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INTRODUCTION

Ischemic stroke is a debilitating disease for which there are currently no effective
treatments besides the clot-buster, tissue plasminogen activator (t-PA), which is
administered to less than 10% of patients due to a limited (4.5h) time window of
efficacy. Thus, there is an urgent need for novel therapies that can prevent or reverse
the effects of stroke-induced brain injury. Recent encouraging reports have revealed that
stem cells derived from human tissue, including embryonic, induced pluripotent, neural,
and mesenchymal cells, can rescue injured brain tissue and improve functional recovery
in experimental models of stroke. However, there are potentially major limitations to each
of these types of stem cells that may ultimately prevent or restrict their use as viable
mainstream treatment options for stroke patients. Conversely, stem cells derived from
the placenta, such as human amnion epithelial cells (hAECs), appear to have several
important advantages over other stem cell lineages, in particular their non-tumorigenic and
non-immunogenic characteristics. Surprisingly, so far hAECs have received little attention
as a potential stroke therapy. This brief review will firstly describe the inflammatory
response and immune cell involvement following stroke, and then consider the potential
for hAECs to improve stroke outcome given their unique characteristics. These actions
of hAECs may involve a reduction of local inflammation and modulation of the immune
response, promotion of neural recovery, differentiation into neural tissue, re-innervation of
lost connections, and secretion of necessary cytokines, growth factors, hormones and/or
neurotransmitters to restore cellular function.

Keywords: stem cells, human amnion epithelial cells, stroke, immune cells, inflammation, cerebral ischemia,
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“clot-buster,” tissue plasminogen activator (t-PA). t-PA is an

Stroke occurs following a sudden disruption of blood flow to
the brain, thereby starving the tissue of oxygen and nutrients
and initiating neuronal death within minutes (Broughton et al,,
2009). This crippling disease is the world’s second leading cause
of death, with approximately 15 million strokes occurring each
year, and accounting for 9.5% (i.e., 6 million) of all deaths per
annum (WHO, 2002). Alarmingly, the incidence of stroke more
than doubles each successive decade for people over the age of
55. Thus, with the annual number of strokes increasing due to
the ageing population, an increasingly greater financial and social
burden will be caused to survivors and to the community. Thus,
major advances to prevent and treat stroke are of paramount
importance.

TREATMENT OF ISCHEMIC STROKE

Ischemic stroke, which occurs when the blood supply to the
brain is obstructed by an embolus or a thrombus, accounts
for approximately 87% of all stroke cases (WHO, 2002). It is
most disappointing that still the only available “pharmacolog-
ical” intervention to reduce brain damage after stroke is the

enzyme that works by catalyzing the conversion of plasminogen
to plasmin which can then break down either the embolus or
thrombus causing cerebral ischemia (Sloan, 1987). However, t-PA
can only be administered within 4.5h of the onset of ischemia
and only after a CT scan has verified that the stroke is due to
a thrombus rather than a hemorrhage (Del Zoppo et al., 2009).
After 4.5h, there is no evidence for a net beneficial effect of
t-PA due to the increased risk of hemorrhagic transformation.
Consequently, only 2—-8% of stroke patients currently receive this
treatment (based on United States statistics) (Reeves et al., 2005;
Kleindorfer et al., 2008). At best, t-PA can only restore blood
flow, and it cannot target mechanisms of cellular injury or oth-
ers that promote healing. Other treatment options for ischemic
stroke include anti-coagulants, such as heparin that inhibits clot
formation, and anti-platelet agents, such as aspirin, that reduce
the risk of platelet aggregation. However, these treatments have no
effect on stroke outcome and are mainly used in the prevention of
a secondary stroke. Although a plethora of neuroprotective com-
pounds have shown promise in animal models of stroke, no other
treatment has achieved efficacy in clinical trials (Dirnagl, 2006).
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Therefore, new therapies that may protect neural tissue from
post-ischemic damage and/or promote functional recovery are
desperately needed to reduce mortality and long-term neurologi-
cal deficits in stroke victims. An important step in this process will
be to understand the key mechanisms that contribute to injury
following stroke.

ACTIVATION OF THE IMMUNE SYSTEM AND BRAIN INFLAMMATION
AFTER STROKE

It is now understood that the immune system plays an inte-
gral role in the pathogenesis of ischemic stroke and it con-
tributes to infarct formation (Iadecola and Anrather, 2011).
In the post-stroke acute phase (minutes to hours), microglia and
cerebral endothelial cells within the affected zone are activated
by hypoxia, shear stress, and the production of reactive oxy-
gen species (ROS) (Jin et al., 2010). This causes the expression
of adhesion molecules such as intercellular adhesion molecule-
1 (ICAM-1), vascular adhesion molecules (VCAMSs), selectins
(in particular, P-selectin and E-selectin), and integrins (in par-
ticular, Mac-1 and LFA-1), on endothelial cells, leukocytes, and
platelets (Yilmaz and Granger, 2010). Adhesion molecule expres-
sion is also induced on circulating leukocytes. Simultaneously,
oxidative stress and locally-derived pro-inflammatory media-
tors (cytokines and chemokines) produced by the injured tissue
alter the permeability of the blood brain barrier (BBB). As the
ischemic cascade progresses, cell death leads to a new phase of

the inflammatory response. Dying and dead cells release “dan-
ger signals” that activate the immune system (ladecola and
Anrather, 2011; Magnus et al.,, 2012). Some of these signals,
such as the nucleotides adenosine triphosphate (ATP) and uri-
dine triphosphate (UTP) and high-mobility group protein Bl
(HMGBL), are released by cells under stress when the cell mem-
brane is still intact, and thereby set the stage for the subsequent
immune response. A result of these processes is a time-dependent
infiltration of immune cells (Figure1). These immune cells
include neutrophils, macrophages, dendritic cells, and T and
B lymphocytes (Stevens et al., 2002; Gelderblom et al., 2009,
2012; Brait et al., 2010; Jin et al.,, 2010; Kleinschnitz et al.,
2010, 2012). Neutrophils, which are thought to be the first
immune cell to enter the brain post-stroke, undergo granule
exocytosis to release a variety of pro-inflammatory molecules
such as large quantities of nitric oxide (NO) derived from
inducible NO synthase, nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase-derived ROS, and matrix metallopro-
teinases (MMPs) (Yilmaz and Granger, 2010). Both CD4*" and
CD8" T lymphocytes contribute to brain injury by produc-
ing pro-inflammatory mediators, such as the potent cytokines
interferon-y (IFN-y), interleukin-6 (IL-6), IL-17, and tumor
necrosis factor (TNF) (Kleinschnitz et al., 2010, 2012; Brait et al.,
2012; Gelderblom et al., 2012). T lymphocytes contribute fur-
ther to the state of oxidative stress by also producing NADPH
oxidase-derived superoxide (Brait et al., 2010). In addition, CD8*
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FIGURE 1 | Cytokines/effector molecules involved in post-stroke
inflammation in the brain. Following cerebral ischemia-reperfusion, elevated
levels of adhesion molecules, such as ICAM-1 and VCAM in vascular endothelial
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cells (EC), attract circulating T cells and macrophages. These immune cells may
cross the compromised blood-brain barrier (BBB) to infiltrate the injured tissue
and cause cell death via the release of various cytokines and effector molecules.
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T lymphocytes induce apoptosis in already compromised neu-
ronal cells following stroke (Barry and Bleackley, 2002; Brait
et al., 2012), and both macrophages and activated microglia pro-
duce a number of pro-inflammatory cytokines and ROS to exert
neurotoxic effects (Jin et al., 2010).

Interestingly, the spleen appears to play an important role
in the acute influx of immune cells into the brain after stroke.
For example, splenectomy prior to experimental stroke reduces
infarct size (Ajmo et al., 2008). Moreover, these authors showed
that splenectomy-induced neuroprotection following stroke cor-
related with a decrease in activated microglia, macrophages, and
neutrophils in the ischemic hemisphere, thus suggesting that the
spleen is a possible source of detrimental immune cells follow-
ing stroke (Ajmo et al., 2008). In addition, Offner et al. found
that T lymphocytes derived from blood and lymph nodes secreted
increased levels of pro-inflammatory mediators, and expressed
elevated levels of chemokine receptors post-stroke (Offner et al.,
2006). More recently, it was shown that the spleen contributes
to neurodegeneration following stroke through IFN-y signaling
(Seifert et al., 2012).

THE SYSTEMIC IMMUNE RESPONSE FOLLOWING STROKE

The immune response following stroke is not restricted to the
brain, as effects on immune function are also seen in the periph-
ery. While both innate and adaptive immune cells contribute
to early post-stroke neuronal injury, the circulating levels of
these cells are then rapidly reduced. For example a profound
systemic immunodepression—or “stroke-induced immunodefi-
ciency syndrome”—occurs as early as 12 h after ischemic stroke
(Gendron et al., 2002; Prass et al., 2003). This phenomenon is
triggered by hyperactivity of the sympathetic nervous system and
the hypothalamic—pituitary—adrenal axis due to post-stroke brain
damage, which leads to reduced numbers of T and B lymphocytes
and also of NK cells within the spleen, thymus, bone marrow,
and lymph nodes (Gendron et al., 2002; Prass et al., 2003; Offner
et al., 2006; Liesz et al., 2009). This leads to increased apopto-
sis and increased release of immune cells from these primary and
secondary lymphoid organs, resulting in tissue atrophy and this
consequently predisposes patients to infection (e.g., commonly
resulting in pneumonia or sepsis), a major determinant of stroke
morbidity and mortality.

Interestingly, although the liver is not a secondary lymphoid
organ, a recent publication investigated the effect stroke had
on invariant natural killer T (iNKT) cells within that organ
(Wong et al., 2011). Wong and colleagues showed that cerebral
ischemia-reperfusion slowed the migration of resident hepatic
INKT cells and increased the expression of the immunosuppres-
sive cytokine, IL-10, in association with an increased suscep-
tibility to bacterial infection. In support of these findings, the
onset of bacterial infection occurred much earlier in iNKT cell-
deficient mice subjected to stroke, whereas brain infarct size was
unchanged. This indicated that iNKT cells play a key role in
systemic protection against infection after stroke. Furthermore,
those researchers found that the increased release of noradren-
ergic neurotransmitters from sympathetic nerves innervating the
liver following stroke can undermine systemic immunity by a
direct inhibitory effect on hepatic iNKT cells. Thus, the authors

suggested that blockade of stress pathways could improve out-
comes in stroke patients by helping to protect systemic immune
function and thereby preventing infections. Collectively, evidence
suggests that various components of the immune system in the
brain as well as in secondary lymphoid and visceral organs may
play critical roles in the development of post-stroke damage and
mortality.

THE POTENTIAL FOR STEM CELL THERAPY FOLLOWING
STROKE

Given the complex nature of post-ischemic brain injury and the
failure of effective stroke treatments targeting single molecular
pathways, ultimately successful approaches may include cell-
based therapies that have the potential to target multiple injury
mechanisms and cell types when administered at an appropriate
time(s) after the stroke event. Hence, there is now considerable
interest in stem cell therapy as a possible treatment for stroke.
Stem cells are undifferentiated cells capable of self-renewal and
are broadly classified as being of embryonic, fetal, or adult origin
(Yu et al., 2009).

Embryonic stem cells (ESCs) are pluripotent, meaning that
they can give rise to all cell types of the organism, whereas fetal
and adult stem cells are multipotent, such that they can give rise to
cells of multiple, but limited number of lineages. A variety of stem
cells, including embryonic, bone marrow, neural, and induced
pluripotent stem cells (iPSCs) have been shown to improve stroke
outcome (Daadi et al., 2008; Schwarting et al., 2008; Hicks et al.,
2009; Kawai et al., 2010). As a result of such promising stud-
ies, the first fully regulated clinical trial (PISCES study—Pilot
Investigation of Stem Cells in Stroke) using ESCs to treat stroke
patients has recently commenced in Glasgow. Unfortunately how-
ever, there tends to be major limitations with the use of most stem
cell types, which may offset their use as a clinical treatment for
stroke patients.

LIMITATIONS AND BENEFITS OF STEM CELL LINEAGES FOR
TRANSPLANTATION INTO THE CNS
ESCs were expected to have broad potential due to their pluripo-
tent capabilities, and transplantation of human ESC neural
derivatives into a rodent model of stroke has been reported to
improve functional outcome (Daadi et al., 2008; Hicks et al.,
2009). Nevertheless, several problems exist regarding human
ESCs, including ethical/political issues (i.e., due to the destruc-
tion of human embryos), immune rejection, and their fetal
“age” (i.e., they lack key functional characteristics of adult cells)
(Xi et al., 2010). Moreover, ESCs may form teratomas (develop-
mental tumors) following transplantation (Knoepfler, 2009).
iPSCs were first derived in 2006 (Takahashi and Yamanaka,
2006) by re-programming mouse and human fibroblasts into
pluripotent ESC-like cells. Since then, many types of iPSCs have
been created using diverse cell types (Kiskinis and Eggan, 2010).
iPSCs possess most of the key properties of ESCs but avoid the
ethically controversial issues surrounding embryo destruction.
These cells have been used to treat central nervous system (CNS)
injuries such as spinal cord injury and stroke in rodents (Kawai
et al., 2010; Tsuji et al., 2010), but in both cases tumor formation
from iPSCs was observed.
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Fetal neural stem cells (NSCs) are derived from human fetal
brains (isolated from aborted material) and are capable of differ-
entiating into neurons, astrocytes, or oligodendrocytes (Lindvall
and Kokaia, 2011). Because of the invasive nature of obtain-
ing autologous adult human neural cells, fetal NSCs have been
evaluated as an alternative expandable source of neural cells.
Although NSCs also involve ethical issues, these cells were con-
sidered to be safer than human ESCs regarding tumor formation
after transplantation, however, brain and spinal cord tumors have
been reported to develop following fetal NSC treatment (Dirks,
2001; Schmidt et al., 2005; Amariglio et al., 2009).

Mesenchymal stem cells (MSCs), derived from bone mar-
row or umbilical cord blood, can differentiate into neuronal-like
cells, astrocytes, or endothelial cells, and their administration can
reduce infarct volume and improve functional outcome in exper-
imental stroke (Wu et al., 2008; Liu et al., 2009). Transplantation
of MSCs can also reduce apoptosis and promote endogenous cel-
lular proliferation after stroke, and long-term follow-up data have
revealed improved survival in patients that received bone marrow
MSCs compared with controls (Lee et al., 2010). Similar to ESCs,
however, concerns and limitations associated with MSC use in
stroke include poor cell survival and engraftment after transplan-
tation, no direct evidence of functional neuronal differentiation,
limited sources, and the fact that their extraction from bone mar-
row requiring invasive procedures, although they do not appear
to form tumors after transplantation (Zimmermann et al., 2003).

HUMAN AMNION EPITHELIAL CELLS

hAEC characteristics

While the above stem cell types may certainly have therapeu-
tic potential if their respective issues can be addressed, currently
those limitations seriously offset their likely routine use in clini-
cal stroke. An alternative stem cell lineage that is gaining interest
as a potential stem cell therapeutic is the human amnion epithe-
lial cell (hAEC). hAECs are derived from the amniotic sac, a thin
avascular tissue that encloses the fetus and is attached to the pla-
centa. The amnion consists of an inner layer of epithelial cells
that is in direct contact with the amniotic fluid, referred to as the
amniotic epithelium. Directly beneath the epithelial layer is the
amniotic mesoderm, which includes a compact stromal layer and
also a fibroblast layer. These two cell types have a different embry-
ological origin. hAECs are derived from the embryonic ectoderm
and amniotic mesodermal cells originate from the embryonic
mesoderm (Parolini et al., 2008). Whilst amniotic mesodermal
cells are also a potential cell-based therapy for stroke, this review
will limit its focus to the potential of hAEC therapy.

A considerable advantage of hAECs over other stem cell lin-
eages is that they possess very few of the limitations of other
stem cell types outlined above (see Table 1). hAECs are easily
obtained from separating the amnion sac from the term pla-
centa, which are usually discarded after birth (Miki et al., 2005).
As such, hAECs are readily available, they require no invasive
procedure for harvesting, and they largely lack ethical barriers
to their use (Yu et al., 2009). Furthermore, native hAECs do
not express the polymorphic antigens HLA-A, HLA-B and HLA-
C (class TA), and HLA-DR (class II), on their surfaces (Akle
etal., 1981; Terada et al., 2000) but express the non-polymorphic,

Table 1 | Beneficial characteristics of five major stem cell lineages.

Benefits ESCs BMSCs iPSCs NSCs hAECs
Readily available X

Do not require invasive X X
extraction

Pluripotent properties X X
Differentiate into

functional neural tissue

Non-immunogenic X @ X X
Immunomodulatory

properties

Non-tumorigenic X X X

4 Autologous transplantation only.

ESCs, embryonic stem cells; BMSCs, bone marrow-derived stem cells; iPSCs,
induced-pluripotent stem cells; NSCs, neural stem cells; hAECs, human amnion
epithelial cells.

non-classical human leukocyte antigen G (HLA-G) (Houlihan
et al., 1995), which does not elicit an immune response but
rather suppresses it. Thus, hAECs are considered to be immuno-
logically inert and would thus be expected to have a very low
risk of rejection upon transplantation. These properties are, of
course, consistent with the functions of the amnion to protect the
fetus from the mother’s immune system and to secrete various
nutritive factors (Liu et al., 2008). Moreover, hAECs have low
tumorigenicity (Miki et al., 2005) because they lack telomerase,
an enzyme that preserves chromosomal sequences commonly lost
during successive cell division (Hiyama and Hiyama, 2007). It
would therefore be expected that hAECs are unlikely to promote
tumor formation in the recipient.

Due to the fact that amnion epithelial cells originate from the
epiblast, from which they separate early in embryonic develop-
ment (day 8), hAECs possess a high level of pluripotency. For
example, hAECs can differentiate into all three germ layers: endo-
derm, ectoderm, and mesoderm (Toda et al.,, 2007). Notably,
they can generate clinically relevant cell types, such as myocytes
(including cardiomyocytes), osteocytes, adipocytes, pancreatic
cells, hepatocytes, as well as neural, and astrocytic cells (Toda
et al., 2007). These latter cell types are, of course, of particu-
lar importance for treating stroke. More specifically, hAECs may
express markers of glial and neuronal progenitor cells and dis-
play multiple neuronal functions, such as synthesis and release of
acetylcholine, catecholamines, and neurotrophic factors (Elwan
and Sakuragawa, 1997; Bailo et al., 2004). Recent studies have
shown that hAECs can facilitate neuroregeneration in CNS dis-
orders such as Parkinson’s disease (Kakishita et al., 2000). Thus,
there is good reason to predict that hAECs may exert a neuro-
protective effect if administered after stroke, but they have so
far received little attention as a potential stroke therapy. Before
further considering this potential, we will briefly summarise the
known effects of hAECs in CNS diseases.

hAECs in the treatment of CNS diseases
In animal models of CNS disorders, accumulating evidence
suggests that hAECs can exert neuroprotection and facilitate
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neuroregeneration. For example, hAECs transplanted into the
striatum of a rat model of Parkinson’s disease were found to
not only survive but were functional (i.e., producing dopamine)
and prevented neuronal degeneration (Kakishita et al., 2000,
2003). In addition, after injection of hAECs into the transection
cavities of a primate model of spinal cord injury, those cells sur-
vived for up to 60 days during which there was no evidence of
inflammation, suggesting that the cells can avoid immunolog-
ical rejection within the CNS (Sankar and Muthusamy, 2003).
Furthermore, improved performance in locomotor tests was
observed in hAEC-treated animals compared to lesion control
animals, suggesting neuroprotection and improved function of
the motor neuron tracts controlling locomotion. It has also been
reported that administration of hAECs assists in the penetration
of host axons, and completely abolishes glial scar formation in
rats with spinal cord injury (Wu and Hui, 2006). More recently,
McDonald et al. reported preliminary findings that intraperi-
toneal injection of hAECs can suppress clinical symptoms, as
well as decrease CNS inflammation, demyelination and axonal
degeneration in the spinal cord and brain of a experimental
autoimmune encephalomyelitis (EAE) mouse model of multi-
ple sclerosis (McDonald et al., 2011). These authors also found
that hAECs can reduce proliferation of myelin oligodendrocyte
glycoprotein-specific T cells, and also decrease their secretion
of pro-inflammatory cytokines, IFNy, and TNFE. Interestingly,
these data point to a possible immunomodulatory mechanism by
which amnion epithelial cells can suppress the development of
EAE. Consistent with these findings, Liu et al. recently reported
that intravenously administered hAECs reduced infiltration of
T lymphocytes and monocyte/macrophages, and consequently
attenuated demyelination, within the CNS of an EAE mouse
(Liu et al., 2012). These authors demonstrated that this effect
was due to the secretion of transforming growth factor-p and
prostaglandin E2 from hAECs to suppress splenocyte prolifer-
ation. As a further example of the beneficial neuroprotective
effects of hAECs, conditioned media collected from these cells
has been found to be neurotrophic for rat cortical cells (Uchida
et al., 2000), and to support the survival of chicken neural
retinal cells (Tcheng et al., 1994). Overall, there is mounting
evidence that hAECs may have substantial protective and regen-
erative properties that could be amenable to the treatment of
neurological diseases.

hAECs in the treatment of stroke

Thus far, only one published study has tested the effect of hAECs
on ischemic stroke outcome (Liu et al., 2008). It found that direct
intra-cerebral (i.c.) injection of hAECs, 24 h after middle cerebral
artery occlusion (MCAO) in rats, resulted in a reduced infarct
volume and improved behavioral and neurological outcomes at
16 days post-stroke. Furthermore, apoptosis—as detected via
cleaved caspase-3 levels—was reduced in the vicinity of the trans-
planted cells. It is worth noting that the same research group has
also reported that i.c. injection of human amnion mesenchymal
cells can similarly improve stroke outcome in rats (Tao et al,
2012). In analogous studies to those in ischemic stroke, intra-
ventricular injection of hAECs was reported to reduce brain
edema and to improve motor deficit in a rat model of i.c. hem-
orrhage (Dong et al., 2010). Moreover, intra-cerebroventricular

transplantation of amniotic fluid-derived stem cells at 3 days
post-MCAO resulted in the attenuation of stroke-associated cog-
nitive deficits (Rehni et al., 2007).

Despite these very promising early experimental findings, i.c.
injection of stem cells still seems unlikely to become a feasible
routine method of delivery for stroke patients. Reasons for this
include the fact that i.c. injections would require routine access to
suitable imaging facilities and surgical expertise, and in any case
they may involve significant adverse effects, such as the break-
down of the BBB and a heightened inflammatory response within
the brain (McCluskey et al., 2008). Furthermore, any protective
effects from i.c. injection of stem cells will presumably be localized
to the immediate region of brain and would not also target the
detrimental systemic/immunological effects of stroke. Therefore,
future studies would ideally employ a less invasive and more clin-
ically amenable delivery route of stem cells, such as intravenous
(i.v.) injection.

As i.v. administration is a minimally invasive procedure, it
poses a substantially lower risk of adverse clinical events when
compared to i.c. transplantation. In fact, Tarjiri and colleagues
have reported that i.v. administration of amniotic fluid-derived
stem cells at 35 days post-stroke significantly reduces infarct dam-
age and behavioral deficits as assessed at 60—63 days after MCAO
(Tajiri et al.,, 2012). There is therefore great scope to further
explore the ability of hAECs to limit injury and/or promote tissue
repair and functional recovery when administered systemically
following stroke.

Potential mechanisms of action by hAECs in the treatment of stroke
There are various possible mechanisms by which hAECs might
exert therapeutic effects following stroke. Firstly, hAECs could
secrete neurotrophic factors that promote neuronal recovery of
damaged cells in the penumbra (Lindvall and Kokaia, 2004; Liu
et al., 2008). Such factors could also promote synaptogenesis to
re-innervate lost connections. Secondly, as hAECs have pluripo-
tent properties, they could differentiate into a neuronal pheno-
type and replace damaged or dead cells (Lindvall and Kokaia,
2004; Liu et al., 2008). Thirdly, hAECs could act as “biologi-
cal minipumps” within the CNS, secreting necessary cytokines,
growth factors, hormones, and/or neurotransmitters to restore
cellular function. Lastly, hAECs could potentially improve stroke
outcome by modulating the inflammatory response that con-
tributes to brain injury (Lindvall and Kokaia, 2004; Meisel and
Meisel, 2011). Included in this mechanism is the protection of
neurons from immune cell-mediated apoptosis (see Figure 2).

Immunomodulatory properties of hAECs

hAECs can exert immunomodulatory actions by actively sup-
pressing T lymphocyte proliferation, reducing the expression
of the potent pro-inflammatory cytokines IL-lao and IL-1f
(Solomon et al., 2001), and via producing inhibitors of MMPs
and proteolytic enzymes associated with inflammatory reactions.
In addition, although expression of HLA-G on hAECs enables
their evasion of the immune system, this protein has also been
shown to be anti-inflammatory by inducing apoptosis of activated
CD8" T lymphocytes and inhibiting CD4™ T lymphocyte pro-
liferation (Banas et al., 2008). Furthermore, hAECs transplanted
to the ocular surface can create a local environment that reduces
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FIGURE 2 | Schematic diagram illustrating the potential mechanisms by which human amnion epithelial cells may improve stroke outcome. “1" =

the surrounding inflammatory response (Hori et al., 2006). This
effect is thought to be due to hAECs reducing infiltration of
major histocompatibility complex class IT antigen-presenting cells
into the inflamed cornea. Moreover, we have demonstrated that
hAEC:s transplanted into a bleomycin-induced lung injury model
reduces the immune response, preventing lung fibrosis and loss
of function (Moodley et al., 2010; Murphy et al., 2011). These
results were associated with an in vivo reduction in the pro-
inflammatory cytokines, TNF, IFNy and IL-6, and an increase in
the anti-inflammatory cytokine, IL-10 (Murphy et al., 2011). As
a consequence of these actions of hAECs on the immune system,
there is a reduction in the infiltration of immune cells to the area
of damage.

hAECs are believed to secrete a number of immunomod-
ulatory factors. In fact, supernatant from hAEC culture can
inhibit both innate and adaptive immune cells (Li et al., 2005).
For example, hAECs produce alpha-fetoprotein, a protein that
reduces immune cell reactivity and suppresses neuroinflamma-
tion in a mouse model of multiple sclerosis (Irony-Tur-Sinai et al.,
2009). Furthermore, hAECs secrete macrophage inhibitory fac-
tor, which inhibits neutrophil and macrophage migration and
natural killer cell-mediated cytolysis (Li et al., 2005). Fas ligand
and TNF-related apoptosis-inducing ligand are both members of
the TNF family that are produced by hAECs, can regulate the
immune response through apoptosis of lymphocytes (Li et al,,
2005). Moreover, hAECs express transforming growth factor-g,
which suppresses immune cell numbers through apoptosis as well
(Li et al., 2005). Overall, the immunomodulatory properties of
hAECs lead us to speculate that these stem cells may be able
to limit the inflammatory response that contributes to infarct
formation following stroke.

Migration of intravenously injected hAECs after stroke

Due to the acute nature of stroke onset, an i.v. injection is ideal
so that therapeutics can be administered quickly after the event.
However, i.v. administration of stem cells has two initial obstacles
that must be overcome: (1) the ability of the cell to pass through
the extensive capillary network of the lungs; and (2) whether the
cells can effectively home to stroke-affected regions of tissue in
sufficient numbers to provide efficacy. Whether this may occur
remains to be tested, but the relatively small diameter of hAECs
(8-15 wm) probably increases the likelihood of these cells pass-
ing through the lungs, compared with larger stem cell lineages,
such MSCs, which do not easily passage across the lungs (Fischer
et al., 2009). Indeed, we have reported that only a minor percent-
age of i.v.-injected hAECs persist in the lungs of control mice,
and even in mice in which lung injury has been induced using
bleomycin (Moodley et al., 2010). Thus, it is conceivable that
i.v.-administered hAECs may have minimal impact on lung func-
tion and that a substantial proportion of these cells can pass into
the systemic circulation.

Stem cells communicate with each other and their environ-
ment via paracrine signaling (Burns et al., 2009). In order to
understand why and how cells migrate to their target organs, the
relevant chemotactic signal(s) must be identified. While very lit-
tle is known about the chemotaxis response involved in hAEC
migration from the circulation following i.v. transplantation, sev-
eral studies have defined the mechanisms that attract other types
of stem cells to injured sites following stroke. For example, it
has been shown that there is an increase in levels of stromal
cell-derived factor-1a (SDF-1a) in brains of experimental ani-
mal models of stroke (Hill et al., 2004; Robin et al., 2006) and
a subsequent decrease in stem cell migration after the addition of
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an antagonist of the chemokine receptor type 4 (CXCR4) (Robin
et al., 2006; Wang et al., 2008). SDF-1a is a growth factor pro-
duced by multiple types of mouse and human neural cells, and
which functions as a chemokine that is thought to be important
for neural progenitor migration during development. It is well-
documented that the chemokine interaction between SDF-1a and
CXCR4, its cognate receptor commonly expressed on the surface
of stem cells, plays a major role in stem cell migration (Robin
etal., 2006; Wang et al., 2008). More research is required to clarify
whether CXCR4 and/or other factors play a role in hAEC homing
and signaling pathways.

Ability of hAECs to engraft and differentiate and/or promote
neuronal repair
Stem cell therapy was initially considered to be an opportu-
nity for treating stroke patients by ultimately replacing dead
neurons with new neurons in the post-stroke infarcted brain.
As indicated, hAECs can indeed differentiate toward a neural
lineage, which may ultimately add to their potential for post-
stroke therapy (Elwan and Sakuragawa, 1997; Bailo et al., 2004;
Yu et al., 2009). In fact, i.c. injections of hAECs in rats at 24 h
after MCAO were found to migrate to ischemic areas and to
then express astrocyte (glial fibrillary acidic protein) and neuronal
markers (microtubule-associated protein 2 and nestin) (Liu et al.,
2008). Correlating with these observations, the hAEC-treated
rats showed improved behavioral and neurological outcomes,
as well as reduced infarct damage. Thus, the authors postu-
lated that the functional improvement following hAEC treat-
ment may have been partially due to the newly differentiated
neuron-like cells re-establishing connections with surviving host
neurons. Similarly, in a hemorrhagic stroke model, hAECs trans-
planted into the brain were found to express neuron-specific
antigens and to improve motor deficits after 4 weeks (Dong
et al., 2010). As a further example, i.v. administration of amni-
otic fluid-derived stem cells resulted in an increased number
of cells expressing microtubule-associated protein 2, and the
cell proliferation marker, Ki67, in the dentate gyrus and in the
subventricular zone of stroked animals, indicating increased neu-
rogenesis (Tajiri et al., 2012). Collectively, the existing evidence
supports the concept that hAECs can undergo neural differ-
entiation in vivo. Future studies must identify if these newly
formed neurons are functional and might be able to integrate
within the existing network of cells to substantially replace dead
tissue.

As indicated above, secreted paracrine factors may play a key
role in hAEC-mediated recovery after stroke. If administered
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