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The phenomenon known as the slow afterhyperpolarization (sAHP) was originally
described more than 30 years ago in pyramidal cells as a slow, Ca?t-dependent
afterpotential controlling spike frequency adaptation. Subsequent work showed that
similar sAHPs were widely expressed in the brain and were mediated by a Ca?*-activated
potassium current that was voltage-independent, insensitive to most potassium channel
blockers, and strongly modulated by neurotransmitters. However, the molecular basis for
this current has remained poorly understood. The sAHP was initially imagined to reflect the
activation of a potassium channel directly gated by Ca?* but recent studies have begun to
question this idea. The sAHP is distinct from the Ca?t-dependent fast and medium AHPs
in that it appears to sense cytoplasmic [CaZ?t]; and recent evidence implicates proteins
of the neuronal calcium sensor (NCS) family as diffusible cytoplasmic Ca%* sensors for
the sAHP. Translocation of Ca?t-bound sensor to the plasma membrane would then be
an intermediate step between Ca?™ and the sAHP channels. Parallel studies strongly
suggest that the sAHP current is carried by different potassium channel types depending
on the cell type. Finally, the sAHP current is dependent on membrane PtdIns(4,5)P, and
Ca?* appears to gate this current by increasing PtdIns(4,5)P, levels. Because membrane
PtdIns(4,5)P, is essential for the activity of many potassium channels, these finding have
led us to hypothesize that the sAHP reflects a transient Ca2*-induced increase in the
local availability of PtdIns(4,5)P, which then activates a variety of potassium channels.
If this view is correct, the sAHP current would not represent a unitary ionic current but
the embodiment of a generalized potassium channel gating mechanism. This model can
potentially explain the cardinal features of the sAHPR including its cellular heterogeneity,
slow kinetics, dependence on cytoplasmic [Ca%t], high temperature-dependence, and
modulation.
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In many types of neurons, Ca’t-activated potassium currents
mediate afterhyperpolarizing potentials (AHPs) that play impor-
tant roles in shaping action potentials and firing patterns (Hille,
2001; Sah and Faber, 2002; Vogalis et al., 2003; Bean, 2007).
Work during the last two decades has identified the ion channels
carrying some of these currents and elucidated the mechanisms
underlying their gating by Ca** as well as their modulation. One
of these currents, however, the aptly named slow Ca% ™ -activated
potassium current (Isapp) has remained a conspicuous laggard
in both of these regards. This current was originally identified in
pyramidal cells of hippocampus and cortex and has been impli-
cated in the control of repetitive firing including spike frequency
adaptation (Sah and Faber, 2002; Vogalis et al., 2003), the set-
ting of a neuron’s dynamic firing range and the regulation of
neuronal gain (Higgs et al., 2006). Yet, in spite of a well appreci-
ated functional importance, the elucidation of its molecular basis
has proven remarkably elusive. Most notably, in spite of consider-
able effort there remains considerable incertitude regarding how
Ca?* gates this current and about the molecular identity of the

channels carrying it. In this article, we review past work on the
slow afterhyperpolarization (sAHP) and its underlying current
and highlight some of the difficulties encountered when trying
to understand this current as resulting from the activation of a
canonical calcium-activated potassium channel. We then focus on
more recent studies that have begun to sketch a possible model
capable of explaining the unusual properties of this enigmatic
Ca?*-activated potassium current.

EARLY STUDIES

In the early 1980’s, several studies reported that strong stimuli
capable of triggering trains of action potentials elicited a long
lasting AHP in many neurons including pyramidal cells of the
CA1 and CA3 subfields of the hippocampus, neurons of the locus
coeruleus, the nucleus of solitary tract, and myenteric neurons
(Alger and Nicoll, 1980; Hotson and Prince, 1980; Schwartzkroin
and Stafstrom, 1980; Gustafsson and Wigstrom, 1981; Madison
and Nicoll, 1982; Morita et al., 1982; Brown and Griffith, 1983;
Haas and Konnerth, 1983; Andrade and Aghajanian, 1984; Dekin
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and Getting, 1984; Williams et al., 1984; Pennefather et al., 1985;
Lancaster and Adams, 1986; Storm, 1990). These AHPs could be
shown to be Ca?T-dependent (Alger and Nicoll, 1980; Hotson
and Prince, 1980; Schwartzkroin and Stafstrom, 1980; Morita
et al., 1982; Andrade and Aghajanian, 1984; Hille, 2001) and to
reflect the activation of a KT selective current (Alger and Nicoll,
1980; Andrade and Aghajanian, 1984; Williams et al., 1984). Most
distinctively, they all exhibited remarkably slow activation and
decay that distinguished them from other AHPs known at the
time from work in muscle cells and invertebrate neurons (Meech,
1978).

In CA1 pyramidal cells, Storm (1987, 1989, 1990) described
three AHP components following action potentials that were
termed the fast, medium, and slow AHP, respectively. Three
distinct AHP components were subsequently described in cat
cerebral cortex using combined current- and voltage-clamp
recordings (Schwindt et al., 1988a,b). In both pyramidal cell
types the fast AHP (fAHP) was defined as the early compo-
nent that followed the repolarization of an action potential
(Figures 1A,B). This fAHP was followed by a more slowly decay-
ing component that could also follow a single action poten-
tial and was named the medium AHP (mAHP: Figures 1A,B).
Finally, there was a delayed component, the slow AHP (sAHP),
which was evident only after a burst of spikes and could
be distinguished by its strong regulation by neuromodulators
(Figure 1C).

The existence of these three AHP components was later con-
firmed by multiple studies in rodent and human neocortex
(Lorenzon and Foehring, 1992, 1993), and several other cell types
(Viana et al., 1993; Pape and Driesang, 1998; Teruyama and
Armstrong, 2005), although the relative expression of these com-
ponents, and their corresponding currents were found to vary
between cell types. These studies also revealed that the fAHP
and the mAHP, as defined by their kinetics, consisted of Ca?t-
dependent as well as calcium-independent components (Storm,
1987, 1989, 1990; Schwindt et al., 1988a,b; Pineda et al., 1992;
Miles et al., 2005; Pedarzani and Stocker, 2008). The Ca’*-
activated component of the fAHP was found to be mediated by
large conductance BK-type channels (Lancaster and Nicoll, 1987;
Storm, 1987, 1990; Sah and McLachlan, 1992; Miles et al., 2005;
Ghatta et al., 2006) while the Ca?*-activated component of the
mAHP, at least in neocortical pyramidal cells, was shown to be
apamin sensitive indicating it is mediated by small-conductance
calcium activated potassium channels (SK, now known as KCa2;
Schwindt et al., 1988a,b; Lorenzon and Foehring, 1992; Pineda
et al., 1992). In contrast, the sSAHP appeared to be consistently
Ca’*-dependent suggesting a unitary mechanism. Interestingly,
in CAl pyramidal neurons, the mAHP does not appear to have
a Ca’*- or apamin-sensitive component (Storm, 1989; Gu et al.,
2005, 2008), despite the presence of clear SK-mediated currents in
response to voltage steps (Sah and Clements, 1999; Stocker et al.,
1999). It should also be mentioned that the latter part of the SAHP
in cat neocortical pyramidal neurons was not Ca?*-dependent
but rather appeared due to a Na*-dependent potassium conduc-
tance (Foehring et al., 1989; Schwindt et al., 1989). The basis
for this Na*-dependent conductance is beyond the scope of the
present review.

In the absence of specific blockers for the sAHP, the strongest
indication that this AHP component reflected the activation of
a distinct calcium-activated potassium current came from the
observation that the sAHP, unlike the fAHP or mAHP, was
highly susceptible to neuromodulation. This was initially demon-
strated for norepinephrine, acting through p-adrenergic receptors
(Madison and Nicoll, 1982), and histamine acting via H, recep-
tors (Haas and Konnerth, 1983), both of which inhibited the
sAHP and decreased spike frequency adaptation in pyramidal
neurons of the CAl region of the hippocampus. Subsequent
studies extended these observations to other cell types and for
other transmitters that activate Gos-coupled receptors leading
to increases in cCAMP and activation of protein kinase A (PKA,
Figures 1C,E; e.g., Andrade and Nicoll, 1987; McCormick and
Prince, 1988; Foehring et al., 1989; McCormick and Williamson,
1989; Pedarzani and Storm, 1993, 1995; Torres et al., 1995;
Pedarzani et al., 1998; Haug and Storm, 2000; Lancaster et al.,
2006) or that activate Gag—1; leading to the activation of phos-
pholipase C and the breakdown of membrane phosphatidyli-
nositol 4,5-biphosphate (PtdIns(4,5)P,, Dutar and Nicoll, 1988;
Krause et al., 2002; Villalobos et al., 2011). In fact most known
neuromodulators and neurotransmitters acting through recep-
tors coupling to these canonical signaling cascades have been
shown to inhibit the sAHP (Benardo and Prince, 1982; Cole
and Nicoll, 1984; Lancaster and Nicoll, 1987; Madison et al.,
1987; Schwindt et al., 1988a; McCormick and Williamson, 1989;
Charpak et al., 1990; Araneda and Andrade, 1991; Lorenzon and
Foehring, 1992; Torres et al., 1996; Villalobos et al., 2005).

THE SEARCH FOR THE ELUSIVE sAHP CHANNEL

Early studies showed that the reversal potential for the
sAHP/I;app was dependent on extracellular potassium con-
centration in a manner predicted by the Nernst equation
(Figures 1D—G; Alger and Nicoll, 1980; Andrade and Aghajanian,
1984; Williams et al., 1984; Lancaster and Adams, 1986; Constanti
and Sim, 1987; Schwindt et al., 1988b; Lorenzon and Foehring,
1992). The sAHP was also clearly activated by an elevation in
intracellular [Ca®*]. Thus, the SAHP was blocked by extracel-
lular application of inorganic calcium channel blockers (e.g.,
Cd?* or Co?*; Alger and Nicoll, 1980; Hotson and Prince, 1980;
Morita et al., 1982; Andrade and Aghajanian, 1984; Madison and
Nicoll, 1984; Schwindt et al., 1988b; Pineda et al., 1998) and by
intracellular injection of Ca®* chelators (Alger and Nicoll, 1980;
Schwartzkroin and Stafstrom, 1980; Madison and Nicoll, 1984;
Storm, 1987; Schwindt et al., 1988b; Lorenzon and Foehring,
1995; Velumian and Carlen, 1999). Similarly the sSAHP was also
activated by photolytic release of Ca?* (Lancaster and Zucker,
1994; Sah and Clements, 1999) and inhibited by photolytic Ca**
chelation (although not rapidly, Lancaster and Zucker, 1994; Sah
and Clements, 1999). These observations indicated that the SAHP
is mediated by the activation of a Ca?*-activated potassium cur-
rent. However, these results provide only limited guidance as to
the molecular identity of the channel carrying the Isapp.

The search for the ion channel mediating the sAHP coincided
with the molecular identification of ion channel families dur-
ing the 1990s. At the time the expectation was that the channel
responsible for Ijapp would turn out to be a potassium channel

Frontiers in Cellular Neuroscience

www.frontiersin.org

October 2012 | Volume 6 | Article 47 | 2


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

Andrade et al.

The sAHP current revisited

10 mV \ 10 uM isoproterenol

mAHP

100 pA

1s

Lmase (PA)

FIGURE 1 | The slow sAHP and underlying current (Isanp) in neocortical
pyramidal neurons from somatosensory cortex. (A) The three AHPs.

A single action potential (AP) was elicited with a 10 ms suprathreshold
intracellular current injection (spikes truncated by digitization to emphasize
afterpotentials). Note the notch following AP repolarization (the fast AHP:
fAHP) and subsequent medium AHP (mMAHP). (B) Data from the same cell as
in (A), except 10 APs were elicited with 10 ms suprathreshold current
injections [@ 50 Hz, Panels A and B are redrawn from results presented in
Pineda et al. (1998)]. Following the train of APs, two AHP components are
evident: the mAHP is the main determinant of the initial peak response.

A much slower decaying (t > 1) slow AHP (sAHP) follows (spikes truncated
by digitization to emphasize afterpotentials). (C) The sAHP elicited by 1s
repetitive firing is reduced in the presence of the -agonist isoproterenol
[10 w M: modified from Figure 5A in Abel et al. (2004)]. (D) Tail currents were
elicited following voltage steps from —70 mV to 0 mV for different durations.
Following the 20 ms step (black trace), only lsapp and Imapp Were observed
upon return to —70 mV. The longer, 150 ms step (red trace) elicited both an
initial Inapp and Isapp. Note the slow time to peak (the peak occurs well
after the voltage step) and slow decay of the sAHP [t > 1s: modified from

A
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Figure 7B in Abel et al. (2004)]. (E) In a different cell, the Isanp tail current
following a 200 ms voltage step to 0 mV and then returning to —70 mV was
blocked by 10 i M isoproterenol, isolating Imanp [modified from Figure 7C in
Abel et al. (2004)]. (F) Reversal potential for Isapp. Tail currents were elicited
by a 200 ms step to +10 mV and amplitudes were measured upon return to
various potentials. I aqp Was measured as the peak response and Isapp Was
measured at 500 ms after the peak, when |,apqp had completely decayed
[modified from Figure 8A in Abel et al. (2004)]. (G) Plots of Ianp amplitudes
from data in (F). Extrapolated reversal potentials approximated Ex, as
determined by the Nernst equation [Ex = —102 mV: modified from Figure 8B
in Abel et al. (2004)]. (H) Plot of isolated |manp Vs. bulk cytoplasmic [Ca2];.
Since the underlying SK channels respond to a sub-membrane microdomain
of [Ca%t], the dose-response relationship is distorted [data from eight cells;
modified from Figure 10C in Abel et al. (2004)]. (1) Plot of isolated Isapp Vs.
bulk cytoplasmic [CaZ"];. Note the sigmoidal dose-response curve indicating
response to a “well-mixed” bulk [Ca2]; [data from five cells; estimated

Kp = ~200 nM, Hill coefficient ~4.5: modified from Figure 9C in Abel et al.
(2004)]. Panels A and B were from layer 5A of somatosensory cortex. Panels
C-l were from layer 2/3.

directly gated by Ca?* and the discovery of the Drosophila Ca** -
activated potassium channel Slo initially supported this idea
(Adelman et al., 1992; Bond et al., 2004; Salkoff et al., 2006).
The subsequent identification of SK channels seemed initially
to identify a plausible candidate channel family capable of car-
rying Isapp (Bond et al., 2004). Specifically SK1 channels were
initially reported to exhibit a lower sensitivity to apamin (Kohler
et al., 1996), raising the possibility that such channels could
mediate the sAHP. This observation led to the explicit pro-
posal that SK1 channels, in association with delayed facilitation
of L-type calcium channels, could be responsible for the sSAHP
in CAl pyramidal neurons (Bowden et al., 2001). Subsequent

work, however, questioned the apamin insensitivity of SK1, cast-
ing doubts on this possibility (Shah and Haylett, 2000b; Grunnet
et al., 2001; Weatherall et al., 2010). Nevertheless, it remained
possible that SK channels could be formed with unique stoi-
chiometries or co-assemble with additional subunits to render
them insensitive to apamin. To address these uncertainties two
independent groups used dominant negative and overexpression
approaches (Villalobos et al., 2004) or gene deletion strategies
(Bond et al., 2004) to target SK channels in pyramidal neurons.
Both studies confirmed the role of SK channels in carrying the
current responsible for the mAHP but could find no evidence that
these channels participated in the generation of Iiayp. Thus, Isapp
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was clearly not carried through BK or SK channels. So what are
the molecular underpinnings of Isapp?

CLUES FROM THE ACTIVATION OF THE sAHP BY CaZ+

During neuronal firing intracellular Ca’* increases with the
number of spikes until a plateau is attained where there is
a balance between Ca’t entry and extrusion (Regehr et al.,
1994; Helmchen et al., 1996; Maravall et al., 2000; Abel et al.,
2004). Consequently the amplitude of the Ca®*-activated AHP
is strongly dependent on neuronal activity and summates
non-linearly as the action potential firing frequency increases.
However, there are important differences in how Ca?™ activates
the different components of the AHP.

Ca”* entering a cell through calcium channels during one or
more action potentials creates transient nanodomains of high
calcium concentration that can sustain the activation of low
affinity BK channels (WM ECsg; Fakler and Adelman, 2008). As
Ca’* diffuses away from the calcium channel and the plasma
membrane it combines with Ca>* from other channels to cre-
ate larger microdomains of elevated CaZt (Neher, 1998; Fakler
and Adelman, 2008). Thus, Ca’* flowing through multiple cal-
cium channels are thought to contribute to the formation of these
microdomains. Following termination of the Ca?* influx, diffu-
sion and the interaction with intracellular Ca>* reaction partners
leads to the dissipation of the [Ca®*] gradient associated with
these microdomains and equilibration with the bulk cytoplasm.
Bulk cytoplasmic [Ca*"] remains elevated until Ca®" is taken up
into intracellular stores or extruded from the plasma membrane.
An important difference between the mAHP and the sSAHP con-
cerns how they are activated by the different Ca?* pools resulting
from these processes.

In expression systems, SK channels respond rapidly to ele-
vations in intracellular [Ca®T] and there is a sigmoidal and
cooperative relationship between [Ca’*] and the macroscopic
SK current (Kohler et al., 1996; Hirschberg et al., 1998). Wilson
and Callaway (2000) considered the relationship between the
apamin sensitive (SK-mediated) Ippp versus bulk intracellular
[Ca?*] in dopaminergic neurons of the substantia nigra and
concluded that a sigmoidal dose-response relationship between
Ianp and bulk cytoplasmic [Ca?*] would occur only if cytoplas-
mic [Ca?*] was well mixed. Since such a situation is unlikely to
occur near the membrane immediately after Ca*" entry, when
[Ca®*] would be highest at the membrane and lower in the cyto-
plasm, or subsequently as pumps lower [Ca’*] near the plasma
membrane, this provided an avenue for assessing the location of
the activating Ca®". They observed a distorted sigmoidal rela-
tionship between bulk [Ca?*] and the apamin sensitive AHP in
dopamine cells, as did Abel et al. (2004) for Imapp in neocortical
pyramidal cells (Figure 1H). These results suggest that apamin-
sensitive mAHP responds to restricted microdomains of Ca**
not accurately reflected by measurement of bulk [Ca?*]. This
is consistent with the previous demonstration that SK channels
sense Ca?T through their constitutive association with calmod-
ulin (Xia et al., 1998). In contrast, the SAHP current exhibits a
cooperative and sigmoidal dose-response relationship with bulk
cytoplasmic calcium (Figure 11, Abel et al., 2004). In other words,
the SAHP channels in neocortical pyramidal cells integrate a Ca**

signal that is proportional to that measured in the bulk cytoplasm.
These results suggest a cytoplasmic localization for the sAHP
Ca®* sensor.

If the SAHP activation reflects the rise in bulk calcium, it
could be expected to exhibit a loose coupling to calcium chan-
nels. Consistent with this idea, the relationship of the sSAHP to
specific calcium channel subtypes is not strict and the coupling
between specific calcium channels and the sSAHP appears to be
cell type-specific. For example, pyramidal cells of the cerebral cor-
tex express a large SAHP during early postnatal development that
is activated, at least in part, by L-type channels and ryanodine-
sensitive internal stores (Lorenzon and Foehring, 1993; Pineda
et al., 1999). However, in mature neocortical pyramidal neurons
the sAHP is activated instead by N- and P/Q-type but not by
L-type channels (Pineda et al., 1998). More generally, it is now
clear that practically all calcium channel classes can activate the
sAHP. Thus, for example, N-type calcium channels have been
shown to couple to the sSAHP in vagal motoneurons (Sah, 1995),
superior cervical ganglion (Maingret et al., 2008), AH-type myen-
teric neurons from duodenum (Vogalis et al., 2001), and mouse
sympathetic neurons (Martinez-Pinna et al., 2000b). Similarly
L-type channels have been reported to contribute to the activa-
tion of the sSAHP in CAl (Moyer et al., 1992) and CA3 (Tanabe
et al., 1998) pyramidal cells of the hippocampus, and in cholin-
ergic interneurons of the striatum (Goldberg and Wilson, 2005;
Gamelli et al., 2011). L- and N-type channels both contribute
to the activation of the sSAHP in CAl pyramidal cells in culture
(Shah and Haylett, 2000a) as well as dentate granule cells (Aradi
and Holmes, 1999). Finally, L-, N-, P-type channels have been
reported to activate the SAHP in guinea pig sympathetic neu-
rons (Martinez-Pinna et al., 2000a), while T-type calcium chan-
nels can activate the sSAHP in thalamic paraventricular nucleus
(Zhang et al., 2009). Ryanodine-sensitive calcium stores have
also been implicated in sAHP activation via calcium-induced
calcium release in CA1 and CA3 neurons (Torres et al., 1996;
Tanabe et al., 1998; Shah and Haylett, 2000a), guinea pig sympa-
thetic neurons (Jobling et al., 1993) and vagal motoneurons (Sah
and McLachlan, 1991). Thus, these results indicate considerable
promiscuity in the coupling Ca®" sources to the sAHP. This is
consistent with the idea that Iz pp senses bulk cytoplasmic [Ca?t]
and therefore is relatively unselective with respect to the origin of
the Ca?™.

THE TIME COURSE OF THE sAHP

A central feature of Izpp is that it activates very slowly after a
spike train (hundred of ms). Specifically the Iapp rises much
slower than the cytoplasmic [Ca?*] (Sah and Clements, 1999;
Abel et al., 2004; Gerlach et al., 2004; Goldberg et al., 2009) and
continues to rise after the peak of the calcium transient (Lasser-
Ross et al., 1997; Jahromi et al., 1999). It also decays very slowly,
up to several seconds in some cells. Historically several different
possibilities have been proposed to account for these unusually
slow kinetics.

The simplest idea that could explain the slow onset kinetics
of the sAHP is that it reflects the slow equilibration of free Ca®*
in the cytosol. This explanation, however, is unlikely since free
Ca’* declines rapidly (~99% in first ms) due to binding to its
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reaction partners (Markram et al., 1998; Goldberg et al., 2009).
Furthermore, activation of the sAHP by either neuronal depo-
larization or rapid Ca®" uncaging results in similar time courses
(Sah and Clements, 1999) and, at least in pyramidal cells and stri-
atal cholinergic interneurons, there is a mismatch between the
time course of the decay of I;app and bulk [Ca?*] concentration
in the soma or dendrites (Lasser-Ross et al., 1997; Jahromi et al.,
1999; Abel et al., 2004; Goldberg et al., 2009). Finally changes in
Ca’* buffering can have differential effects on the time course of
the calcium transient and Isagp (Schwindt et al., 1992b; Lorenzon
and Foehring, 1995; Lasser-Ross et al., 1997; Jahromi et al., 1999).

Alternatively, the time course of activation could reflect the
diffusion of Ca’* ions from their source to distally located
sAHP channels (Lancaster et al., 1991; Lancaster and Zucker,
1994; Zhang et al., 1995; Jahromi et al., 1999). This explanation,
however, also seems unlikely. If we assume that Ca%*t diffusion
distance determines onset kinetics and use the activation kinetics
of BK or SK as benchmarks, it is possible to estimate the expected
distance between calcium source and sSAHP channels. Because of
their low (WM) affinity for Ca®t, BK channels must be located
within 10-20 nm of the Ca®T source to be activated (Muller et al.,
2007; Fakler and Adelman, 2008). In contrast, SK channels have a
higher Ca®* affinity (200-500 nM: Kohler et al., 1996; Xia et al.,
1998) and thus can be effectively activated 50-100 nm from the
Ca®* source (Fakler and Adelman, 2008). The channels under-
lying the sAHP have similar affinity for Ca’" as SK channels
(Abel et al., 2004), but activate an order of magnitude slower. This
indicates that the sSAHP Ca?*t sensor would need to be located
prohibitively far (100s of nms) from the site of calcium entry
to account for the slow activation of the current. Also inconsis-
tent with this idea are studies using vagal motoneurons (Sah and
McLachlan, 1991) and pyramidal cells (Sah and Isaacson, 1995;
Lee et al., 2005) that have shown that the activation of the SAHP
exhibits a high temperature sensitivity. Specifically, the SAHP has
a Qo between 2 and 4, a range of values that is inconsistent with
aqueous diffusion and is usually associated with enzymatic activ-
ity or slow channel gating events. This argues against diffusion of
Ca’* as being the rate-limiting step for sSAHP activation.

A third possibility is that the slow activation of the sSAHP could
reflect delayed facilitation of L-type calcium channels (Cloues
et al., 1997; Bowden et al., 2001). In particular, the slow kinet-
ics of the sSAHP in CA1 pyramidal neurons has been attributed to
delayed facilitation of L-type channels of the a1D (CaV1.3) type
(Bowden et al., 2001). However, given the limited and partial role
of L type calcium channels as calcium sources for the sSAHP, this
mechanism again seems unlikely to provide a universal account
for the slow time course of activation of this current.

Finally, the slow activation of the sSAHP current has also been
attributed to slow binding of Ca®" to its sensor, slow intrinsic
kinetics of the sSAHP potassium channel (Lancaster et al., 1991;
Sah and Clements, 1999) or the involvement Ca?*-induced Ca®*+
release (CICR) from internal stores. None of these factors alone,
however, appears capable of fully accounting for the time course
of the sAHP. For example the time to onset of the sSAHP cur-
rent has been shown to be insensitive to [Ca?*] casting doubts on
the idea that slow calcium binding to the sensor could represent
the rate-limiting step for activation of Iapp [(Sah and Clements,

1999; Gerlach et al., 2004), but see below]. Similarly, estimates of
the sSAHP channel mean open time based upon noise analysis are
much too short to fully account for the slow onset kinetics of the
current (Sah and Isaacson, 1995). Finally, although CICR does
contribute to the SAHP in some neurons (Sah and McLachlan,
1992; Davies et al., 1996; Torres et al., 1996; Shah and Haylett,
2000a; Vogalis et al., 2001), it contributes little to the SAHP in
other cell types including mature, repetitively firing neocortical
pyramidal neurons (Zhang et al., 1995; Pineda et al., 1998) again
casting doubt on the generality of such a mechanism.

The possibilities outlined above all have assumed that the
channels underlying the sAHP are gated by Ca>* in a relatively
direct manner. Therefore, the solution to the anomalous prop-
erties of the sSAHP/I;appp had to reside in the properties of the
Ca?* signal or the sSAHP channel itself. More recent studies have
focused on the possibility of more complex intermediate steps
between Ca?t influx and the activation of Izpp. A recent study
combining experimental and modeling approaches in striatal
cholinergic interneurons has suggested a key role for intracellular
Ca’* buffering mechanisms in generating the slow time course
of AHP currents. Using a computational approach this study
revealed that non-equilibrium dynamics of Ca>* redistribution
among cytoplasmic binding sites with different Ca>* binding
kinetics can give rise to multiple timescales within the same cyto-
plasmic volume (Goldberg et al., 2009). Key to this model is the
assumption that the sSAHP Ca®* binding site does not have direct
access to cytoplasmic Ca?T with a time course determined only by
Ca’t entry. Rather, the presence of other Ca?* reaction partners
with faster binding kinetics can shape the time course of calcium
available to bind the sAHP sensor (Markram et al., 1998). The
kinetics of the various reaction partners, not the rate of Ca?t
entry to the cell, would then determine the delivery of Ca** to
the sAHP site. The Goldberg et al. (2009) analysis raises the pos-
sibility that the temporal properties of the sAHP, including the
delay in its onset and its slow decay, may be caused by the kinetics
of the SAHP Ca?* binding site/sensor, interacting with alternate
binding sites in the cytoplasm. This explanation is consistent with
the sSAHP’s sensitivity to fast and slow exogenous buffers and its
insensitivity to brief Ca®* transients.

Alternatively, recent findings using molecular approaches have
rekindled interest in the possibility that calcium may activate the
sAHP indirectly, through a signaling cascade involving one or
more intermediate step (Hocherman et al., 1992; Schwindt et al.,
1992a; Zhang et al., 1995; Sah and Faber, 2002; Abel et al., 2004;
Tzingounis et al., 2007; Villalobos and Andrade, 2010; Villalobos
et al., 2011). An attractive feature of interposing one or more
molecular steps between Ca’* binding and channel activation
is that such a mechanism can accomodate most of the puz-
zling features of the SAHP current including its slow kinetics and
temperature-dependence, the multiple action potential require-
ment, and the fact that rather than responding to micro- or
nanodomains of calcium, sAHP activation requires an elevation
of Ca’* in the cytoplasm.

NEURONAL CALCIUM SENSOR PROTEINS AND THE sAHP

Recent experiments have provided strong evidence that hippocal-
cin, a member of the neuronal calcium sensor (NCS) protein
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family, is at least a partial Ca?T sensor for the SAHP in pyra-
midal neurons (Tzingounis et al., 2007; Villalobos and Andrade,
2010). Hippocalcin is located in the cytoplasm but translocates
to the plasma membrane upon Ca?" binding with a relatively
slow time course (Markova et al., 2008). This translocation is
thought to result from a Ca’"-induced conformational change
that leads to the exposure of a myristoyl group and repartition
of the NCS to the plasma membrane. Tzingounis et al. (2007)
found that I;zpp was greatly reduced in a hippocalcin null mutant
mouse and that expression of hippocalcin into cultured neurons
enhanced the sAHP (Figure 2A). In these experiments hippocal-
cin appeared to act as a true Ca®>* sensor (as opposed to acting
as a Ca®t buffer) since I,app was not enhanced by introduction
of mutated hippocalcin with impaired myristoylation, and thus
impaired translocation to the plasma membrane (Figure 2A).
This last finding suggests that while hippocalcin may act as a
mobile Ca?* buffer relative to SK channels, its role in the SAHP
is more as a true sensor. Collectively, these findings are con-
sistent with the hypothesis that the Ca’>* sensor for the SAHP
channels is not part of the channel complex but rather gates the
sAHP upon translocation to the membrane. The need for such
a mobile calcium sensor to translocate from the cytosol to the
plasma membrane to activate the SAHP could help explain the
slow time course of activation and dependence on bulk Ca?*.

In the Tzingounis et al. (2007) study, the sAHP was not
completely eliminated in the hippocalcin knockout mouse.

Furthermore, the distribution of hippocalcin in the brain only
partly overlaps with the distribution of neurons exhibiting a
pronounced sAHP [Allen Brain Atlas; (Villalobos and Andrade,
2010)]. A recent study indicated that in pyramidal cells of the
prefrontal cortex, neurocalcin 8, a related neuronal Ca%™ sensor
protein, acts similarly and perhaps in combination with hip-
pocalcin to activate Igapp (Villalobos and Andrade, 2010). These
results suggest that two or more NCS family members can act
as calcium sensors linking rises in cytoplasmic Ca?* to sAHP
channel activation. A limitation of these studies is that they have
relied upon constitutive gene deletions or overexpression strate-
gies. This leaves open the possibility that the observed changes in
the SAHP may reflect indirect effects of modifying the cells’ ability
to sense Ca> ™.

THE ELUSIVE sAHP CHANNEL

A major impediment to identifying the channel carrying the
sAHP has been the scarcity of pharmacological agents capable of
selectively targeting this afterpotential. For instance, the sAHP in
hippocampus and neocortical neurons is resistant to most known
potassium channel blockers or toxins (e.g., apamin, TEA, 4-AP,
cesium, quinine, ruthenium red). An important development was
the discovery that clotrimazole (Shah et al., 2001) and especially
its analog UCL2027 appear to be reasonably selective inhibitors of
the sAHP, at least in some cell types (Shah et al., 2006; Lee et al.,
2010). Besides the sAHP, the only known targets of UCL2027 are

a Hippocalcin expression

Uninfected Hippocalcin

B PIP5K expression

PIP5K

J 20pA

750ms

Control

FIGURE 2 | Expression of hippocalcin and the phosphatidylinositol
4-phosphate 5-kinase (PIP5K) regulate Isgayp. (A) Expression of wild
type hippocalcin in hippocampal pyramidal cells in primary culture greatly
enhances the amplitude of Isayp. This enhancement is not seen with the
G2A mutant, which cannot be myristoylated, thus pointing to an
essential role for the translocation of hippocalcin to the plasma
membrane. *Indicates p < 0.001. Redrawn from data in Figure 4 of
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Tzingounis et al. (2007). (B) Expression of PIP5K enhances the apparent
ability of calcium to elicit Isapp. In this experiment calcium influx was
titrated using depolarizing steps of increasing duration. Under control
conditions lsayp is activated in a graded manner by depolarizing steps
ranging from 10 to 100ms. In contrast, in cells transfected with PIP5K
lsaHp IS activated by much shorter steps. Redrawn from data in Figure 7
of Villalobos et al. (2011).
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KCNQ-mediated currents (Soh and Tzingounis, 2010) suggest-
ing the possible involvement of these channels in mediating the
sAHP (see below). However, a more detailed investigation of the
potassium channel selectivity of UCL2077 will be needed before
UCL2077 can act as a screening tool for the sAHP channels.

In the absence of strong pharmacological leads several stud-
ies have used non-stationary noise analysis and single channel
recordings to gain insight into the properties of the ion chan-
nels mediating the sAHP. Noise analysis in pyramidal cells of
the CA1 region of the hippocampus (Sah and Isaacson, 1995),
granule cells of the dentate gyrus (Valiante et al., 1997), and the
dorsal motor nucleus of the vagus (Sah, 1995) revealed that potas-
sium channels exhibiting a small conductance mediate the SAHP
but there was considerable variability in their estimates for sin-
gle channel conductance (y: 2—-10pS). Potassium channels with
y in this range include SK (KCNN), some Kvl (KCNA), Kv4
(KCND), some Kir (KCNJ) channels, and Kv7 (KCNQ) channels
(Coetzee et al., 1999). It has recently been reported that in gran-
ule cells of the dentate gyrus, Karp channels open in response to
action potential bursts and the resulting SAHP is reduced by the
Karp inhibitor glibenclamide (Tanner et al., 2011). This suggests
that these channels may contribute to the sSAHP in granule cells.
However, since vy is typically >>10 pS for Karp channels (Coetzee
et al., 1999) such a mechanism is unlikely to be widely generaliz-
able. Thus, collectively, these pharmacological and single channel
studies fail to converge on a defined set of properties for the chan-
nels mediating the sSAHP. The results suggest that I;apjp may not
be a unitary current due to a single molecular entity but rather
may be mediated by a variety of ion channels depending on the
cellular background.

An alternative approach to identify the channels responsible
for the sSAHP has been to examine the effect of ion channel
subunit gene deletions on the sAHP. The KCNQI1-5 genes code
for the Kv7 potassium channels that underlie the “M current”
in a variety of central and peripheral neurons (Delmas and
Brown, 2005). Surprisingly, the genetic deletion of KCNQ2 or
KCNQ3 was found to result in a significant decrease in the ampli-
tude of the SAHP current in granule cells of the dentate gyrus.
Similarly, expression of a KCNQ2/3 pore-dead dominant nega-
tive in slice culture or of a KCNQ5 pore-dead dominant negative
in a knock-in mouse both inhibited Isppp in CA3 pyramidal neu-
rons (Tzingounis and Nicoll, 2008; Tzingounis et al., 2010). These
results, along with the inhibition of the sSAHP by UCL2077 (Soh
and Tzingounis, 2010), suggest a significant role for KCNQ chan-
nels in the generation of the sSAHP, at least in CA3 pyramidal and
dentate granule cells.

The involvement of KCNQ channels in the generation of the
sAHP has been controversial, at least in part, because KCNQ
channels are inhibited, rather than activated by intracellular
Ca%t. Previous studies, however, have shown that the calcium
inhibition of KCNQ channels is mediated a Ca?*/calmodulin
(CaM)-dependent mechanism (Selyanko and Brown, 1996;
Gamper and Shapiro, 2003, reviewed by Delmas and Brown,
2005) while the activation of Igapp is mediated by NCS proteins
of the hippocalcin family, which have much lower Ca’** operat-
ing ranges than calmodulin [reviewed by Burgoyne (2007)]. The
Ianp is activated by calcium with an ECsp ~ 300 nM, well within

the operating range of hippocalcin but below that of calmod-
ulin (O’Callaghan et al., 2003; Burgoyne, 2007). Therefore, the
reported Ca>*-CaM inhibition of KCNQ channels is unlikely to
operate during the Isapp as the Ca*t levels necessary to activate
the Isapp are well below those required for calmodulin to inhibit
KCNQ channels. The idea that KCNQ channels may contribute
to Isapp has also been questioned because the Isapp appears to be
largely insensitive to KCNQ channel blockers in some of the pro-
totypical cell types expressing this current. For example, in the
CA1 region of the hippocampus, administration of KCNQ block-
ers (e.g., linopirdine or XE-991) has led to inconsistent results
with some studies reporting partial block of I;agp (Schnee and
Brown, 1998; Tzingounis and Nicoll, 2008), while others found
no effect of these blockers to this current (Aiken et al., 1995;
Gerlach et al., 2004; Gu et al., 2005). Similar studies on pyra-
midal cells from neocortex have also failed to find any effect of
KCNQ channel blockers on Isagp (Abel et al., 2004; Guan et al.,
2011). However, these observations are consistent with the pos-
sibility outlined above that I;agp may be mediated by different
complement of channels in different cell types.

PtdIns(4,5)P2 AND THE Ca2+-DEPENDENT REGULATION OF
POTASSIUM CHANNELS

Most of the channels considered above, including KCNQ, are not
Ca’*-activated and some are also voltage activated. Therefore,
if such channels were to underlie the sAHP a mechanism
must exist to allow Ca?T to indirectly activate them and/or
alter their apparent voltage sensitivity. Recent work indicates
that the functional expression of the sAHP current is depen-
dent on membrane PtdIns(4,5)P; and that increasing membrane
PtdIns(4,5)P, greatly facilitates the ability of Ca®* to activate
the sAHP (Figure2B). This has been interpreted to suggest
that Ca?* acts upstream from PtdIns(4,5)P, to activate Isapp
(Villalobos et al., 2011). Since results from a variety of model
systems indicate that Ca®* can regulate the local availability of
PtdIns(4,5)P, in the membrane, a simple interpretation of these
results is that Ca’" gates the SAHP channels by increasing the
availability of PtdIns(4,5)P, near the channel. Previous studies
have shown that PtdIns(4,5)P, can control potassium channels
at multiple levels. For example this phosphoinositide is required
for the activity of many potassium channels of the Kj; and Ky
families (Delmas and Brown, 2005; Hansen et al., 2011), can
regulate the inactivation of “A type” potassium channels (Oliver
et al., 2004) and modulate the affinity of Kyp channels for ATP
(Baukrowitz et al., 1998; Shyng and Nichols, 1998). Since many
PtdIns(4,5)P,-sensitive potassium channels are subsaturated at
rest, a transient Caz"'—triggered increase in PtdIns(4,5)P, could
be expected to result in an increase in the activity of multi-
ple classes of potassium channels. At the macroscopic level this
increase in channel activity would result in a slow potassium
aftercurrent that could correspond to Igapgp (Villalobos et al.,
2011).

One of the attractive features of this mechanism is that it can
explain with economy some of the most puzzling aspects of Isapp.-
For example, the monoexponential decay of the sSAHP (Lancaster
and Adams, 1986) has been generally interpreted to indicate
the involvement of a single type of channel in the generation
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of sAHP/I;app, even as growing evidence suggest considerable
molecular diversity depending on the cell type examined (see
above). A monoexponential decay implies a single mechanism
functioning as the rate limiting step, which could reflect the
involvement of a single ion channel subtype or a single (essential)
biochemical step. Thus, a monoexponential decay that is inde-
pendent of amplitude is equally well predicted by a model where
activation of multiple types of potassium channels follows a rate-
limiting intermediate step, in the current hypothesis the availabil-
ity of PtdIns(4,5)P,. While these considerations suggest a broad
range of potassium channels could participate in the generation
of Isanp, we believe that there still must be some molecular speci-
ficity as the SAHP channels have small single channel conductance
and lack sensitivity to multiple known potassium channel block-
ers and toxins, features that are not shared by most potassium
channels.

PtdIns(4,5)P, by virtue of its effect on potassium channel
gating may also help explain the involvement of channels that,
based upon their voltage dependence, may appear unlikely can-
didates to carry Isagp (which is voltage-insensitive). Previous
studies have shown that PtdIns(4,5)P, stabilizes the open con-
formation of potassium channels including KCNQ channels
(Enkvetchakul et al., 2000; Loussouarn et al., 2003; Park et al.,
2005; Hernandez et al., 2009; Falkenburger et al., 2010; Rodriguez
et al., 2010). Current models also suggest that KCNQ channels
are gated allosterically by voltage, in other words that volt-
age sensor activation is not obligatory for channel opening.
Consequently, a transient PtdIns(4,5)P, increase might promote
KCNQ channel opening at hyperpolarized potentials bypass-
ing the need for multiple voltage sensor activation. A facilita-
tion of such voltage independent transitions by PtdIns(4,5)P,
would manifest itself as a shift of the KCNQ channel half-
activation voltage (Vo 5) to more hyperpolarized values, lead-
ing to an apparent voltage insensitivity at the voltages where
the sAHP is measured. Consistent with this possibility, recent
work from Suh and Hille (2007) has shown that overexpres-
sion of the phosphatidylinositol 4-phosphate 5-kinase (PIP5K)
in heterologous cells, which can be expected to increase basal
PtdIns(4,5)P, levels, shifts the KCNQ2/3 V(5 to more hyper-
polarized membrane potentials. Although this model is only a
hypothesis it might provide a starting point for understand-
ing the mechanism by which KCNQ channel or other voltage-
activated potassium channels can contribute to the sAHP. A
similar argument for the modulation of Karp channels by
PtdIns(4,5)P, can be based on a previously described model by
Enkvetchakul et al. (2000). More broadly, this brief discussion
highlights how the ability of PtdIns(4,5)P, to regulate potas-
sium channel gating could help explain some the properties
of Iianp.

Finally the PtdIns(4,5)P, hypothesis also has the potential
to help clarify the mechanisms underlying the modulation of
Isagp. The inhibition of a molecularly heterogeneous Isapp
by receptors coupling to Gog-11/PLCB would simply follow
from the lowering of membrane PtdIns(4,5)P; levels (Villalobos
et al., 2011). The inhibition of Iszpgp by activation of the
Ga,/adenylate cyclase/cAMP/PKA signaling cascade is thought to
involve a poorly understood phosphorylation step downstream

from PKA (Pedarzani and Storm, 1993). Since PKA phospho-
rylation strongly inhibits PIP5K (Park et al., 2001), the rate
limiting enzyme for the formation of PtdIns(4,5)P,, it seems
possible that PKA may also inhibit Iapgp by reducing mem-
brane PtdIns(4,5)P; levels. If this conjecture is correct it could
explain how PKA activation could inhibit a current carried by
ion channels, such as KCNQ, that are not directly modulated by
cAMP/PKA.

The ideas outlined above are summarized in Figure 3. While
this model offers a way forward in our thinking about the molec-
ular physiology of the sAHP it is important to note that numerous
important questions still remain even if this model proves cor-
rect. For example, which potassium channels are more likely to
mediate the sSAHP? Does the modulation of the PtdIns(4,5)P;
generating enzymes by kinases and phosphatases hold the answer
to the neuromodulation of the SAHP by cAMP and PKA? How do
NCS proteins gate the sAHP, do they bind directly to the sAHP
channels or do they shuttle PtdIns(4,5)P, generating enzymes to
the plasma membranes? Fortunately we now have the molecular
and conceptual tools for addressing these issues and thus it seems
reasonable to expect quick progress on these and other questions
central to our understanding the sAHP.

In summary, recent studies have begun to sketch a possi-
ble mechanism for Izgp involving the idea that Ca?t gates
Isapp indirectly, via a diffusible Ca?* sensor and PtdIns(4,5)P;.
While this idea still remains conjectural at this time, this

sAHP Activation Hypothesis

KCNQ, KATP, ??

——H——

FIGURE 3 | Mechanism for the activation of the sAHP as proposed in
this review. Global increases in cytosolic calcium lead to activation of
diffusible neuronal calcium sensors (NCS: hippocalcin, neurocalcin 38).
Binding of calcium to NCS exposes a previously sequestered myristoyl
moiety allowing NCS to bind to the plasma membrane. Binding of NCS to
plasma membrane leads to a transient increase in PtdIns(4,5)P, levels and
subsequent activation of the sAHP
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conceptualization offers an economical way to reconcile some
of the most puzzling effects of I;zpgp including its anomalous
dependence on Ca’*, its slow kinetics and its apparent molec-
ular heterogeneity depending on the cellular background. If these
ideas are correct, perhaps after 30 years we may finally be cutting
though the knot concealing the sSAHP.
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