normal adults, both cell-intrinsic and extrinsic molecules
have been described to regulate the proliferation of the

neurogenic niche. These molecules range from morphogen
(Shh, Wnts), growth factors such as Epidermal Growth Factor
(EGF), Fibroblast Growth Factor (FGF), Tissue Necrosis Factor-α
(TNF-α), Hepatocyte Growth Factor (HGF), neurotransmitters
(Neuropeptide Y, Dopamine), nuclear orphan receptor (Tlx),
transcription factor (Sox2) and cell surface molecules such as
Notch1 (Coronas et al., 2004; Decressac et al., 2009; Nicoleau
et al., 2009; Xiao et al., 2009; Mu et al., 2010). Analyzing the
expression pattern of these regulatory molecules following cor-
tical injury will be crucial in indicating their involvement in
regulating post-injury cell proliferation/neurogenesis at the level
of SVZ. Expression of bFGF is increased transiently in neurons
present in the cortical layer VIb of fronto-parietal cortex in rats
after aspiration lesion (Gómez-Pinilla and Cotman, 1992), but
functional significance of such changes is yet unknown. Five days
after aspiration lesion in the cortex, expression of EGF recep-
tor (EGFr), FGF receptor (FGFr), erbB3 (a neuregulin receptor)
and DCC (Deleted in Colorectal Cancer) remained unchanged
in the SVZ, whereas EGF expression was found to be increased
near the lesion area, in the corpus callosum and in the SVZ
(Sundholm-Peters et al., 2005). The authors did not comment
on the role of EGF signaling in SVZ cell proliferation, but this
change in expression was attributed to the chemotactic property
of EGF, which might be responsible for ectopic neuroblast migra-
tion. Contrary to this observation, EGFr expression (both mRNA
and Protein) was shown to increase transiently by threefold
after ischemic lesion in neonatal rats without any concomitant
change in its ligand (EGF mRNA) expression (Alagappan et al.,
2009). In addition, a 50% reduction of Transforming Growth
Factor-α (TGFα), one major ligand of EGFr, was observed. The
functional relevance of EGFr overexpression lies in the recruit-
ment of cells into the cell cycle and reduction of cell cycle
time. Several studies have demonstrated that exogenous applica-
tion of various growth factors like BDNF, FGF2, GDNF, IGF1,
VEGF increase ischemia-induced neurogenesis in animal mod-
els (Watanabe et al., 2004; Baldauf and Reymann, 2005; Tureyen
et al., 2005; Schäbitz et al., 2007) and thus helps reducing
the size of infarct volume. Expression of these molecules is
enhanced in animal models of ischemia (Dempsey and Kalluri,
2007). These molecules, in principal, play an important neu-
roprotective role either by increasing cell proliferation, cell
survival or both.

Among different morphogens, Sonic hedgehog (Shh) and
Wnts are important signaling molecules controlling cell prolifer-
ation. In a cortical freeze injury model, Shh activity is transiently
increased in the cortex with a peak at 3 days after lesion. Shh
induces reactive gliosis in a Gli-dependent manner and also reg-
ulates proliferation of Olig2-positive cells in the injured cortex
(Amankulor et al., 2009). In response to ischemia, Shh increases
proliferation in the hippocampal proliferative niche while admin-
istration of Shh antagonist inhibits the process (Sims et al.,
2009). Shh level is also upregulated in the SVZ within 24 h
after ischemia (Wang et al., 2009). This upregulation is prob-
ably mediated by increased expression of the activated form
of Notch1 (Notch intracellular domain, NICD) in response to
ischemia, as Shh is a downstream transcriptional target of NICD.
Therefore, although there is no direct evidence describing the role
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of Shh in the SVZ proliferation following injury, the possibil-
ity cannot be ruled out. Unlike Shh, expression of Wnt family
genes is not upregulated after ischemic injury in rats (Morris
et al., 2007), indicating that these genes may not be involved in
injury-induced proliferation. Nevertheless, Wnt pathway seems
to indirectly regulate remyelination process in human demyali-
nation damages through one of its targets, AXIN2 (Fancy et al.,
2011).

INJURY-INDUCED ECTOPIC MIGRATION OF
SVZ-DERIVED NEUROBLASTS
In normal physiological condition, neuroblasts (type “A” cells)
generated in the SVZ migrate tangentially along the RMS to the
OB, where they differentiate into either granule cells (GC) or
periglomerular cells (PG). Astrocytes form a “glial tube” sur-
rounding the neuroblasts, which is believed to restrict them
from migrating ectopically to other brain regions. Studies have
shown that in several pathological conditions these cells can
migrate out of the RMS to reach to the affected brain areas
(see Table 1). Among these, ectopic cell migration in response
to cerebral ischemia has been studied most extensively, where
cells were demonstrated to reach the affected striatum follow-
ing experimental Medial Cerebral Artery Occlusion (Arvidsson
et al., 2002; Jin et al., 2003; Sundholm-Peters et al., 2005; Kokaia
et al., 2006; Ohab et al., 2006; Yamashita et al., 2006; Cayre
et al., 2009; Young et al., 2011). Huntington’s disease, which pre-
dominantly affects striatal spiny neurons, triggers migration of
neural progenitors from the SVZ to the affected area (Tattersfield
et al., 2004). Similarly, neuroblasts migration from the SVZ
to the damaged cerebral cortex is also documented after TBI
(Figure 1) (Goings et al., 2004; Ramaswamy et al., 2005). On
the other hand, such ectopic migration of neural progenitors
to damaged areas is neither reported in Parkinson’s disease nor
in Alzheimer’s disease. The inability of ectopic migration could
possibly be linked to reduced proliferation in the SVZ in these
diseases. This notion is supported by a previous work demon-
strating that the exogenous application of EGF and FGF2 can
enhance SVZ proliferation and trigger neuroblast migration to
the dopamine deficit area in Parkinson’s disease (Winner et al.,
2008). In the normal adult brain, tangential migration of neurob-
lasts in consortium along the RMS is termed “chain migration”

Table 1 | In different neurodegenerative diseases SVZ proliferation

either increases (++) or decreases (−−).

Diseases SVZ Migration to Selected

Proliferation damaged area references

Huntington ++ ++ Tattersfield et al., 2004;

Decressac et al., 2010

Parkinson −− ?? Hoglinger et al., 2004

Ischemia/stroke ++ ++ Arvidsson et al., 2002;

Kreuzberg et al., 2010

Traumatic brain ++ ++ Ramaswamy et al., 2005;

injury Goings et al., 2004

Alzheimer −− ?? Rodriguez et al., 2009

New neuroblasts migrate to the affected areas in some of these diseases.

FIGURE 1 | In normal adults, neural stems cells in the SVZ (in green)

proliferate to generate new neuroblasts. Neuroblasts migrate rostrally
along the RMS (in green) to the olfactory bulb (OB). In response to cortical
lesion (in red), a large number of neuroblasts migrate to the site of lesion.
Lesion leads to upregulation of several molecules in the cortex around the
injured area, which can affect this process. CC, Corpus Callosum;
Cx, Cortex; L, lesion; V, Ventricle.

(Lois et al., 1996). Once in the OB, these neuroblasts switch from
tangential to radial orientation and migrate individually and dif-
ferentiate into the granule and periglomerular cell layers of the
OB. Following cortical lesion, the ectopic migrating neuroblasts
from the SVZ to the damaged cortical region may possibly lose
chainlike conformation and migrate individually. In support of
this proposition, it was observed that chain formation is affected
after ischemic injury and cells migrating to the striatum appear
to be more dispersed (Jin et al., 2003). It is also suggested that
ectopic migration of the SVZ neuroblasts is at the expense of
cells migrating to the OB along the RMS. Indeed, 4 days after
aspiration lesion in the cortex, a reduction in forward migra-
tion of retrovirus-labeled SVZ neuroblasts was observed with
a concomitant presence of labeled cells in the corpus callosum
(Goings et al., 2004). In the next section, we will discuss different
features of ectopic migration and the factors/mechanisms regu-
lating this process. Although these factors are necessary, it is still
unclear whether any single factor is sufficient to regulate migra-
tion as each of these factors seems to contribute only partially to
this process.

VASCULATURE AS MIGRATORY “RAILROAD”
One of the major structures that assist neuroblasts’ migration
from the SVZ to the OB is blood vessels. In the RMS, blood ves-
sels are oriented in parallel with neuroblasts as opposed to cortex,
where vessels exhibit extensive reticular network. The role of vas-
culature in the neuroblasts migration along the RMS (tangential
migration) as well as in the OB (radial migration) has been pre-
viously demonstrated (Bovetti et al., 2007; Whitman et al., 2009).
Transplantation of neural cell lines into newborn mouse pups fol-
lowed by time lapse imaging showed that neuroblasts indeed can
migrate along the blood vessels in the brain parenchyma (Honda
et al., 2007). A more recent study in newborn animals has shown
that GFP-labeled neuroblasts can migrate radially to the cortex
and that this migration is assisted by blood vessels (Le Magueresse
et al., 2011). Two lines of observations suggest that in cortical
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lesion blood vessels can act as a scaffold for neuroblasts migrating
within the cortex. First, thermocoagulation lesion of the cortex
induces an increase in the endothelial cell proliferation followed
by expansion of vascular tree at the level of the SVZ after 7
days of injury (Gotts and Chesselet, 2005). Second, in cerebral
ischemia, neuroblasts are shown to migrate from the SVZ to the
areas of infarct in close association with blood vessels (Ohab et al.,
2006; Yamashita et al., 2006; Thored et al., 2007; Kojima et al.,
2010).

KEY MOLECULAR PLAYERS OF LESION-INDUCED ECTOPIC MIGRATION
The molecular factors that regulate post-injury neuroblast migra-
tion can be classified as either chemokinetic or chemoattractive
(Figure 1).

Reelin is a major chemokinetic molecule regulating cortical
migration in response to lesion. Apart from its role in the cor-
tical layer formation in the developing brain (D’Arcangelo et al.,
1995), reelin also acts as a detachment signal for the RMS neu-
roblasts in the OB (Hack et al., 2002). Endogenous reelin has
been shown to be upregulated transiently in the cortex following
thermocoagulation lesion of the blood vessels of the pia matter
(Courtès et al., 2011). Increased ectopic migration and recruit-
ment of neuroblasts to the site of lesion was shown in transgenic
mice overexpressing reelin in demyelination lesion model. The
authors suggested that reelin regulates detachment of neurob-
lasts from the RMS and their dispersal in the corpus callosum
in response to lesions, which in turn potentiates chemoattraction
by different cytokines and mobilization of cells to the lesion site
(Courtès et al., 2011).

Several molecules act as chemoattractants during ectopic
migration of SVZ-derived neuroblasts. Chemoattractive role of
Shh is known in regulating the migration of neuroblasts along the
RMS (Balordi and Fishell, 2007; Angot et al., 2008). Angot and
colleagues have shown that transplantation of Shh overexpressing
QT6 cell line into the dorsal telencephalon resulted in deviation
of migratory progenitors from the RMS to the telencephalon.
Post-lesion, chemoattractive effect of Shh could be mediated by
reactive astrocytes. This is because (a) lesion causes induction of
Shh expression in astrocytes (Amankulor et al., 2009) and (b)
in cerebral ischemia, neuroblasts migrating to the striatum were
found to be closely associated with reactive astrocytes (Yamashita
et al., 2006).

Another signaling mechanism that can regulate astrocyte-
assisted neuroblast migration is the interaction between
chemokine receptor CXCR4 and its ligand Stromal cell-derived
factor-1 (SDF-1). SDF-1 is shown to be intensely expressed
by purified cortical astrocytes and weakly by neurons (Ohtani
et al., 1998). Its receptor, CXCR4 is also expressed by these
cells (Ohtani et al., 1998). Previous studies have shown that
SDF-1/CXCR4 signaling regulates migration of neuroblasts
along the RMS (Kokovay et al., 2010) and also pre-cerebellar
neuron migration (Zhu et al., 2009). CXCR4 is not expressed in
radially migrating neurons of the developing neocortex and so is
unlikely to regulate this process (Stumm et al., 2003). However,
significant upregulation of both SDF-1 and CXCR4 around the
lesion area hints toward a possible role in ectopic neuroblasts
migration. This is further supported by observations in different

injury models. Indeed, involvement of SDF-1/CXCR4 signaling
pathway in neuroblast migration to striatum in response to
ischemia is well documented (Imitola et al., 2004; Robin et al.,
2006). In a seizure model, functional blockage of CXCR4 by
a specific antagonist AMD3100 has revealed that migration of
embryonic stem cell-derived neural progenitors transplanted into
dentate gyrus is attenuated (Hartman et al., 2010). Previously it
was reported that Shh and SDF-1 act synergistically to control
proliferation of cerebellar granule precursor cells (Klein et al.,
2001). Therefore, it would be of interest to investigate whether a
similar synergistic relationship is also present between these two
signaling pathways in regulating ectopic neuroblasts migration
as both these signaling molecules are expressed by reactive
astrocytes.

Determining the precise role of different guidance cue
molecules is still out of reach and previous reports are only indica-
tive. Chemorepellent role of Slit1-Robo2 signaling in tangential
migration of neuroblasts along the RMS is well-established. Slit1
expressing neuroblasts are repelled by Robo2 expressing glial
tube astrocytes and thus maintain the compact tubular struc-
ture of the RMS (Kaneko et al., 2010). Slit1 present in the CSF
forms a chemorepulsive gradient by beating of ependymal cell
cilia and thus regulates forward movement of the neuroblasts
(Sawamoto et al., 2006). Chemorepulsion could be a deterrent
to an effective repair process as it can inhibit axon regenera-
tion after lesion. mRNA expression analysis of members of slit
family genes was carried out in the mouse model of cryo-injury
(Hagino et al., 2003). A strong but transient expression of Slit2
mRNA was observed around the lesion area, whereas expression
of Slit1 and Slit3 mRNAs was insignificant. Expression pattern
analysis of the corresponding receptor molecules may shed light
into the functional significance of such gene expression changes
in the lesion model. Another secreted chemorepellant, SemaIII,
was found to be expressed in the fibroblasts near the lesion core
in the cortex (Pasterkamp et al., 1999). SemaIII expression creates
a zone of exclusion for regenerating axons. Thus, it appears that
increased expression of chemorepellant molecules near the lesion
area probably acts as negative regulator of endogenous repair
process.

WHAT CELL TYPES ARE GENERATED UPON
PROGENITOR DIFFERENTIATION?
For an effective endogenous repair process it is important that
the endogenous neuroblasts migrating to the site of lesion in the
cortex differentiate into projection neurons and be able to restore
endogenous function. Unfortunately, existing data regarding this
aspect is not very encouraging. In the normal adult brain, SVZ
progenitors are neurogenic and do not generate glia (Marshall
et al., 2003). Yet, several reports indicate that after lesion ectopic
precursor cells in the cortex predominantly form glia. In CCI
injury model, the progenitor cells mostly form GFAP+ astrocytes
near the injury site (Kernie et al., 2001) and occasionally differ-
entiate into mature neurons (Salman et al., 2004). A previous
study has also demonstrated that transplanted neural progeni-
tor cells in TBI, which survive up to 1 year, are oligodendrocyte
in nature (Shear et al., 2004). This observation was further
strengthened in a study where ectopic transplantation of purified
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neuronal precursors (expressing Dcx, Tuj1 and GAD65/67) from
the SVZ into cerebral motor cortex predominantly formed astro-
cytes and oligodendrocytes (Seidenfaden et al., 2006). Recently, it
was shown that in demyelination lesions, SVZ neuroblasts express
glial proteins and that this expression is mediated by chordin,
a BMP antagonist (Jablonska et al., 2010). Thus, all these stud-
ies indicate that lineage plasticity, in its dormant state, is present
among SVZ progenitor cells. Molecular changes following injury
can trigger this property leading to cell fate switch in precursors
migrating to ectopic regions.

Changes in the local tissue environment after lesion may possi-
bly be an important determinant in fate decision. One prominent
change in the cortex after lesion is the transient upregulation of
oligodendrogenic transcription factor Olig2 (Buffo et al., 2005),
but not neurogenic transcription factors such as Pax6, Mash1,
Gsh2, or Ngn2. This suggests that the neurogenic response in the
cortex following lesion remains unaffected. It appears that the bal-
ance between Olig2 and Pax6 is important in deciding cell fate, as
repression of Olig2 expression induces Pax6 and enhances neuro-
genesis (Buffo et al., 2005). Shh may also play a crucial role in fate
decision. During development, Shh controls development and
specification of ventral subcortical telencephalon (Ericson et al.,
1995) and regulates oligodendrocytes specification in this region
(Nery et al., 2001; Tekki-Kessaris et al., 2001). Following lesion,
upregulation of Shh expression in the cortex may also inhibit
neuron formation and facilitate glial differentiation.

OTHER ESSENTIAL FACTORS REGULATING REPAIR PROCESS
Both physical exercise and glial intervention can influence effec-
tive repair process following injury. Most of the previous studies
have looked at the neuroprotective aspect of physical exercise,
which is primarily mediated by the inhibition of injury-induced
apoptosis (Kim et al., 2010). In FPI model in rats, post-injury vol-
untary running wheel exercise for 14 days induces resistance to
oxidative protein damage by inhibiting Zif268, a protein regulat-
ing gene expression of proteasome complex. Zif268 is involved
in degradation of cellular proteins and thereby acting as a phys-
iological regulator of cell survival (Szabo et al., 2010). Does
physical exercise also affect neurogenesis? In normal adults, phys-
ical exercise enhances neurogenesis only in the hippocampus,
but does not affect the SVZ (Brown et al., 2003). van Praag
et al. (1999) have shown that physical exercise increases neu-
rogenesis in the mouse dentate gyrus. Enhanced hippocampal
neurogenesis was also observed after a lesion in the sensorimo-
tor cortex in rats (Wurm et al., 2007). Early exercise (treadmill
running for 28 days) after cerebral ischemia reduces infarct vol-
ume in rats (Matsuda et al., 2011) indicating its involvement
in proliferation and recruitment of cells in the damaged area.
Exercise-induced increase in neurogenesis appears to be mediated
by several neurotrophic factors. Exercise increases expression of
NGF, BDNF, trkB, and FGF in the hippocampus of the normal
adults (Neeper et al., 1995; Gomez-Pinilla et al., 1997; Widenfalk
et al., 1999) as well as in the striatum of the ischemic animals
(Ang et al., 2003; Kim et al., 2005; Matsuda et al., 2011). At
present, there is no direct evidence demonstrating that exercise
can enhance post-lesion SVZ neurogenesis. However, few studies

indirectly indicate that possibility. NGF can increase progenitor
proliferation in the SVZ (Fiore et al., 2002). In TBI in children,
NGF concentration is increased in the cerebrospinal fluid (CSF)
(Chiaretti et al., 2009) and can possibly influence SVZ prolifer-
ation by binding to its receptor TrkA expressed by the SVZ cells
(Triaca et al., 2005). It should, therefore, be investigated whether
post-injury exercise can also increase NGF concentration in
the CSF.

Glial intervention in injury-induced repair process is primar-
ily mediated by reactive astrocytes. Astrocytes play a bipartite
role (neuroprotection as well as inhibition of axon regeneration)
in injury-induced repair process. Neuronal survival depends on
their interaction with astrocytes and, therefore, a neuroprotec-
tive role of astrocytes following brain injury is unambiguous.
In moderate CCI model, ablation of proliferative reactive astro-
cytes resulted in severe neuronal degeneration and inflammation
compared to control mice (Myer et al., 2006). Astrocytic protec-
tion against neuronal degeneration has been well-investigated in
ischemic injury and was found to be multifactorial. Astrocytes
prevent neurons from encountering severe post-injury metabolic
insults/toxicity by scavenging oxygen free radicals, up taking
extracellular glutamate and buffering extracellular K+ (Chen and
Swanson, 2003). However, axonal regeneration, an important step
for effective repair process, is negatively affected by astrocytes.
Glial scars, formed at the lesion site, prevent regrowth of axons
into the lesion area (Rudge and Silver, 1990). Chondroitin sulfate
proteoglycans (CSPGs) were shown to be the main culprits and
expression of different CSPGs are upregulated by astrocytes at the
lesion site (Jones et al., 2003; Tang et al., 2003; Silver and Miller,
2004; Yiu and He, 2006).

CONCLUSION AND FUTURE DIRECTIONS
A plethora of changes take place in the cortex, SVZ and nearby
regions after cortical lesions. Dissecting out the different molec-
ular pathways and their functional implication in this context is
a mammoth task. Nevertheless, a comprehensive understanding
of the changes in the expression of different regulatory molecules
is mandatory to better define the complex nature of post-lesion
cellular and molecular changes. Currently, the inability of endoge-
nous neural precursors to differentiate into a significant number
of mature and functional neurons is the biggest challenge. An
alternative approach to endogenous repair is to provide living
tissue/cells from an exogenous origin by means of transplant-
ing either brain tissue (Gaillard et al., 2007, 2009; Gaillard and
Jaber, 2011) or stem cells (Gaspard et al., 2008). The success of
these procedures, however, depends on the detailed knowledge of
changes occurring in the brain following injury. A combinatorial
approach by providing stimulating factors necessary for endoge-
nous precursor growth, migration, and neuronal differentiation
as well as by supplying exogenous neuronal precursors may pro-
vide a promising avenue to successfully repair the brain following
cortical lesions.
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