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It is widely accepted that odorants ema-
nating from different organic sources are
interacting to elicit behaviors in animals,
including insects. However, the mech-
anisms of such interactions are largely
unknown. In insects, the most prominent
examples for odor interactions are mix-
tures of host odors and anthropogenic
repellents in blood-sucking insects such as
mosquitoes (Syed and Leal, 2008) and syn-
ergistic or inhibitory interactions of sex
pheromones and host or non-host plant
odors in moths (Byers et al., 2004; Yang
et al., 2004; Schmidt-Büsser et al., 2009;
Allmann and Baldwin, 2010; Varela et al.,
2011). Detection of pheromone and plant
odors in moths, for instance, is known
to happen via highly separated channels
whose input is transmitted via labeled lines
to primary and even secondary process-
ing centers (Christensen and Hildebrand,
2002). Behavioral effects issuing from this
particular example of mixture interac-
tions have therefore been thought to occur
mainly through integration in higher cen-
ters within the brain (Lei and Vickers,
2008).

The literature shows, however, that
olfactory signals supposed to serve as cues
for different behaviors, like sex pheromone
and plant odor, interact already in the
peripheral detection system (Den Otter et
al., 1978; Van der Pers et al., 1980; Ochieng

et al., 2002; Party et al., 2009; Hillier and
Vickers, 2011; Rouyar et al., 2011; Deisig
et al., 2012). Moreover the information
on odor mixtures might subsequently be
modified throughout the olfactory path-
way (Namiki et al., 2008; Barrozo et al.,
2010; Chaffiol et al., 2012; Deisig et al.,
2012). The pheromone-plant odor inter-
actions have been mainly analyzed with
in vivo optical imaging or extra- and
intracellular electrophysiological record-
ing techniques, revealing suppressive or
synergistic interactions at the cellular
level. However, nothing was known so far
on the molecular mechanisms involved
in the observed interactions. The major
hypotheses were that plant odors might
interfere with pheromone binding to bind-
ing proteins or olfactory receptors in a
competitive or non-competitive way. A
contribution of ion channels or odor-
ant degrading enzymes, which influence
the dynamics of odor responses in olfac-
tory receptor neurons was also considered
(Pophof and Van der Goes van Naters,
2002; Ishida and Leal, 2008).

In the article published in Frontiers
of Cellular Neuroscience volume 6, P.
Pregitzer and co-authors confirm the
inhibition of sex pheromone responses
by certain plant odorants, using in vivo
calcium imaging of the antennal lobe,
i.e., responses of receptor neurons from
the entire antenna in their model,
the noctuid moth, Heliothis virescens.
H. virescens is a favorable model to inves-
tigate molecular mechanisms underlying
pheromone-plant odor interactions in
antennal sensilla, because the pheromone
binding protein (HvirPBP2) and the
olfactory receptor (HR13) binding the
major pheromone compound, Z-11-
hexadecenal (Z11-16:Ald), have been

identified (Grosse-Wilde et al., 2007).
The authors profited from this knowledge
to investigate effects of plant odorants
alone or in combination with Z11-16:Ald
on HvirPBP2 and on HR13. The tested
plant odorants did not themselves bind
to HvirPBP2 and did not alter binding
of the main pheromone component to
HvirPBP2. However, pheromone-induced
responses of human embryonic kidney
(HEK) cells expressing HR13 changed in
a dose-dependent manner, when certain
plant odorants are added. Interestingly, the
same plant odorants eliciting inhibition of
pheromone responses in the antennal lobe
also reduced pheromone responses in the
HR13-expressing cells. On the other hand,
a fruit odorant, without evident behavioral
significance for the moth, did neither have
an effect on receptor neuron responses
to the sex pheromone, nor did it change
pheromone responses in HR13-expressing
cells. These results are a first important
step towards identifying the molecular
actors involved in pheromone-general
odorant interactions within the highly
specific pheromone detection system on
the antennae of an insect. The transport
of pheromone molecules through the sen-
sillum lymph seems not to be affected by
plant odorants, but pheromone binding
to membrane receptors changes in the
presence of plant odorants. Although the
odorant types are rather different, these
effects are similar to the action of the insect
repellent DEET on olfactory receptors in
different mosquito species and Drosophila
melanogaster (Ditzen et al., 2008; Bohbot
et al., 2011; Bohbot and Dickens, 2012).

The study by Pregitzer et al. shows
that we just begin to understand periph-
eral interactions of different odorants. In
the future it will be exciting to see if
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the situation found in a heterologous sys-
tem corresponds to a “real life” situa-
tion with the complex environment of
an antennal sensillum, in which different
molecular actors are present and where
potential feedback from the antennal lobe
might affect receptor neuron responses.
The current results help to refine the future
approaches by excluding already some
players and proposing candidate molecu-
lar actors involved in environmental mod-
ulation of olfaction.
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