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Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism
by which neurons adapt their transcriptional responses to specific developmental and
environmental cues. While defects within the neural epigenome have traditionally been
studied in the context of early developmental and heritable cognitive disorders, recent
studies point to aberrant histone acetylation status as a key mechanism underlying
acquired inappropriate alterations of genome structure and function in post-mitotic
neurons during the aging process. Indeed, it is becoming increasingly evident that
chromatin acetylation status can be impaired during the lifetime of neurons through
mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several
HATs have been shown to participate in vital neuronal functions such as regulation of
neuronal plasticity and memory formation. As such, dysregulation of such HATs has
been implicated in the pathogenesis associated with age-associated neurodegenerative
diseases and cognitive decline. In order to counteract the loss of HAT function in
neurodegenerative diseases, the current therapeutic strategies involve the use of small
molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity
and thus enhance acetylation levels. Although this strategy has displayed promising
therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns
about their applicability. With rapidly evolving literature on HATs and their respective
functions in mediating neuronal survival and higher order brain function such as learning
and memory, modulating the function of specific HATs holds new promises as a
therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent
progress in research regarding epigenetic histone acetylation mechanisms underlying
neuronal activity and cognitive function. We discuss the current understanding of specific
HDACs and HATs in neurodegenerative diseases and the future promising prospects of
using specific HAT based therapeutic approaches.
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INTRODUCTION
The human genome encodes approximately 30,000 genes—but
can this relatively fixed genome explain who we are or how we
behave? A wealth of accumulating evidence suggests that there is
much more to genome than its linear sequence of three billion
basepairs. In fact, an additional level of “instructive” informa-
tion superimposed on the DNA double helix in the form of a
nucleoprotein entity termed the “chromatin” defines the three
dimensional structure of the genome in the cell nucleus. The
core unit of the chromatin is the nucleosome, which consists of
147 bp of DNA folded around histone octomers consisting two
each of the histone proteins H2A, H2B, H3, and H4 (Berger,
2007). Although such organization of DNA in the form of chro-
matin allows packaging DNA within the constrained space of
the nucleus, it also decreases the accessibility of DNA for key
biological processes like transcription, replication, and repair.
Despite the immense degree of global compaction, access to

DNA is achieved by local chromatin decondensation in a highly
regulated manner (Bonisch and Hake, 2012). While greater com-
paction of chromatin restricts accessibility, chromatin deconden-
sation events generally allow for specific transcriptional regulator
complexes to access DNA sequences, leading to enduring regu-
latory effects on gene expression and cellular function (Riccio,
2010). Such changes in chromatin compaction are mediated by
stable and heritable modifications of both the DNA and its
associated histone proteins that are independent of the under-
lying DNA sequence and together constitute the “epigenome”
(“epi”—derived from Greek for “over” or “above”). Only a few
years ago, the epigenome was primarily viewed in the con-
text of cell division and early development wherein it serves to
choreograph the myriad cellular and molecular events that pro-
mote specificity amongst various cell types that share a common
genome within an individual. At first glance, these processes
seemed to bear little relevance to the adult brain that is composed
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of a large proportion of post-mitotic and highly differentiated
cells (Jakovcevski and Akbarian, 2012). However, recent explo-
rations of the brain epigenome are providing unprecedented
insights into the importance of specific epigenetic modification
patterns in controlling gene expression not only in early brain
development, but in adult brain functions as well, calling into
place a “reprogramming process” that allows for plasticity at
many levels of the neural circuitry in response to environmen-
tal cues (Borrelli et al., 2008). Together with reports implicating
disordered chromatin organization and function in several age-
related neurodegenerative diseases, these findings have in turn
ignited enormous interest in examining how the course of nor-
mal maturation and aging affect the brain epigenome. While
age related accumulation of somatic mutations and structural
changes to the DNA are likely irreversible, most if not all of
the epigenetic modification marks studied to date prove to be
reversible. Thus, targeting the neural epigenome appears to be
a promising strategy for neuroprotection and/or neuroregenera-
tion both early in development as well as during the aging process
(Jakovcevski and Akbarian, 2012). In this review, we will summa-
rize recent progress in research linking epigenetic mechanisms,
specifically histone acetylation to pathogenesis associated with
age related neurodegenerative disorders. We will also discuss how
this knowledge has the potential to be translated into suitable
therapeutic strategies to treat these devastating conditions.

EPIGENETIC MODIFICATIONS OF DNA AND HISTONES
Epigenetics is historically defined as “the study of mitotically
and/or meiotically heritable changes in gene function that can-
not be explained by changes in DNA sequence” (Russo et al.,
1996). This definition, however, is not particularly well suited
for the nervous system where there is overall absence of mitosis.
(Graff et al., 2011) therefore proposed a more recent defini-
tion for epigenetics as “the structural adaptation of chromosomal
regions that allows to register, signal, or perpetuate altered activity
states.” Such effects are primarily mediated via three major levels
of epigenetic changes: (1) chemical modifications at the level of
nucleotides that include DNA methylation and RNA interference
(RNAi); (2) covalent post-translational modifications (PTMs) of
histone proteins and incorporation of histone variants; and (3)
nucleosome remodeling, referring to ATP-dependent processes
that regulate the accessibility of nucleosomal DNA (Borrelli et al.,
2008). Covalent histone modifications, histone variants, or chro-
matin remodeling complexes work together to alter the chromatin
fiber, causing changes in the degree of chromatin compaction
that correlate with “euchromatin” (open) vs. “heterochromatin”
(closed) states (Cheung et al., 2000a; Strahl and Allis, 2000). These
states generally align with active versus inactive states of gene
expression, respectively (Berger, 2007). Numerous reviews on
DNA methylation (Freitag and Selker, 2005; Miranda and Jones,
2007; Cedar and Bergman, 2012), non-coding RNAs (Bernstein
and Allis, 2005), and ATP-dependent chromatin remodeling com-
plexes (Ko et al., 2008; Hargreaves and Crabtree, 2011) have
appeared in the literature. In this way, PTMs to histones and DNA
act to regulate chromatin compaction that is critical in the control
of both stable and transient gene expression profiles that dic-
tate cell type specificity. Such epigenetic gene control mechanisms

have more traditionally been viewed in the context of cell division
and differentiation during early development. However, more
recently, these same epigenetic mechanisms underlying gene con-
trol have been shown to work in the context of maintaining
appropriate activity and function of post-mitotic neuronal cells,
specifically in response to environmental stimuli. The current
review will focus on covalent PTMs and in particular on recent
findings implicating histone acetylation changes in the etiology
of neurodegenerative diseases.

Histones are covalently modified at their amino terminal tails
that extend beyond the globular core and undergo numerous
PTMs which include in addition to the well studied acetylation
and methylation, phosphorylation, ADP-ribosylation, sumoyla-
tion, ubiquitination, and proline isomerization (Peterson and
Laniel, 2004). Remarkable progress has been made in charac-
terizing the regulatory molecules that elicit such PTMs on the
histone tails. Conceptually, these include the (1) Writers, enzymes
that modify specific substrates by adding functional moieties
like phosphate, acetyl or methyl groups; (2) Readers, regulatory
proteins that share unique domains implicated in recognizing
acetyl or methyl groups; (3) Erasers, enzymes that directly remove
PTMs (Borrelli et al., 2008). Most PTMs target specific amino
acid residues in the histone tails. For instance, phosphorylation
is directed to serine and theronine residues, and methylation
to arginines. However, lysines are targets for most modifica-
tions including acetylation and methylation. Moreover, covalently
modified histones alone or in combination generate distinct
docking sites and orchestrate the recruitment of multisubunit
protein complexes that mediate cell- and promoter-specific gene
expression. Histones are often concurrently modified on several
residues and there is also a dynamic interplay between histone
modifications and DNA modifications (such as DNA methy-
lation), thus creating staggering combinatorial possibilities for
gene regulation (Wood et al., 2006). For example, while phos-
phorylation of H3 Ser10 correlates with transcription activation
in yeast (Lo et al., 2001), it also facilitates acetylation of H3
Lys14 in mammalian cells following stimulation by epidermal
growth factor (EGF) with phosphorylation preceding acetylation
(Cheung et al., 2000b). Furthermore, acetylation of H3 Lys 14
was found to be preferentially associated with EGF activated c-fos
promoter in a MAP kinase-dependent manner, suggesting that
interplay between acetylated and phosphorylated histone modi-
fications may be involved in the expression of mitogen activated
immediate early genes. In addition to its crosstalk with H3 Lys14,
phosphorylation of H3 Ser10 has also been reported to play an
important role in regulating H3 Lys9 methylation. In a study by
Rea et al. (2000), methylation of H3 Lys9 was found to be sig-
nificantly inhibited when a H3 tail peptide phosphorylated at
Ser10 was used as a substrate in in vitro histone methyltransferase
assays. Furthermore, acetylation and methylation of H3 Lys9 was
found to be mutually exclusive. This observation is not surprising
as acetylation of H3 Lys9 correlates with transcriptional acti-
vation, whereas methylation of histone H3 Lys9 correlates with
gene silencing. On the contrary, methylation of H3 Lys4 local-
izes to sites of active transcription of chicken β-globin locus (Litt
et al., 2001), suggesting that this modification may be stimulatory
for transcription. Methylation of H3 Lys4 has also been shown
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to abrogate binding of the NuRD (Nucleosome remodeling and
deacetylase) repressor complex and displacement of deacetylase
activity of the NuRD repressor complex has been further postu-
lated to facilitate acetylation of H3 Lys9 (Zegerman et al., 2002).
These findings suggest that the controlled addition and removal
of specific PTMs result in unique combinations that correspond
to distinct physiological states and genomic functions.

DECODING THE EPIGENETIC LANGUAGE IN POST-MITOTIC
NEURON FUNCTION
Recent high resolution genome-wide profiling studies reveal that
“epigenomes” are highly organized and strikingly non-random
with respect to histone and DNA modifications (Bernstein et al.,
2007). For example, high levels of H3 and H4 acetylation and H3
Lys4 trimethylation are generally present in promoter regions of
active genes (Ruthenburg et al., 2007). In contrast, elevated levels
of H3 Lys27 methylation correlate with polycomb protein medi-
ated gene repression (Trojer and Reinberg, 2006). Interestingly,
such epigenetic patterns vary in different cell types or during dif-
ferent stages of development (Trojer and Reinberg, 2006; Lessard
et al., 2007; Putignano et al., 2007). More recently, specific chro-
matin signatures were also found at gene promoters, enhancers
(Wang et al., 2008), and even exons (Andersson et al., 2009;
Kolasinska-Zwierz et al., 2009; Spies et al., 2009; Tilgner et al.,
2009). Moreover, individual PTMs can favor or inhibit conse-
quent modifications on nearby residues of the same tail and
examples of PTMs that influence modifications on different tails
have also been reported (Sun and Allis, 2002; Latham and Dent,
2007). As lysines can be modified in various manners, it is the
competition between various PTMs for the same residue that
may determine functional outcomes (Zocchi and Sassone-Corsi,
2010). However, since distinct histone PTMs correlate with spe-
cific transcriptional states, it is conceivable that distinct histone
modifications patterns on one or more tails are likely read like a
molecular bar code to recruit chromatin remodeling complexes
that drive gene expression profiles required for particular cellular
events, a paradigm referred to as the “histone-code hypothesis”
(Strahl and Allis, 2000; Fischle et al., 2003; Linggi et al., 2005).

Accumulating evidence also indicates that there also exists a
“histone code” that regulates gene expression profiles for higher
order brain functions like memory formation that requires the
coordinated action of numerous signaling pathways to ulti-
mately affect long term changes in gene expression (Agranoff,
1967; Flood et al., 1973). In mammalian associative memory
tasks, activation of the ERK/MAPK (extracellular signal-regulated
kinase/mitogen-activated protein kinase) signaling cascade in
the hippocampus plays a crucial role in memory consolidation
(Atkins et al., 1998). This process is typically accomplished by
activation of the NMDA (N-methyl-d-aspartic acid) subtype of
glutamate receptors, leading to an increase in intracellular Ca2+
(Fanselow et al., 1994). Ca2+ activates Ca2+-sensitive protein
kinase C (PKC) and adenylyl cyclase/protein kinase A (PKA),
thereby triggering a series of events that eventually converge upon
ERK (Adams and Sweatt, 2002). Once activated, ERK translocates
into the nucleus to coordinate and elicit changes in gene expres-
sion (Davis et al., 2000) by regulating transcription factors like
CREB (Cre- binding protein) and Elk-1 (Davis et al., 2000) which

in turn, initiate transcription of memory associated genes that
contain their respective response elements (Chwang et al., 2006).
An emerging model for effecting a stable, coordinated pattern of
gene transcription underlying memory formation involves epi-
genetic tagging through modifications of histones. Accordingly,
activation of NMDA receptors and subsequently, the ERK/MAPK
signaling cascade has also been reported to result in a transient
increase in both H3 Ser10 phosphorylation and H3 Lys14 acety-
lation in the CA1 region of rat hippocampus following contextual
fear conditioning, a test routinely used to assess associative learn-
ing and long term memory formation (Chwang et al., 2006). In
this paradigm, peak level of these modifications was observed
1 h post conditioning, corresponding to the period when rapid
hippocampal gene induction occurs (Levenson et al., 2004).
Furthermore, such H3 modifications were abolished when mem-
ory formation was impaired by blockade of NMDA receptors
or by a latent inhibition paradigm, suggesting that these modi-
fications are specifically associated with memory consolidation.
Thus, it seems like phosphorylation and acetylation of histone
H3 may serve as part of a histone combinatorial code that is sub-
sequently interpreted as a pattern of gene expression specific to
contextual fear conditioning memory. Recent studies have also
identified DNA methylation, once thought to be a static process
after cellular differentiation, to work in concert with H3 acety-
lation to dynamically regulate plasticity and memory formation
in adult rat hippocampus following contextual fear conditioning
(Miller and Sweatt, 2007; Miller et al., 2008). But how do such
combinatorial histone modifications affect memory formation?
(Wood et al., 2006) proposed that histone modifications may
gate a burst of transcription for a specific set of plasticity effec-
tor and regulator genes that then change the response properties
of individual neurons in a network. Histone modifications may
also mediate persistent changes in the expression of key plasticity
effector or regulator genes required for maintenance of changes in
neuronal behavior. It is likely that transient histone modifications
may act downstream of signaling cascades to integrate multiple
signals and ensure that a cascade of gene expression is activated
only after a particular stimulus pattern (either spatially or tem-
porally) is generated (Schreiber and Bernstein, 2002). Under such
conditions, histone modifications may act to integrate informa-
tion about the activation and regulate recruitment of process
specific transcription factors. Thus, specific histone modification
patterns not only serve to alter the chromatin structure but also
provide an interaction interface for transcriptional co-activators
or co-repressors that bind modified histone tails to regulate spe-
cific transcription events (Wood et al., 2006). However, studies
aimed at deciphering the “epigenetic indexing code” specific for
high-order brain functions like memory formation are still in
their infancy. An increased understanding of chromatin func-
tion and epigenetic tagging may further help delineate the role
of particular epigenetic mechanisms in brain functions in more
molecular detail.

EPIGENETICS BASED ACTIVITY-DEPENDENT PLASTICITY
IN BRAIN FUNCTION
Phenotype is the net result of continued gene—environment
interactions. Environmentally regulated intracellular signals
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“program” regulated expression of very specific gene sets that
are required for the development and function of specific cell
lineages (Tilgner et al., 2009). In the nervous system, the mech-
anisms by which extracellular signals regulate gene expression
have just begun to be characterized. Indeed, epigenetic modifica-
tions, such as DNA methylation and PTMs of histone proteins are
emerging as fundamental mechanisms by which neurons adapt
their transcriptional response to developmental and environmen-
tal cues. The implicit hypothesis is that environmental signals
alter such chromatin modifications, allowing for the transcrip-
tional “plasticity” that in turn mediates sustained variation in
neural function (Meaney and Ferguson-Smith, 2010). In support
of this concept, Nelson et al. (2008) reported that spontaneous
synaptic transmission in hippocampal neurons is regulated by
alterations in DNA methylation that occur in response to synaptic
activity. Moreover, treatment of mouse E14 (embryonic day14)
cortical cultures with KCl that induces membrane depolariza-
tion enhances transcription of brain derived neurotrophic factor
(BDNF) that is critical in promoting adult neural plasticity asso-
ciated with learning and memory (Martinowich et al., 2003).
Such an effect was found to be associated with decreased CpG
methylation within exon IV promoter of the Bdnf gene as well as
dissociation of the MeCP2 (methyl cytosine binding protein 2)-
HDAC 1 (histone deacetylate 1)-mSin3A repressor complex from
its promoter. This suggests that DNA methylation–related chro-
matin remodeling may play a crucial role in activity-dependent
gene regulation critical for neural plasticity (Martinowich et al.,
2003).

In the hippocampus, various signaling pathways involving
dopaminergic, acteylcholinergic, and glutamatergic signaling
have been implicated in synaptic plasticity via activity-dependent
epigenetic mechanisms of neuronal gene regulation [reviewed
in Riccio (2010)]. Glutamate is a primary neural signal for
synaptic plasticity, and both glutamate as well as direct acti-
vation of its NMDA receptor induces MeCP2 phosphorylation
on Serine 421 in cultured hippocampal neurons (Zhou et al.,
2006). Such activity-dependent site specific phosphorylation of
MeCP2 has more recently been shown in a mouse model to
be required for MeCP2 genome-wide recruitment that serves to
facilitate experience-dependent chromatin remodeling (Cohen
et al., 2011). Activity-dependent gene regulation is also medi-
ated by site specific chromatin acetylation although the full
array of HATs that create these marks and the mechanisms by
which they respond to environmental stimuli is only recently
emerging. One of the best characterized of these HATs is CBP,
shown to utilize Ca2+-dependent signaling pathways to link its
action to environmental cues. In an elegant study using primary
mouse neuronal cultures exposed to elevated levels of potas-
sium chloride (KCl), (Kim et al., 2010) demonstrated that Ca2+
influx specifically via L-type voltage-sensitive calcium channels
triggers widespread transcription at activity-dependent neuronal
enhancers via site-specific recruitment of CBP to these genomic
locations. Neuronal activity also regulates chromatin acetyla-
tion by controlling the shuttling of certain class II HDACs in
and out of the nucleus by both NMDA receptor mediated Ca2+
influx-dependent mechanisms and by direct electrical activity.
Such control of HDAC intracellular localization plays a key

role in modulating chromatin acetylation and transcriptional
activity of neuronal genes in response to environmental stimuli
[reviewed in Riccio (2010)].

Sensory experiences in the form of neuronal activity also
have differential effects on synaptic plasticity at excitatory or
inhibitory synapses, leading to either long term potentiation
(LTP) or long term depression (LTD), whereby the efficacy
of synaptic transmission is up- or down-regulated, respec-
tively (Borrelli et al., 2008). Certain forms of LTP and LTD
require long-lasting changes in gene expression and a grow-
ing body of evidence suggests that histone PTMs may be
involved in these processes. In an elegant study using sen-
sory motor neurons of Aplysia, Guan et al. (2002) showed that
an increase and decrease of acetylated histones might consti-
tute the switch between LTP and LTD at the same synapses.
This study demonstrated that within a single sensory neuron,
the excitatory neurotransmitter serotonin induces expression of
CREB1 transcription factor which in turn recruits the HAT
CBP (CREB binding protein). Subsequently, through histone
acetylation and the recruitment of transcriptional machinery,
CREB1/CBP together lead to activation of the downstream gene
C/EBP (CCAAT enhancer binding protein) that is required for
long-term synaptic plasticity with increased synapse strength
(LTP). On the contrary, treatment of these sensory neurons with
an inhibitory transmitter FMRFamide causes displacement of
CREB1/CBP with the repressor complex CREB2(ATF4)/HDAC5
on the target C/EBP gene promoter, leading to promoter deacety-
lation and inhibition of C/EBP gene expression as well as sub-
sequent switch of synaptic plasticity into LTD (Guan et al.,
2002).

The proper execution of complex animal functions and their
breakdown in disease involves an interaction between the genet-
ics of an animal and its environment (Arai and Feig, 2011). In
a study by Greenough et al. (1972), it was demonstrated that
environmental enrichment (EE) in the form of availability of
a wide variety of toys, exercise apparati, and socially complex
housing, boosts memory capacity in mice. Novel stimuli such
as that induced by EE have been observed in different animal
models to induce a natural exploration behavior and increase
the release of dopamine in hippocampus and prefrontal cortex
(PFC) (Ljungberg et al., 1992; Ihalainen et al., 1999; Li et al.,
2003). Dopaminergic innervation is critical for long term changes
in synaptic efficacy in hippocampus and PFC (Gurden et al.,
2000; Li et al., 2003; Huang et al., 2004; Granado et al., 2008),
as well as for learning-associated immediate-early gene expres-
sion (Lisman and Grace, 2005; Granado et al., 2008). In a recent
study by Sarantis et al. (2012), it was demonstrated that expo-
sure of rats to a novel open-field environment that increases their
exploratory behavior evokes dopamine release in the hippocam-
pus and PFC. Furthermore, this spatial novelty leads to chromatin
remodeling events characterized by histone H3 Ser10 phospho-
rylation and H3 Lys14 acetylation with concomitant increase
of the IEGs c-Fos and zif/268 protein expression in the CA1
region of the hippocampus. Both these events are also depen-
dent upon phosphorylation of NMDA and AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunits
and subsequent activation of the ERK signaling pathway which as
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described earlier mediates neuronal synaptic plasticity. By using
CK-p25 Tg mice that allow temporally and spatially restricted
induction of neurodegeneration, Fischer et al. (2007) showed that
EE reinstates associative and spatial learning in these mice with
severe neurodegeneration and promoted growth of new dendrites
and synapses in the hippocampus. Furthermore, (Fischer et al.,
2007) trained a group of these animals using fear condition-
ing, a learning method by which organisms learn to associate a
neutral stimulus with another, unpleasant stimulus. They then
allowed the animals’ memory for that training event to decay
over time (directly or indirectly through neurodegeneration), and
confirmed that the animals had lost the capacity to recall that
memory. Remarkably, the ability of the animals to recall that
memory, which had apparently been lost, was restored by EE.
Such an effect was also associated with increased hippocampal
acetylation of histones H3 and H4. Accordingly, administration
of the HDAC inhibitor Sodium butyrate restores associate and
spatial learning in the CK-p25 Tg mice similar to EE. Together,
these studies suggest that EE might mediate “rewiring” of the neu-
ral network that underlies memory formation through chromatin
remodeling.

With identification of nuclear enzymes that regulate histone
PTMs (like acetylation, lysine/argine methylation, phosphoryla-
tion, deamination, ubiquitination), it is conceivable that most, if
not all, chromatin modifying enzymes are targeted by signaling
pathways that directly link environmental cues to gene expres-
sion (Wood et al., 2006). Nevertheless, the complete repertoire
of extracellular signals and corresponding intracellular pathways
that mediate dynamic regulation of histone modifications in
neurons remains poorly understood.

ALTERATIONS OF THE BRAIN EPIGENOME AS PART OF
AGING AND IN NEURODEGENERATIVE DISEASES
An increasing body of evidence indicates that substantial reorga-
nization of the brain epigenome occurs during aging and such
“age related” epigenetic drift could further exacerbate an indi-
vidual’s vulnerability to “aging related” cognitive decline (Graff
and Mansuy, 2009; Penner et al., 2010). This notion that aging
is associated with epigenetic changes in the brain is substanti-
ated with studies reporting widespread age-related changes in
gene expression in the cerebral cortex, including downregula-
tion of many neuronal genes (Erraji-Benchekroun et al., 2005;
Tang et al., 2009), global loss of DNA methylation in aging, or
the hypermethylation of regulatory regions (promoters) of genes
associated with accelerated aging (Tang et al., 2009; Gonzalo,
2010; Han and Brunet, 2012; Winnefeld and Lyko, 2012). In
addition, dynamic changes to the epigenetic landscapes of PTMs
can also occur and are characterized by loss of markings asso-
ciated with active gene expression, such as monomethylation of
H4 Lys20 and trimethylation of H3 Lys36, in conjunction with
robust increase in the repressive mark H3Lys27me3 (Wang et al.,
2010). Likewise, in the hippocampi of 16-month old wild type
mice, genomic regions associated with actively expressed genes
shows a decline in acetylated H4Lys12, a PTM linked to tran-
scription elongation (Peleg et al., 2010). It is likely that such
age-related drifts in brain epigenomes negatively affect neu-
ronal and oligodendroglial transcriptomes, thereby leading to

a decline in signaling capacity of nerve cells (Lu et al., 2004;
Copray et al., 2009; Fischer et al., 2010). With regards to specific
neurophysiological processes, it is well-established that memory
and synaptic plasticity processes in the cognitively healthy adult
require transcription of immediate-early genes (IEGs), includ-
ing Arc (activity-regulated cytoskeletal gene), zif268 (also known
as nerve growth factor inducible-A), and bdnf (brain-derived
neurotrophic factor) (Guzowski et al., 2000; Hall et al., 2000;
Steward and Worley, 2001). While blocking the expression of
these genes in adult animals prevents the consolidation of mem-
ory (Linnarsson et al., 1997; Guzowski et al., 2000), decreased
IEG expression is also prevalent in many models of memory
disorders (Dickey et al., 2003; Palop et al., 2005; Rosi et al.,
2005) and as a result of the normal aging process (Blalock et al.,
2003; Small et al., 2004; Rowe et al., 2007). Accumulating evi-
dence indicates that epigenetic mechanisms play a key role in
dynamically regulating memory associated gene transcription
in the adult CNS and are thus integral to long term memory
formation (Levenson and Sweatt, 2005; Lubin et al., 2008). In
light of studies reporting a decline in the transcription of key
memory-promoting genes during aging (Blalock et al., 2003;
Copray et al., 2009; Winnefeld and Lyko, 2012) it has been
hypothesized that such changes could be mediated by dysregu-
lation of epigenetic control mechanisms over the lifespan of an
individual. Consequently, accumulation of aberrant epigenetic
marks within brain regions vulnerable to the aging process may
result in age-related cognitive deficits and are also manifested
in the form of neurodegenerative diseases (Penner et al., 2010)
(Figure 1).

FIGURE 1 | Age associated alterations to the brain epigenome. Age
associated cognitive decline as caused by accumulated alterations of
histone acetylation patterns within the brain epigenome. Misregulation of
specific HAT production and/or their targeting to chromatin leads to
complex changes in the chromatin landscape with subsequent altered
transcription profiles. Such negative changes exacerbate an individual’s
vulnerability to age related cognitive decline.
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Age-related neurodegenerative disorders such as Huntington’s
disease (HD), Alzheimer’s disease (AD), Parkinson disease (PD),
amyotrophic lateral sclerosis (ALS), and others are multifacto-
rial illnesses in which many as yet poorly understood path-
ways are affected serially and in parallel, resulting in pathologic
phenotypes like cognitive decline. Recent studies have linked
phenotypic as well as mechanistic features common with this
array of neurodegenerative diseases to epigenetic defects (Kwok,
2010; Marques et al., 2011; Babenko et al., 2012). In support
of this concept, both familial and sporadic forms of AD, PD,
and ALS are known to occur, familial forms represent only a
minority of the cases and the vast majority of cases occur as spo-
radic forms that are likely to result from complex interactions
between genetic and environmental factors that superimpose on
the slow, sustained neuronal dysfunction due to aging, a major
risk factor for neurodegenerative diseases (Migliore and Coppede,
2009). In fact, “synucleopathies” such as Parkinson’s disease and
dementia with Lewy bodies are associated with dysregulation of
DNA methylation at the promoters of several disease-associated
genes, an effect primarily mediated by cytoplasmic sequestra-
tion of DNA methyltransferase 1(Dnmt1) by α-synuclein that
results in a decrease in nuclear Dnmt1 (Desplats et al., 2011).
Histone modifying enzymes have also been implicated in neu-
rodegenerative diseases. For example, the pathological seques-
tration of transcription factors vital for neuronal health, such
as the cAMP response element-binding protein CREB and its
binding partner CBP, a histone acetyltransferase (HAT), has
been linked to the beta amyloid plaques seen in the brains of
individuals with Alzheimer’s disease (AD) (Tong et al., 2001;
Vitolo et al., 2002; Caccamo et al., 2010). Sequestration of
CBP within nuclear polyglutamine inclusions that results in a
decrease in soluble CBP and CBP-dependent transcription has
also been observed in cell culture and transgenic mouse mod-
els of polyglutamine disorders like spinocerebellar ataxia type 3
(McCampbell et al., 2000; Chai et al., 2002), and Huntington’s
disease (Steffan et al., 2001). The HAT, Tip60 has been reported to
interact with ataxin 1 protein in Spinocerebellar ataxia 1 (SCA1)
mouse model and contribute to cerebellar degeneration associ-
ated with SCA1, a neurodegenerative disease caused by polyglu-
tamine tract expansion in the ataxin-1 protein (Gehrking et al.,
2011). Furthermore, excessive H3Lys9 methylation (Ryu et al.,
2006) and increased expression of macro H2A1, a variant histone
broadly associated with repressive chromatin (Hu et al., 2011),
have been observed in blood and brain tissues from individu-
als with Huntington’s disease in brains regions like the striatum
and cerebral cortex which are heavily affected by the disease
associated neurodegenerative process (Jakovcevski and Akbarian,
2012). These studies highlight the fact that epigenetic mecha-
nisms may be crucial to advancing our understanding of how
individual differences modulate susceptibility to neurodegener-
ative diseases. Originally thought to be stable and irreversible,
epigenetic mechanisms have been demonstrated by several recent
studies to be dynamic and reversible even in fully differentiated
post-mitotic brain cells. This reversibility supports the develop-
ment of epigenetic-based pharmacological interventions to alle-
viate or reverse the symptoms resulting from their dysfunctions
(Graff and Mansuy, 2009).

HISTONE ACETYLATION: A KEY EPIGENETIC MODIFICATION
FOR NEURONAL SURVIVAL AND FUNCTION
HAT: HDAC IMBALANCE IN THE ETIOLOGY OF NEURODEGENERATIVE
DISEASES
In neurons, histone acetyltransferases (HATs) and histone
deacetylases (HDACs) are among the best characterized chro-
matin modifying enzymes and represent distinct classes that,
respectively, catalyze forward and reverse kinetics of lysine residue
acetylation in specific histone substrates. HATs function enzymat-
ically by transferring an acetyl group from acetyl-coenzyme A to
the ε-amino groups of histone lysine residues thereby creating a
specific “histone code” for chromatin modification that in gen-
eral, enhances DNA accessibility for transcription factor binding.
Contrarily, HDACs attenuate transcription levels by deacetylating
such lysine targets (Legube and Trouche, 2003). Under normal
conditions, maintaining the balance between HAT and HDAC
levels and activity is crucial for establishing appropriate his-
tone modification patterns that serve to regulate both stable and
rapidly changing gene expression profiles critical for both neu-
ronal homeostasis, and appropriate neurophysiological response
outputs such as long-term potentiation, learning, and memory,
respectively (Saha and Pahan, 2006). In support of this con-
cept, treatment of the dopaminergic neuronal cell lines like rat
N27, mouse MN9D, and human SH-SY5Y cells with the HDAC
inhibitor trichostatin A (TSA) under normal conditions has been
found to induce neuronal apoptosis (Wang et al., 2009). Similarly,
overexpression of CBP in resting primary cerebellar granule neu-
rons (CGN) under prosurvival conditions leads to chromatin
condensation and cell death (Rouaux et al., 2003). Neuronal
overexpression of Tip60 also leads to increased apoptosis and
lethality in Drosophila (Pirooznia et al., 2012b). Such lethal effects
are likely mediated by skewing the HAT/HDAC balance toward
increased acetylation that in turn brings about alterations in
the chromatin structure that leads to activation/de-repression of
genes that are quiescent under basal conditions. On the contrary,
induction of apoptosis in CGN primary cultures by neurotrophic
deprivation leads to H3 and H4 deacetylation that precedes neu-
ronal death and is also accompanied by loss of CBP, an effect
mediated by degradation of CBP by caspase-6 (Rouaux et al.,
2003). Together, these studies support the maintenance of optimal
HAT/HDAC balance for neuronal survival, notably in differenti-
ated adult neurons that have to maintain their functional status
and homeostasis throughout their lifetime.

Consistent with the above studies, altered levels of histone
acetylation have also been observed in several models of neu-
rodegenerative diseases. For instance, toxic accumulation of α-
synuclein in the nucleus of dopaminergic neurons induces neu-
rotoxicity by promoting H3 deacetylation through direct associa-
tion with histones thereby shielding residues targeted for acety-
lation (Kontopoulos et al., 2006). The polyglutamine disease
protein ataxin-3 has also been reported to cause transcriptional
repression by binding histones H3 and H4 thereby blocking access
to acetylation sites on these histones. Additionally, ataxin-3 also
binds coactivators like CBP, p300, and CBP/p300 associated fac-
tor (PCAF) and represses the respective coactivator mediated
transcription (Li et al., 2002). Expression of the polyglutamine-
containing domain of the pathogenic Huntington (Htt) protein

Frontiers in Cellular Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 30 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Pirooznia and Elefant Targeting HATs in neurodegenerative diseases

in cultured cells (PC12) also leads to H3 and H4 deacetylation
(Steffan et al., 2001; Ferrante et al., 2003; Jiang et al., 2006).
In an ALS mouse model (SOD1 G86R), H3 hypoacetylation
has been observed in cholinergic motor neurons from the lum-
bar spinal cord (Rouaux et al., 2003, 2007). While these studies
identify histone deacetylation as a common feature of neurotox-
icity under pathological conditions, as mentioned above, histone
hyperacetylation can also be fatal to neurons. In a study by
Song et al. (2010), it was reported that Dieldrin, a neurotoxic
peptide implicated in the etiopathogenesis of PD, induces a time-
dependent accumulation of CBP, resulting in increased H3 and
H4 acetylation in dopaminergic neurons. Together, this series
of studies strongly point toward a loss of neuronal acetylation
homeostasis during neurodegeneration. How can impairment
of acetylation homeostasis lead to neuronal loss? The clue to
this question revolves around the hypothesis of “transcriptional
dysfunction” that attributes the degenerative fate of neurons to
altered transcription profiles resulting from complex changes in
the chromatin histone acetylation landscape that differs sharply
from activity-dependent normal modification and transcription
patterns. As a result, expression of pro-survival associated genes
is likely attenuated by such alterations, while expression of pro-
apoptotic genes is induced. Such gene expression alterations
consequently lead to neuronal cell death, a major pathological
hallmark of many neurodegenerative diseases (Saha and Pahan,
2006). However, neuronal cell death and activation of apoptotic
pathways associated with loss of neurons is a late event in the
disease associated pathogenesis (Brady and Morfini, 2010).

Accumulating evidence indicates that the clinical symptoms
associated with neurodegenerative diseases are the result of the
accumulation of early and subtle neuronal dysfunction that pre-
cedes actual cell demise and is manifested through loss of synaptic
connectivity. For instance, in Alzheimer’s disease (AD), synaptic
degeneration appears to be an early event in pathogenesis with
synapse loss evident in patients with early AD and mild cogni-
tive impairment (Scheff et al., 2007; Arendt, 2009). Accordingly,
it has been proposed that synapse loss underlies memory impair-
ment evident in the early phase of AD (Shankar and Walsh,
2009). Recent studies propose that changes in histone acetyla-
tion levels may be involved in the altered synaptic function and
memory associated with AD (Sananbenesi and Fischer, 2009; Xu
et al., 2011). Consistent with this hypothesis, pre-clinical stud-
ies in APP/PS1 mouse model of AD have reported differences in
histone acetylation levels during associative memory formation
wherein levels of hippocampal acetylated histone H4 in APP/PS1
mice were about 50% lower than in wild-type littermates after fear
conditioning training (Francis et al., 2009). Likewise, in HD, there
is now considerable evidence that early cognitive deficits appear in
patients before the onset of the characteristic motor disturbances
(Van Raamsdonk et al., 2005). Early impairment of long-term
spatial and recognition memory in heterozygous HD knock-in
mutant mice (HdhQ7/Q111) is also associated with reduced hip-
pocampal activity of CBP and diminished levels of histone H3
acetylation with concomitant reduction in expression of memory
related genes (Giralt et al., 2012). These studies further sup-
port the notion that disruption of acetylation homeostasis can
lead to early and widespread synaptic dysfunction likely resulting

from impairment of transcriptional profiles critical for promot-
ing appropriate neuronal connectivity. Accumulation of these
early and often subtle defects likely ultimately lead to neuronal
apoptotic cell death.

HAT: HDAC INTERPLAY IN MEMORY FORMATION
A number of recent studies have identified histone acetylation
as an essential mechanism for formation of long-term memories
(Levenson and Sweatt, 2005). For instance, associative learning
in rats induces a transient increase in hippocampal acetylation of
histone H3 but not H4 1 h after training (Levenson et al., 2004).
A recent study also reported an increase in acetylation of histones
H3 Lys9, Lys14 and H4 Lys5, Lys8, Lys12 (but not Lys16) 1 h after
contextual fear conditioning in healthy young mice, Peleg et al.
(2010) suggesting that this type of memory formation leads to
very specific re-organization of the chromatin structure. Similar
changes in histone acetylation modification patterns have been
observed in other hippocampus-dependent learning paradigms
and are restricted to periods where critical phases of transcription
associated with long-term memory formation occurs [reviewed
in Graff et al. (2011)]. The above mentioned study by Peleg et al.
(2010) also reported that while aged mice that exhibited memory
disturbances displayed a transient increase in H3 Lys9, Lys14 and
H4 Lys5, Lys8 acetylation 60 min after fear conditioning, there
was no change in acetylation of histone H4 at lysine12 (H4K12)
in response to learning. Furthermore, the specific lack of H4K12
acetylation correlated with a severely impaired hippocampal gene
expression program required for memory formation. By analyz-
ing the distribution of H4K12 acetylation in young and aged mice
during learning, it was determined that impaired H4K12 was
selectively associated with the coding regions of genes that are
normally upregulated during learning. Accordingly, restoration
of physiological H4K12 acetylation reinstated the expression of
learning-induced genes and led to the recovery of cognitive abili-
ties. Together, these studies provide convincing evidence in favor
of a casual role for histone acetylation in mediating gene expres-
sion changes associated with consolidation of long term memory
as well as age-associated memory impairment.

Recent studies have also identified specific HATs and HDACs
that are required for memory formation, and deregulation of such
enzymes have also been linked to age-associated memory impair-
ment (Fischer et al., 2010). To this end, several genetic studies
have identified the HAT CBP as a major contributor to mem-
ory formation (Barrett et al., 2011). Mice haploinsufficient for
CBP (cbp±) exhibit reduced acetylation, defects in hippocampal
late long-term potentiation (L-LTP), and some forms of long-
term memory (LTM) deficits (Alarcon et al., 2004). Importantly,
the HAT activity of CBP was shown to be required for these
processes (Korzus et al., 2004). In addition, other HATs like
the E1A-binding protein p300 (p300) and p300/CBP-associated
factor (PCAF), have also been implicated in memory processes
(Oliveira et al., 2007; Maurice et al., 2008). PCAF homozy-
gous knock-out (KO) mice are viable and display short term
memory impairments at adolescent age (2 months). However,
memory impairments observed in the PCAF KO mice change
with age toward contextual long-term memory deficits at 6 and
12 months (Maurice et al., 2008). In addition, learning induced
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upregulation of CBP, p300, and PCAF has also been associated
with elevated H2B and H4 acetylation during spatial long-term
memory consolidation (Bousiges et al., 2010). This is consistent
with previous studies that showed that learning increases hip-
pocampal H2B and H4 acetylation (Koshibu et al., 2009; Peleg
et al., 2010). Together, these studies suggest that HATs exhibit
certain substrate specificity during memory formation in the
adult brain and mediate dynamic acetylation of such substrates.
Interestingly, histone acetylation at certain residues may influ-
ence the recognition and binding of certain HATs that may then
promote acetylation of additional residues. In support of this
concept, the crystal structure of the Yeast Gcn5 bromodomain
revealed that it may discriminate between binding to different
acetylated lysine residues on histone H4 depending upon the con-
text in which they reside (Owen et al., 2000). Interestingly, H4K16
is the only histone modification that is not regulated during
memory consolidation in mice, while exposure of mice to asso-
ciative learning increases hippocampal H4K5, H4K8, and H4K12
acetylation as well as H3K9 and H3K14 acetylation (Peleg et al.,
2010). Thus, H4K16 is likely at the base of the pyramid of H4
acetylation and in turn mediates acetylation of nearby lysine sub-
strates in a process specific manner (Stilling and Fischer, 2011).
A recent study reported that HATs like CBP, p300 and PCAF
that all harbor a bromodomain are upregulated during spatial
memory formation while the Tip60 that lacks a bromodomain
was not upregulated (Bousiges et al., 2010). Similarly, in a recent
gene array study, the bromodomain containing HATs, Taf1/Kat4,
Gcn5/Kat2a were found to be upregulated 1 h after a fear con-
ditioning stimulus (Peleg et al., 2010). Together, these findings
suggest a model wherein a stimulus driven upregulation of bro-
modomain containing HATs induce histone acetylation that is
required for transcription of plasticity-related genes (Stilling and
Fischer, 2011).

Histone acetylation is mediated by the concerted actions of
HATs and HDACs (Legube and Trouche, 2003). The mammalian
genome encodes 11 HDAC proteins consisting of the class I
(HDACs 1, 2, 3, and 8), class II (HDACs 4, 5, 6, 7, 9, and 10),
class III sirtuins (SIRT 1, 2, 3, 4, 5, 6, and 7), and class IV (HDAC
11) HDACs (Thiagalingam et al., 2003). With regards to mem-
ory formation, HDAC2 was recently shown to be associated with
promoters of genes implicated in synaptic plasticity including
Egr1 (also known as zif 268), Bdnf, Fos, and Creb. Accordingly,
neuronal overexpression of HDAC2 in mice, but not that of
HDAC1, decreased dendritic spine density of hippocampal CA1
pyramidal neurons and dentate gyrus granule cells, impaired
hippocampus-dependent synaptic plasticity and suppressed the
expression of synaptic remodeling and plasticity genes, indicating
that HDAC2 negatively regulates memory formation (Guan et al.,
2009). Conversely, HDAC2 knock-out mice exhibit enhanced
memory formation that correlated with elevated H4K12 acety-
lation which as mentioned above has been implicated in gene
expression programs required for memory formation. Similar to
HDAC2, specific deletion of HDAC3 in the dorsal hippocam-
pus of mice leads to enhanced long term memory and elevated
expression of Nr4a2, a gene associated with long term memory
formation (McQuown et al., 2011). This series of studies identi-
fying the role of specific HATs and HDACs in memory formation

highlight the crucial dependency of long term memory formation
on these key epigenetic players.

TARGETING HISTONE DEACETYLASES: EPIGENETIC
STRATEGY FOR NEURODEGENERATIVE DISEASES
The above studies identifying a critical role for histone acetyla-
tion in promoting neuronal cell survival and memory formation
support recent findings demonstrating that deregulation of his-
tone acetylation is causatively linked to the pathogenesis of var-
ious neurodegenerative diseases (Stilling and Fischer, 2011). In
light of these studies, the use of histone deacetylase inhibitors
(HDACi) as a therapeutic tool for neurodegenerative disorders
has been examined with great interest in the last decade (Dietz
and Casaccia, 2010). Histone acetylation changes in specific brain
regions like the hippocampus, amygdala, and medial prefrontal
cortex have also been implicated in the persisting abnormali-
ties of stress-related psychopathology like depression (Tsankova
et al., 2007; Covington et al., 2009), anxiety disorders (McEwen
et al., 2012), and schizophrenia (Tang et al., 2011). Accordingly,
local administration of HDACi in such brain regions has been
observed to have antidepressant-like actions in several behavioral
assays (Schroeder et al., 2007; Bredy and Barad, 2008; Grayson
et al., 2010). These studies suggest that HDACi show potential
as anti-depressant agents. The potential contribution of epige-
netic mechanisms including histone acetylation to susceptibility
to stress related disorders and the reversal of disease symptoms by
HDACi has been extensively reviewed in the literature (Abel and
Zukin, 2008; Sun et al., 2013; Vialou et al., 2013). This section will
therefore review some of the recent data linking dysregulation of
specific HATs and HDACs to neurodegenerative diseases as well
as the promising effects observed with HDACi in preventing cell
death and alleviating disease associated pathological symptoms.

HUNTINGTON’S DISEASE
Huntington’s disease (HD) is an inherited genetic disorder,
caused by an abnormally expanded and unstable CAG repeat
(polyglutamine or polyQ expansion) within the coding region of
the gene encoding the huntington (Htt) protein. One of the mod-
els for mutant huntington protein induced toxicity is based on the
finding that a polyglutamine peptide encoded by the first exon
of Htt (Httex1p) directly binds the acetyltransferase domains of
CBP and PCAF in vitro (Steffan et al., 2001; Cong et al., 2005).
This appears to sequester these acetyltransferases, resulting in
globally reduced H3 and H4 acetylation levels, and altered gene
expression (Steffan et al., 2001). Overexpression of the expanded
HD constructs has been shown in different cellular models to
cause redistribution of CBP in nuclear or cytoplasmic inclusions.
This phenomenon is accompanied by inhibition of HAT activ-
ity of CBP, further leading to global deacetylation and cell death
(McCampbell and Fischbeck, 2001). Mutated polyQ-expanded
Htt has also been shown to selectively enhance ubiquitylation
and degradation of CBP (Jiang et al., 2003; Cong et al., 2005).
Treatment with HDAC inhibitors (HDACi) have been reported to
rescue histone acetylation levels and improve neurodegeneration
and pathological symptoms in cellular, Drosophila and mouse
models of HD. For instance, expression of HTTex1p in cultured
PC12 cells reduces H3 and H4 acetylation levels, an effect that
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can be reversed by administration of HDACi like trichostatin
(TSA) and suberoylanilide hydroxamic acid (SAHA) (Steffan
et al., 2001). Neuronal expression of the expanded repeat Httex1p
in Drosophila has been observed to be intrinsically cytotoxic,
resulting in reduced viability and degeneration of photoreceptor
neurons. However, treating these flies with the HDACi Sodium
butyrate and SAHA was found to increase viability and pre-
vent progressive degeneration of photoreceptor neurons (Steffan
et al., 2001). Httex1p induced neurodegeneration of photorecep-
tor neurons in Drosophila can also be suppressed by genetic or
pharmacological reduction of the class I HDAC, Rpd3, and the
class III HDAC, sirtuin 2 (Sir2) either individually or in combi-
nation (Pallos et al., 2008). Administration of the pan-HDACi,
suberoylanilide hydroxamic acid (SAHA) has been shown to
increase histone acetylation and improve motor impairment in
the R6/2 transgenic HD mouse model (Hockly et al., 2003). Such
an effect has been reported to be mediated via reduction of
HDAC2 and HDAC4 by SAHA in the cortex and brain stem of
R6/2 mice (Mielcarek et al., 2011). In the same R6/2 mice model,
presymptomatic intraperitoneal administration of another pan-
HDACi, sodium butyrate extended survival and prevented striatal
neuronal atrophy with resultant improvement in motor perfor-
mance (Ferrante et al., 2003). A novel pimelic diphenylamide
HDACi, 4b, has also shown beneficial effects on disease pheno-
type and transcriptional abnormalities in an HD mouse model
(Thomas et al., 2008). Together, these studies support the notion
that HD is a disease of aberrantly reduced histone acetylation.

PARKINSON’S DISEASE
Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order, characterized by degeneration and death of dopaminer-
gic (DA) neurons in the substantia nigra pars compacta (SNc)
of the ventral midbrain (Moore et al., 2005). The initial link
between PD and deregulation of histone acetylation came from
observations that the PD linked presynaptic protein, α-Synuclein
(α-Syn), binds histones and as a result inactivates HATs like CBP,
p300 and PCAF, causing apoptosis in human neuroblastoma cells
(Kontopoulos et al., 2006). More recently, the ability of the class
I HDACi valproic acid to increase histone acetylation in a rat
model of Parkinson’s disease was associated with decrease in
monoubiquitination of α-Syn that facilitates its nuclear translo-
cation, an increase in tyrosine hydroxylase in both the substantia
nigra and striatum as well as prevention of neuronal death in
the substantia nigra (Monti et al., 2010). A robust age-related
increase in α-synuclein protein within individual nigral neu-
rons has been observed with optical densitometry studies and is
strongly associated with age-related decreases in tyrosine hydrox-
ylase (TH), the rate limiting enzyme for dopamine production
(Chu and Kordower, 2007). Sirtuins 2 (SIRT2) is one of the
seven NAD+-dependent class III HDACs (Blander and Guarente,
2004) that functions as α-tubulin deacetylase (North et al., 2003).
Mounting evidence indicate that excess SIRT2 might be delete-
rious to neurons (Suzuki and Koike, 2007; Pfister et al., 2008)
and a recent study by Maxwell et al. (2011) also revealed an age-
dependent accumulation of SIRT2 in mouse brain and spinal
cord and correlate with reduced α-tubulin acetylation in primary
mouse cortical neurons. Genetic or pharmacological inhibition

of SIRT2 has been reported to rescue α-synuclein toxicity in
dopaminergic neurons and in an in vivo fly model (Outeiro et al.,
2007). The same study also reported that inhibition of SIRT2 in
human neuroglioma cells (H4) abates α-synuclein toxicity by pro-
moting formation of enlarged α-synuclein inclusions. Although
α-synuclein inclusions are considered a pathological feature of
PD, formation of such inclusions likely lowers the concentration
of toxic α-synuclein oligomers, reduces aberrant interaction of
components of inclusions with cellular proteins and thus has been
proposed to have cytoprotective effects (Tanaka et al., 2004). The
exact mechanism whereby SIRT2 inhibition affects α-synuclein
aggregation remains uncertain. However, α-synuclein has been
reported to interact with α-tubulin as well as the microtubule-
binding proteins MABP1 and tau (Jensen et al., 2000; Alim
et al., 2004). Thus, one possibility is that the increase in acety-
lated α-tubulin resulting from SIRT2 inhibition may stimulate
aggregation of α-synuclein through its affinity to microtubules.
Moreover, microtubule stabilization itself could be an impor-
tant factor contributing to neuroprotection (Outeiro et al., 2007).
Together, these studies provide a link between α-synuclein activ-
ity, histone deacetylation, neurodegeneration, and aging as well
as identify SIRT2 as a potential target for therapeutic interven-
tion in PD.

AMYLOTROPHIC LATERAL SCLEROSIS (ALS)
The efficacy of restoring histone acetylation levels has also been
investigated in Amylotrophic lateral sclerosis (ALS) using HDACi
treatments as transcriptional dysregulation is thought to play a
role in the disease pathophysiology (Oates and Pamphlett, 2007;
Figueroa-Romero et al., 2012). ALS is an adult-onset neurodegen-
erative disease characterized by progressive loss of motor neurons
in the brain, brain stem, and spinal cord, resulting in general-
ized weakness, muscle atrophy, paralysis, and eventual mortality
(Chou, 1997; Ikemoto et al., 2000). ALS has been attributed to
gain-of-function mutations in the gene encoding Cu/Zn super-
oxide dismutase 1 (SOD1) (Orrell et al., 1995). In a SOD1 point
mutation mouse model of ALS, ALS symptoms were molecularly
accompanied by reduced CBP levels in motorneurons (Rouaux
et al., 2003). Treatment of SOD1 mutant mice with HDACi like
Sodium Valporate (VPA) significantly suppressed the death of
motor neurons, restores the loss of CBP and histone acetylation
deficits although it did not prolong survival (Rouaux et al., 2007).
Similarly, treating SOD1 mutant mice with 4-phenylbutyrate
starting before or shortly after onset of symptoms extends survival
and improves pathological phenotypes (Ryu et al., 2005). This
study also found that 4-phenylbutyrate treatment ameliorates
hypoacetylation, upregulated Bcl-2, NF-κB, p50 and phospho-
IκB, and downregulates cytochrome c caspases in the spinal
tissues of treated mice. Further evidence for a deregulation of his-
tone acetylation in ALS comes from a recent human postmortem
study. Comparing the mRNA expression levels of all class I, II,
and IV HDACs in the ALS brain and spinal cord, this study found
that both mRNA and protein levels of HDAC2 and HDAC11
were up- and down-regulated, respectively (Janssen et al., 2010).
The functional consequences in terms of histone acetylation
changes and resulting gene expression changes however, remain
unclear.
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ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the most common form of neu-
rodegenerative disorder and dementia in the elderly. AD mani-
fests itself on the pathological background of amyloid beta (Aβ)
plaques, neurofibrillary tangles (NFTs) resulting from intraneu-
ronal aggregates of the microtubule-associated protein, tau, and
neuronal cell death. Accumulating evidence indicate that sig-
naling between neurons is interrupted at early stages of AD
(Trinchese et al., 2008) and recent studies identify dysregula-
tion of epigenetic control mechanisms and the resultant aberrant
epigenetic marks as contributing factors to such early neuronal
dysfunction (Wang et al., 2008; Mastroeni et al., 2011). A num-
ber of different epigenetic abnormalities like DNA methylation
[reviewed in Irier and Jin (2012)], phosphorylation (Ogawa et al.,
2003), and histone acetylation (Francis et al., 2009) have also
been reported in AD (Mastroeni et al., 2011). Further evidence
linking histone acetylation and cognitive decline in AD stems
from the observation that histone acetylation declines in mouse
models for AD. For example, decreased acetylation of H4 but
not H3 has been observed in tg2576 mice, a model for amyloid
pathology (Ricobaraza et al., 2009). Interestingly, administration
of the pan-HDACi phenylbutyrate has been reported to reinstate
associative memory and synaptic plasticity in 6- and 16-month
old tg2576 mice (Ricobaraza et al., 2011). Similarly, administra-
tion of various pan-HDACi also reinstates associative memory
in APP/PS1�9 mice, also a mouse model for amyloid pathology
(Kilgore et al., 2010). The pan-HDACi TSA has also been reported
to restore associative memory function in hippocampal LTP in
another mouse model for AD-like amyloid pathology (APP/PS1)
that exhibit impaired H4 acetylation upon exposure to a learning
stimulus (Francis et al., 2009).

Recent studies have also implicated specific HATs and HDACs
in AD associated pathophysiology. Donmez et al. (2010) showed
that over-expression of SIRT1, the NAD+-dependent deacety-
lase in a mouse model of AD reduces the production of Aβ and
formation of plaques via activation of transcription of the gene
encoding α-secretase. Additionally, p25/Cdk5, a kinase complex
implicated in AD and other neurodegenerative disorders inhibits
HDAC1 in primary rat cortical neurons, rendering these neu-
rons susceptible to DNA damage, cell cycle reentry, and ultimately
cell death (Marambaud et al., 2003). Remarkably, overexpres-
sion of HDAC1in primary rat cortical neurons rescues such
p25/Cdk5-mediated DNA damage and neurotoxicity (Kim et al.,
2008). While these findings suggest that AD could be a disease
of aberrantly increased histone acetylation, a substantial body of
evidence also supports the notion that inhibition of HDACs can
be protective and beneficial in AD. In fact, APP overexpression
in cultured cortical neurons leads to H3 and H4 hypoacetylation,
and is paralleled by decreased CBP levels (Rouaux et al., 2003).
Loss of function mutations in genes coding for PS1 and PS2 has
been shown to reduce expression of CBP and CBP/CREB target
genes such as c-fos and BDNF with negative effects on synaptic
plasticity, spatial, and contextual memory (Saura et al., 2004).
Moreover, in the p25/Cdk5 model of neurodegeneration, treat-
ment with the broad HDACi sodium butyrate not only increased
H3 and H4 acetylation levels, but also resulted in the reestab-
lishment of learning abilities, as well as access to long-term

memories that had been ablated by prior hyperactivation of
p25/Cdk5 (Fischer et al., 2007). Similarly, both general and class
I-selective HDAC inhibitors have been shown to ameliorate cog-
nitive defects in transgenic AD mouse harboring hereditary AD
mutation (Kilgore et al., 2010; Ricobaraza et al., 2011).

The HAT Tip60 has also been implicated in AD via its interac-
tion with the APP intracellular domain (AICD), a fragment that
is generated by the sequential processing of APP by β- and γ-
secretases and is subsequently released into the cytoplasm (Muller
et al., 2008). AICD has been shown to form a transcriptional com-
petent protein complex with the HAT Tip60 via the scaffolding
protein Fe65 (Cao and Sudhof, 2001). It has been demonstrated
that this complex is recruited to the promoters of certain target
genes where it acts to acetylate select histone proteins to epige-
netically regulate gene transcription (Cao and Sudhof, 2001; von
Rotz et al., 2004; Ryan and Pimplikar, 2005). Importantly, aber-
rant expression of some of these genes like LRP1, GSK-3B, KAI-1
has been linked to AD pathophysiology (Baek et al., 2002; Muller
et al., 2007; Slomnicki and Lesniak, 2008). Based on these find-
ings, it has been proposed that the inappropriate AICD/Tip60
complex formation and/or recruitment may contribute or lead to
AD pathology via misregulation of target genes required for neu-
ronal functions. In support of this concept, we recently reported
that co-expression of APP with HAT activity deficient Tip60
leads to misregulation of a number of pro-apoptotic genes in
a Drosophila AD model with a resultant increase in neuronal
apoptotic cell death. In contrast, expressing HAT competent wild
type Tip60 in conjunction with APP led to enhanced repression
of a “cassette” of pro-apoptotic genes along with induction of
pro-survival genes like Drosophila Bcl-2 that results in a con-
comitant reduction in neuronal apoptosis. These findings point
to the fact that Tip60 may play a neuroprotective role during
disease progression via its histone acetylase function (Figure 2).
By complexing with the AICD region of APP, Tip60 may epi-
genetically regulate transcription of genes essential for tipping
the cell fate control balance from apoptotic cell death toward
cell survival under APP induced neurodegenerative conditions
(Pirooznia et al., 2012b). Together, these studies suggest that the
overall misregulation of histone acetylation characteristic of AD
is complex. While the beneficial effects observed with general or
partially selective HDACi are promising, it is essential to identify
the specific HATs and HDACs that can be targeted for therapeutic
interventions.

PERSPECTIVES ON USE OF HDAC INHIBITORS FOR
TREATMENT OF NEURODEGENERATIVE DISEASES
As described above, the promising effects observed with the use
of small molecule HDAC inhibitors has ignited enormous interest
in their therapeutic potential for various neurodegenerative con-
ditions. However, most HDAC inhibitors that have been tested
in the context of neurodegenerative diseases are non-selective,
inhibit multiple HDAC proteins, and the observed therapeu-
tic effects likely result from increased “global” and non-specific
acetylation levels (Kazantsev and Thompson, 2008). These issues
have in turn raised widespread speculation about the target speci-
ficity of HDAC inhibitors (Selvi et al., 2010). Recent targeted
gene deletion studies indicate that HDACs serve very distinct
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FIGURE 2 | Modulation of specific HAT function such as Tip60 displays

neuroprotective effects under neurodegenerative conditions.

Neurodegenerative diseases are characterized by impaired acetylation
homeostasis that consequently leads to altered neuronal transcription
profiles, resulting in attenuated expression of survival-associated genes while
simultaneously accentuating more pro-apoptotic genes. Conversely,
modulation of cellular levels and/or enzymatic activity of specific HATs may
enhance the expression of cassettes of specific genes that have

neuroprotective effects as evidenced in the case of Tip60. Under amyloid
precursor protein (APP) induced neurodegenerative conditions, HAT
competent Tip60 (Tip60WT) but not its HAT defective counterpart (Tip60mut )
exerts neuroprotective defects by complexing with the APP intracellular and
epigenetically regulating gene expression profiles essential for tipping the cell
fate control balance in favor of cell survival. Thus, targeting specific HATs for
therapeutic intervention may offer more promising alternatives for
neurodegenerative diseases than currently available HDAC inhibitors.

functions within the adult brain. Cellular localization and tissue-
specific expression for different HDACs also vary (Fischer et al.,
2010). Broide et al. (2007) recently reported that under native
conditions, all HDACs are expressed in the adult rodent brain.
However, expression level of HDAC10 is very low under native
conditions and can be detected only in the hippocampal forma-
tion. In some instances, interactions between different HDAC
classes are required to activate their deacetylase function. For
example, HDACs 4, 5, and 7 (class II HDACs) lack the abil-
ity to deacetylate histones independently and require interac-
tion with HDAC 3 (class I) to be active (Fischle et al., 2002).
Contrarily, while class I HDACs 1 and 2 form complexes with
each other and are often found in the same protein complexes,
they appear to serve distinct functions. Global loss of HDAC1
in mice leads to early lethality, suggesting that HDAC2 cannot
compensate for the absence of HDAC1 (Lagger et al., 2002).
However, mice lacking either HDAC1 or HDAC2 in the central

nervous system display no apparent effect on neuronal devel-
opment while loss of both HDAC 1 and 2 leads to loss of
neuronal differentiation (Montgomery et al., 2009). Thus, in
addition to their distinct roles in the adult brain, HDAC 1 and
2 appear to have important redundant functions during neuronal
development (Montgomery et al., 2009). Distinct as well as com-
plementary roles for HDAC 1 and 2 have also been observed
with regards to synapse development. In immature hippocam-
pal neurons, a targeted knockdown of HDAC 1 and 2 increased
synaptic activity and synapse numbers. However, in mature neu-
rons, the knockdown of HDAC2 alone decreased synaptic activity,
whereas the loss of HDAC1 had no effect (Akhtar et al., 2009).
Thus, inhibition of HDAC1 and 2 during development, and
HDAC2 in mature brain, may have potential unexpected neu-
rological side effects. HDAC2 knockout in mice has also been
shown to enhance learning and memory and synaptic plasticity
(Guan et al., 2009).
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Although targeting specific classes of HDACs has been per-
ceived as a suitable therapeutic avenue for some neurodegenera-
tive diseases, it can lead to very different and potentially opposing
clinical implications. For example, activation and/or overexpres-
sion of HDACs 2 and 3 is associated with neurodegenerative
diseases such as ALS and neural cell toxicity (Janssen et al.,
2010; Bardai and D’Mello, 2011) whereas both neuroprotective
and neurotoxic effects have been described for HDAC1. While
inhibition of HDAC1 in CK-p25 mouse model of ischemia has
been found to induce DNA damage and cell death (Kim et al.,
2008), elevated HDAC1 levels have been observed in brain regions
vulnerable to neurodegeneration in two mouse models of neu-
rodegeneration: the striatum of R6/2 model of Huntington’s
disease and in the cortex and hippocampus of CaMK/p25 double-
transgenic mouse model of tauopathic degeneration, thereby sug-
gesting a role for HDAC1 in promoting neuronal death. Elevating
HDAC1 expression by ectopic expression also promotes the death
of otherwise healthy CGN and cortical neurons in culture, an
effect that requires interaction between HDAC1 and HDAC3
(Bardai et al., 2012). The expression of histone deacetylase-
related protein (HDRP), a truncated form of HDAC9 generated
by alternative splicing and completely lacking the HDAC catalytic
domain, is high in healthy neurons but is sharply downregulated
in neurons primed to die (Morrison et al., 2006). Forced sup-
pression of HDRP expression induces death in otherwise healthy
CGNs exposed to low potassium (LK) conditions, whereas HDRP
overexpression inhibits LK induced neuronal death. Such HDRP-
mediated neuroprotection depends on deacetylase activity, which
is acquired through interaction with HDAC1, suggesting that
HDAC1 can contribute to both the survival and death of neu-
rons depending on whether it interacts with HDRP or HDAC3,
respectively (Bardai et al., 2012). Similar to HDRP, overexpres-
sion of HDAC4 also displays neuroprotective effects in CGN and
inhibits LK induced apoptosis via a mechanism distinct from
HDRP (Sananbenesi and Fischer, 2009). While HDRP protects
neurons by inhibiting apoptosis associated c-jun expression and
inhibiting c-jun N-terminal kinase (JNK) activity via direct inter-
action (Morrison et al., 2006), HDAC4 represses CDK1 activity
and suppresses cell cycle progression (Majdzadeh et al., 2008).
HDAC4 also has an essential role in neuronal survival in mouse
retina and prolongs photoreceptor survival in mice undergoing
retinal degeneration (Chen and Cepko, 2009). Besides HDRP,
HDAC7 has also been observed to promote neuronal survival in
CGNs exposed LK treatment that induces apoptosis by repress-
ing c-jun expression. HDAC7 mediates such a neuroprotective
effect by directly associating with the c-jun promoter in a deacety-
lase independent manner (Ma and D’Mello, 2011). Other class
II members like the microtubule associated deacetylase, HDAC6
has also been reported to play a role in lowering the steady state
level of aberrant proteins thereby mitigating toxicity. In a study
by Pandey et al. (2007), HDAC6 was reported to rescue degenera-
tion caused by impairment of the ubiquitin proteasome system in
a Drosophila model of Spinobulbar muscular atrophy (SBMA), in
an autophagy-dependent manner. HDAC6 has also been reported
to function in the autophagic clearance of aggregated Htt pro-
teins via retrograde transport on microtubules (Iwata et al., 2005).
Thus, it appears like members of class II HDAC can mediate the

neuroprotective effects via different mechanisms. Moreover, sub-
cellular localization of HDACs and thus, their ability to repress
gene targets is controlled by synaptic activity in neurons. For
instance, localization of class II HDACs 4 and 5 is dynamic
and signal-regulated in cultured hippocampal neurons wherein
nuclear export of HDAC4 is initiated by spontaneous electrical
activity and HDAC5 translocation to nucleus is induced by stimu-
lation of calcium flux through synaptic NMDA receptors (Chawla
et al., 2003). Such activity-dependent regulation of HDAC
function further necessitates a clearer understanding of specific
activating stimuli if pharmacological interventions targeting these
HDACs are to be developed. Together with studies demonstrating
opposing as well as redundant functions of members of class I
HDACs and their requirement for activation of other HDACs, the
above studies ascribing neuroprotective roles for specific mem-
bers of class II HDAC suggest that targeting specific HDACs
might be more beneficial than class specific modulation of
HDAC activity.

Another issue to consider in terms of HDAC based thera-
peutic efficacy is that although HDAC inhibitors are generally
considered to promote neuronal growth and differentiation, they
also exhibit toxicity in various cell types of the central nervous
system. For instance, there is evidence that they could have poten-
tially detrimental effects on the orderly maturation of astrocytes
and oligodendrocytes (Hsieh et al., 2004; Liu and Casaccia, 2010;
Pedre et al., 2011). There is also evidence that neuroprotec-
tion can result from non-enzymatic activity of HDACs, as was
demonstrated in the case of a mutated inactive form of SIRT1
that prevents apoptosis when overexpressed in cerebellar granule
neurons (CGNs) (Pfister et al., 2008). Moreover, like their coun-
terparts, the HATs—class I, II, and III of HDACs also regulate
lysine acetylation of non-histone proteins that exert neuropro-
tective effects (Dokmanovic and Marks, 2005) adding a further
layer of complexity to the interpretation of therapeutic poten-
tials of currently available broad spectrum or even class specific
HDAC inhibitors for neurodegenerative diseases. Thus, the speci-
ficity and side-effect profiles of inhibitors of HDACs require
additional investigation to fully gauge their neuroprotective abil-
ities. Further exploration of isoform-selective HDAC inhibitors
that are also region-specific may provide a therapeutic advantage
in targeting specific cell and tissue functions under pathological
conditions.

MODULATING HAT FUNCTION: A PROMISING THERAPEUTIC
OPTION FOR NEURODEGENERATIVE DISEASES?
It has become increasingly clear that chromatin acetylation sta-
tus can be impaired during the lifetime of neurons through
loss of function of specific HATs with deleterious consequences
on neuronal function (Selvi et al., 2010). Once the acetyla-
tion balance is disturbed by the loss of HAT dose, the HAT:
HDAC ratio tilts in favor of HDACs in terms of availability
and enzymatic functionality, a fact highlighted by ameliora-
tion of several neurodegenerative conditions by various HDAC
inhibitors (Ittner and Gotz, 2011). In fact, a clue to explain the
net deacetylation observed during neurodegeneration came with
the finding that dying neurons exhibit progressive loss of HAT
activity and/or expression, particularly that of CREB binding
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protein (CBP) and to a lesser extent p300. Notably, overexpression
of CBP under apoptotic conditions delays neuronal cell death, an
event that was dependent on the HAT function of CBP (Orrell
et al., 1995; Anne-Laurence et al., 2007)

Specific HATs are also emerging as regulators that gate access
to genes regulating specific neuronal processes that are essen-
tial for maintaining neuronal health and for mediating higher
order brain functions. Notably, such processes are also affected
in neurodegenerative conditions and significantly contribute to
pathological consequences. For instance, CBP has been shown to
mediate specific forms of hippocampal long term potentiation, a
form of synaptic plasticity thought to underlie memory storage
(Wood et al., 2005). In contrast, the HAT p300 has been shown to
constrain synaptic plasticity in the prefrontal cortex and reduced
function of this HAT is required for formation of fear extinc-
tion memory (Marek et al., 2011). Importantly, overexpression of
p300 but not HDAC inhibition has been shown to promote axonal
regeneration in mature retinal ganglion cells following optic
nerve injury, an effect mediated by p300 induced hyperacetyla-
tion of histone H3 and p53 that consequently leads to increased
expression of selected pro-axonal outgrowth genes (Gaub et al.,
2011). Overexpression of Tip60 under APP induced neurode-
generative conditions also induces intrinsic axonal arborization
of the Drosophila small ventrolateral neurons, a well character-
ized model system for studying axonal growth (Pirooznia et al.,
2012a). It is important to note that modulation of specific HAT
levels and/or activity may alter the expression of many genes or
“cassettes” of specific genes that act together produce a neuropro-
tective effect such as that observed in the case of Tip60 (Pirooznia
et al., 2012b). While such genes can together produce neuropro-
tective effects, the same situation might also stimulate expression
of death inducing genes as well as detrimental effectors of spe-
cific neuronal processes such as that evidenced in studies that
overexpress HATs like CBP and Tip60. Therefore, it is essential
to determine the identity of specific gene targets regulated by
HATs that are enriched for neuronal functions and further dis-
sect the neuroprotective or neurodetrimental effects of such genes
in order to devise HAT based therapeutic strategies. With regards
to non-chromatin associated cellular processes, the acetyltrans-
ferase Elp3 known to acetylate microtubules has been shown to
be involved in the regulation of synaptic bouton expansion dur-
ing neurogenesis (Singh et al., 2010) and recent studies suggest
that regulation of microtubule acetylation by the ELP3 might be
commonly affected in neurological diseases making it a poten-
tial target for acetylation modulator based therapies [reviewed in
Nguyen et al. (2010)]. Tip60 has also been recently shown to play
a causative role in synaptic plasticity in the Drosophila neuromus-
cular junction partly through acetylation of microtubules (Sarthi
and Elefant, 2011). Together, these studies raise the possibility that
modulation of expression levels and/or activity of specific HATs
such as CBP and Tip60 could be an alternative therapeutic option
for neurological conditions.

Importantly, targeting HATs rather than HDACs can also be
beneficial because unlike HDACs, HATs have non-redundant
functions under physiological conditions and thus the presence
of these specific modulators can have more direct effects. In a
study by Hoshino et al. (2003), it was reported that the total
protein amount and activity of various HDACs is not altered

by mutant huntington protein expression in rat primary corti-
cal neurons. Thus, the neurodegeneration associated tilt in HAT:
HDAC does not appear to include augmentation of HDAC pro-
tein level. Therefore, activation of specific HATs may restore
acetylation balance in addition to activating specific gene expres-
sion programs that consequently have neuroprotective effects. In
fact, a number of recent studies conclude that HDAC inhibitor
induced hyperacetylation alone may not be sufficient to pro-
duce beneficial effects. In a study by Langley et al. (2005), it
was reported that HDAC inhibition mediated enhancement of
synaptic plasticity and hippocampus-dependent memory for-
mation requires the presence of at least one wild type allele
of cbp highlighting the requirement of HATs like CBP for site
specific acetylation and the recruitment of the basal transcrip-
tional machinery. However, increasing neuronal dosage of specific
HATs to reinstate acetylation homeostasis calls for the same con-
cern as does the utilization of HDAC inhibitors. Non-specific
enhancement of HAT levels and/or activity may lead to further
complications by skewing the acetylation balance in the neigh-
boring cell population toward hyperacetylation. Therefore, in
order to reap the full potential of specific HAT activators, it is
also essential to quantify HAT-HDAC dose in specific cell pop-
ulations that are vulnerable to different degenerative etiologies
(Saha and Pahan, 2006).

CONCLUSION
In summary, histone acetylation is now recognized as one of the
key mechanisms that regulate gene expression programs critical
for high-order brain functions like, such as learning and memory.
While dynamic yet controlled regulation of histone acetylation
and deacetylation is crucial for these functions, deregulation of
the system may lead to complex changes in the epigenetic land-
scape that impairs cognitive functions. Chronic deregulation of
the acetylation machinery can ultimately lead to neuronal death
and brain atrophy as manifested in neurodegenerative diseases.
Clearly, more research is required to fully understand the precise
mechanism(s) by which this system impacts neuronal survival
and mediates memory functions. This knowledge can then be
translated to novel HAT/HDAC based therapeutic strategies for
the early intervention of neurodegenerative diseases. However, a
major challenge with utilization of modifiers of cellular acetyla-
tion levels is the identification of bona fide targets of HATs and
HDACs and the integration of histone and transcription factor
acetylation into a broader context of neuronal, and importantly,
cellular homeostasis (Langley et al., 2005). Although still in its
infancy, the neuroprotective effects displayed by HATs like CBP,
p300 and Tip60 and specificity of these effects for particular neu-
ronal processes appears more promising than currently available
non-selective HDAC inhibitors. However, determining the genes
or “cassettes” of genes that are regulated by such HATs and charac-
terizing the survival or degenerative effects such genes have would
subsequently facilitate the development of novel drugs and spe-
cific therapeutic strategies with lower adverse side effects than
those currently available.
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