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Schizophrenia is a disabling mental iliness that is now recognized as a neurodevelopmental
disorder. It is likely that genetic risk factors interact with environmental perturbations to
affect normal brain development and that this altered trajectory results in a combination
of positive, negative, and cognitive symptoms. Although the exact pathophysiology
of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major
glutamate receptor subtype, has received great attention. Proper expression and
regulation of NMDARs in the brain is critical for learning and memory processes
as well as cortical plasticity and maturation. Evidence from both animal models and
human studies implicates a dysfunction of NMDARs both in disease progression and
symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk
factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for
schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered
neurodevelopment that may contribute to the progression and development of symptoms
for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways
among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing
on the AKT/GSK3B pathway, and how their mutations and interactions can lead to NMDAR
dysfunction during development. Additionally, we explore what open questions remain
and suggest where schizophrenia research needs to move in order to provide mechanistic
insight into the cause of NMDAR dysfunction, as well as generate possible new avenues

for therapeutic intervention.
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INTRODUCTION

Schizophrenia is a devastating psychological disorder that consists
of a complex set of positive, negative, and cognitive symptoms.
Although the pathophysiological mechanisms associated with this
disease remain unclear, the dopamine (DA) hypothesis has dom-
inated the theories of schizophrenia for several decades (Howes
and Kapur, 2009; Abi-Dargham, 2012). It was proposed that
hyperactivity in the mesolimbic DA pathway is the mediator of
positive symptoms of schizophrenia, whereas hypoactivity in the
mesocortical DA pathway mediates the negative and cognitive

Abbreviations: Akt, also known as Protein Kinase B (PKB), is a serine/threonine-
specific protein kinase; AMPAR, o-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid receptor; BDNEF, brain derived neurotrophic factor; cAMP, cyclic
adenosine monophosphate; CaMKII, Ca2+/calmodulin dependent protein kinase
IL; cdk5, cyclin-dependent kinase 5; CK2, casein kinase 2; COMT, catechol-o-
methyltransferase; DA, dopamine; Dysbindin, also known as dystrobrevin-binding
protein 1; DISCI, disrupted in schizophrenia-1; DAOA, D-amino acid oxidase
activator; HDAC, histone deacetylase; DNMT1, DNA-methyltransferase 1; ERK,
extracellular-signal-regulated kinase; GABA, gamma-aminobutyric acid; GAD65,
glutamic acid decarboxylase 65; GAD67, glutamic acid decarboxylase 67; GSK-38,
glycogen synthase kinase 3f; LTP, long-term potentiation; MAGUK, membrane-
associated guanylate kinase; mGluR, metabotropic glutamate receptor; MK801,
dizocilpine; NMDAR, N-methyl-D-aspartate receptor; NRG1, neuregulin 1; PCP,
phencyclidine; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase
C; PSD95, post synaptic density protein 95; SAP102, synapse associated protein
102; SFK, Src family of kinases; PDE4B, cAMP-specific phosphodiesterase 4B; SR,
serine racemase; vGluT, vesicular glutamate transporter.

symptoms of schizophrenia. However, focusing on the DA system
has led to limited progress in understanding the pathophysiolog-
ical processes in schizophrenia, and subsequently has led to min-
imal development of novel therapeutics (Miyamoto et al., 2012).
In the past two decades, hypotheses of schizophrenia have pro-
gressed beyond the DA hypothesis. In a major paradigm shift on
the etiology of schizophrenia, it has been proposed that numerous
genetic and environmental risk factors converge on the N-methyl-
D-aspartate receptors (NMDAR)-mediated glutamatergic system
and result in NMDAR hypofunction in the limbic system during
neurodevelopment.

NMDARs are widely thought to be crucial in synaptic plasticity
and circuit formation for pre- and early postnatal stages of brain
development, otherwise known as the “critical developmental
window.” Numerous studies have indicated that the maturation
of brain circuitry is usually coincident with the NMDAR subunit
switch (e.g., NR2B-to-NR2A and NR3A-to-NR3B) that occurs at
the onset of the critical period of development (Monyer et al.,
1994; Sheng et al., 1994; Quinlan et al., 1999; Wang et al., 2008;
Roberts et al., 2009; Wang and Gao, 2009; Snyder et al., 2013).
The NMDAR subunit shift therefore marks the transition from
juvenile to “adult” neural processing (Dumas, 2005; Henson et al.,
2010) and the subunit switch makes the NMDARs extremely vul-
nerable to genetic and environmental risk factors (Spear, 2000).
Because NMDARs regulate DA neurons and DA transmission,
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hypofunction of NMDARs may be responsible for the abnor-
mal DA activity associated with the symptoms of schizophrenia.
Indeed, the NMDAR-mediated glutamatergic model provides an
alternate approach for conceptualizing the brain abnormalities
associated with schizophrenia (Harrison and Weinberger, 2005;
Lewis and Moghaddam, 2006; Lisman et al., 2008). Although it
remains unclear what changes induce the onset of cognitive dys-
function, NMDAR dysfunction appears to be a convergence point
for progression and symptoms of schizophrenia, especially for
cognitive deficits. There have been several elegant review articles;
some issues on a specific topic, such as neuregulinl, circuit-level
glutamatergic hypothesis and metabotropic glutamate receptors,
can be found in these references (Moghaddam, 2003; Coyle,
2006; Lisman et al., 2008; Banerjee et al., 2010; Marek et al,,
2010; Niswender and Conn, 2010; Geddes et al., 2011; Lin et al.,
2012; Millan et al., 2012; Vinson and Conn, 2012). Below we
focus on the current literature and explain how the hypothesis of
NMDA hypofunction is formulated, why NMDA hypofunction
could be a convergence point for the progression and symptoms
of schizophrenia, what mechanisms are associated with regula-
tion of NMDAR function, as well as possible signaling pathways
related to the regulation of NMDAR function by high-risk genes
for schizophrenia. It is likely that convergent mechanisms tar-
get NMDAR, which in turn contribute to negative symptoms
and neurocognitive dysfunction directly (Lau and Zukin, 2007),
as well as to positive symptoms via dysregulation of brain DA
systems indirectly (Howes and Kapur, 2009; Abi-Dargham, 2012).

EVIDENCE FOR ABNORMAL GLUTAMATE TRANSMISSION
AND NMDAR HYPOFUNCTION IN SCHIZOPHRENIA

In the past two decades, the abnormalities found in human
subjects with schizophrenia and the various animal models for
schizophrenia all point to an important contribution of the gluta-
matergic system to the disease (Moghaddam and Jackson, 2003;
Javitt, 2004; Millan, 2005). Accumulating studies have shown
that aberrant NMDAR function, namely NMDAR hypofunc-
tion, in the limbic brain region, may underlie many aspects of
molecular, cellular, and behavioral abnormalities associated with
schizophrenia (Mohn et al., 1999; Olney et al., 1999; Tamminga,
1999; Dracheva et al., 2001; Krystal et al., 2002; Moghaddam and
Jackson, 2003; Javitt, 2004; Coyle, 2006). First, mice with reduced
NMDAR expression display behaviors related to schizophrenia
(Mohn et al., 1999). Second, NMDAR antagonists, such as phen-
cyclidine (PCP), dizocilpine (MK-801), and ketamine, produce
“schizophrenia like” symptoms in healthy individuals (Javitt and
Zukin, 1991; Krystal et al., 1994; Lahti et al., 1995). Compelling
evidence has suggested that the NMDAR antagonist PCP and
its analog compounds can produce a pattern of metabolic,
neurochemical, and behavioral changes that reproduce almost
exactly those seen in patients with schizophrenia, with remarkable
regional specificity (Morris et al., 2005). This finding has provided
considerable insight into the processes that lead to the devel-
opment of the disease, emphasizing the potential importance of
NMDAR hypofunction. Third, a majority of the genes that are
associated with an increased risk for schizophrenia can influence
the function of NMDARSs or related receptor-interacting proteins
and signal transduction pathways (Moghaddam, 2003; Harrison

and Weinberger, 2005) (see below for detail). Fourth, dysregu-
lated NMDAR subunits are usually seen in postmortem tissue
from patients with schizophrenia (Akbarian et al., 1996; Gao et al.,
2000; Kristiansen et al., 2007; Geddes et al., 2011; Weickert et al.,
2012) and in animal models of NMDAR antagonism (Lisman
et al., 2008; Gunduz-Bruce, 2009). Postmortem studies also show
changes in glutamate receptor binding, transcription, and subunit
protein expression in the prefrontal cortex (Akbarian et al., 1996;
Kristiansen et al., 2006; Beneyto and Meador-Woodruft, 2008),
thalamus (Ibrahim et al., 2000; Clinton and Meador-Woodruff,
2004; Clinton et al., 2006; Dracheva et al., 2008), and hippocam-
pus (Gao et al., 2000; Beneyto et al., 2007; McCullumsmith et al.,
2007) of subjects with schizophrenia (Geddes et al., 2011). These
changes include decreased NR1, increased excitatory amino-acid
transporter, and altered NMDA receptor-affiliated intracellular
proteins such as post synaptic density protein 95 (PSD95) and
synapse associated protein 102 (SAP102) in the prefrontal cortex
and thalamus [see (Geddes et al., 2011) Table 1 for detail]. Fifth,
glutamatergic neurons also interact with other neurons that have
been strongly implicated in the pathophysiology of schizophre-
nia, including morphologically altered GABAergic interneurons
(Lewis et al., 2005) and antipsychotic drug-targeted DA neurons
(Howes and Kapur, 2009; Abi-Dargham, 2012; Grace, 2012).

On the basis of these observations, it has been postulated
that the glutamatergic disturbances may involve hypofunctioning
of NMDARs on gamma-aminobutyric acid (GABA) interneu-
rons in the limbic circuit (Olney and Farber, 1995; Olney et al.,
1999; Lindsley et al., 2006; Lisman et al., 2008). How might
this be achieved? Activity in the corticolimbothalamic circuit is
strongly regulated by local GABAergic interneurons, especially
basket and chandelier cells. Output from the cortical pyramidal
neurons is suppressed and coordinated by GABAergic interneu-
rons. These cells are activated by recurrent collaterals from the
pyramidal neurons and exert a powerful feedback inhibitory
action on pyramidal cells via synapses onto the soma and axon
hillock (Figure 1). Both basket and chandelier cells are particu-
larly important for restraining excessive pyramidal neuron activ-
ity, the impairment of these cells leads to dramatic disinhibition
of the pyramidal neuron efferent activity and elevated uncoor-
dinated firing throughout the corticolimbic circuit. Considering
the dysfunction of NMDAR subunits in patients with schizophre-
nia (Akbarian et al., 1996; Eastwood et al., 1997; Goff and Wine,
1997; Grimwood et al., 1999; Gao et al., 2000; Clinton et al., 2003;
Clinton and Meador-Woodruff, 2004; Weickert et al., 2012), it has
been speculated that NMDAR subunits distributed on interneu-
rons may be responsible for NMDAR hypofunction (Nakazawa
et al., 2012). The central pathological characteristics seem to be
caused by NMDAR hypofunction acting on GABAergic interneu-
rons, followed by the disinhibition of glutamatergic transmission
and an overstimulation of non-NMDARs on pyramidal neurons
(Figure 1) (Olney and Farber, 1995; Olney et al., 1999; Lindsley
etal., 2006; Lisman et al., 2008). The postulated existence of disin-
hibited glutamatergic transmission and the subsequent cascade of
excitotoxic events resulting from NMDAR hypofunction, degen-
eration of GABAergic interneurons, or a combination of both,
have suggested diverse experimental therapeutic interventions for
schizophrenia, such as facilitation of NMDA receptor-mediated
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FIGURE 1 | Hypothesis of NMDAR hypofunction. (A) Schematic diagram of
NMDAR complex. (B) NMDAR hypoactivity and glutamate neurotoxicity.
PCP/MK801 = NMDAR hypofunction on GABAergic neurons = disinhibition

PCP/MK-801
Apoptosis

AMPA/KA

of pyramidal neurons = more glutamate release = AMPA/KA receptors
excessively stimulated = excitotoxic damage [Figure 1B was modified from
(Olney et al., 1999)].

neurotransmission and potentiation of GABAergic inhibition
(Coyle and Tsai, 2004; Javitt, 2004). Recently, a heuristic model
for the pathophysiology of schizophrenia that attempts to rec-
oncile the neuropathological and neurocognitive features of the
disorder has been proposed (Lisman et al., 2008).

When does the hypofunction of NMDAR occur and what
are the mechanisms involved? Specifically, it is crucial to under-
stand which neurons express altered glutamate receptor subtypes,
whether these neurons are inhibitory or excitatory, and how the
circuitries are affected. It is possible that the hypofunction of
the NMDAR on GABAergic interneurons disrupts the functional
integrity of the corticolimbic circuit, causing cognitive impair-
ments and negative symptoms. Based on this hypothesis, it is
reasonable to speculate that the NMDARs on frontal cortical
and limbic GABAergic interneurons are most sensitive to these
antagonists and therefore may be an important site of pathology
resulting in NMDAR dysfunction. To address these possibili-
ties, we have examined the developmental changes and functions
of NMDARs in identified prefrontal neurons. Interestingly, we
found that the development of NR2 subunits in pyramidal neu-
rons and GABAergic interneurons of rat prefrontal cortex is cell
type-specific (Wang et al., 2008; Wang and Gao, 2009). NR2B
levels remain high until adulthood, without significant NR2B-
to-NR2A subunit switch, in layer 5 pyramidal neurons in the
prefrontal cortex (Wang et al., 2008); however, they are grad-
ually replaced by NR2A subunits in fast-spiking interneurons
(Wang and Gao, 2009). Particularly, fast-spiking interneurons
in the prefrontal cortex undergo dramatic changes in gluta-
matergic receptors during the adolescent period (Wang and
Gao, 2009, 2010) and consequently, a cell type-specific change
of NMDAR subunits in parvalbumin-positive interneurons is
clearly evidenced (Xi et al., 2009). These findings strongly sug-
gested that fast-spiking or parvalbumin-positive interneurons are
more sensitive to pharmacological or environmental stimulation.
Indeed, we found that MK-801 induces distinct changes of AMPA
and NMDARs in the fast-spiking interneurons and pyramidal
cells in adolescent rat prefrontal cortex (Wang and Gao, 2012).
Furthermore, when the NR1 subunit was selectively eliminated

in parvalbumin-positive interneurons in forebrain cortices and
hippocampus in early (neonatal) development, the rats exhibited
reduced glutamic acid decarboxylase 67 (GAD67) and parval-
bumin as well as distinct schizophrenia-related symptoms that
emerged after adolescence; in contrast, post-adolescent deletion
of NR1 did not result in such abnormalities (Belforte et al.,
2010). These basic studies in NMDAR development in the pre-
frontal cortex have been extremely useful in the formulation
of an NMDAR hypofunction hypothesis. The high vulnerability
of corticolimbic fast-spiking interneurons to genetic predisposi-
tions and early environmental insults such as excitotoxicity and
oxidative stress could help to better explain their significant con-
tribution to the development of schizophrenia (Nakazawa et al.,
2012). Given that both DA and GABA systems are indeed the
targets of NMDAR disruption, it is plausible to propose that dys-
function of NMDARs in the DA neurons and GABAergic cells
induce DA hyperactivity or GABA downregulation, which in turn
results in psychosis.

Still, this does not completely explain the pathophysiology
of schizophrenia, as there is evidence of NMDAR dysfunction
in other key brain areas, especially during development. In
addition to the prefrontal cortex, the hippocampus is a brain
region that is consistently implicated in schizophrenia (Bogerts
et al., 1990; Medoff et al., 2001; Harrison, 2004; Witthaus
et al., 2009). In hippocampus, like other cortical regions, proper
NMDAR subunit expression and function is necessary for hip-
pocampal development, with NMDAR misregulation affecting
synaptogenesis and circuit maturation (Roberts et al., 2009;
Brigman et al.,, 2010; Gambrill and Barria, 2011; John Gray
et al., 2011). Therefore, misregulation of NMDAR subunit com-
position and function during hippocampal development may
contribute to the pathogenesis in schizophrenia. Indeed, we
recently found in the MAM neurodevelopmental schizophrenia
model, that NMDAR function is disrupted in CAl pyrami-
dal neurons early in hippocampal development (Snyder et al.,
2013). Understanding when and how NMDAR function is dis-
rupted in regards to schizophrenia progression is a key area of
research.
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SCHIZOPHRENIA IS A NEURODEVELOPMENTAL DISORDER
WITH MULTIPLE SUSCEPTIBILITY GENES CONVERGING ON
NMDARs

It is increasingly recognized that schizophrenia is a neurodevel-
opmental disorder that involves disrupted alterations in brain
circuits (Weinberger, 1987; Lewis and Gonzalez-Burgos, 2008;
Jaaro-Peled et al., 2009). Although psychosis usually emerges
in late adolescence or early adulthood, we still do not under-
stand all of the changes in normal or abnormal development
prior to and during this period. It is particularly unclear what
factors alter the excitatory-inhibitory synaptic balance in the
juvenile brain and what changes induce the onset of cognitive
dysfunction. Current studies suggest that problems related to
schizophrenia are evident much earlier than the juvenile stage
of development. The emerging picture from genetic and epige-
netic studies indicates that early brain development is affected.
However, after many years of intensive investigations, no sin-
gle gene has been found to be responsible for schizophrenia.
Although recent findings have generated great interest in the copy
number variations of genes in schizophrenia patients, they are
rare and are unlikely to account for the majority of cases of the
disorder (Allen et al., 2008; O’Donovan et al., 2008; Stefansson
et al., 2008). Rather, a number of high-risk genes have been iden-
tified as increasing susceptibility for schizophrenia (Allen et al.,
2008), including the catechol-o-methyltransferase gene (COMT)
(Weinberger et al., 2001; Bilder et al., 2004; Cannon, 2005;
Harrison and Weinberger, 2005; Savitz et al., 2006; Tunbridge
et al., 2006; Tan et al., 2009), neuregulin 1 (NRG1) (Roy et al,,
2007; Mei and Xiong, 2008; Kato et al., 2011), disrupted in
schizophrenia-1 (DISC-1) (Lipina et al., 2010; Niwa et al., 2010),
and dystrobrevin-binding protein 1 (dysbindin) (lizuka et al.,
2007; Ji et al., 2009; Papaleo and Weinberger, 2011; Papaleo
et al., 2012), among others. Many of these genetic variants asso-
ciated with schizophrenia are involved with neurodevelopment
that is related to the glutamatergic system in the brain (Hahn
et al., 2006; Allen et al., 2008; Shi et al., 2008; Papaleo et al.,
2012).

Recent studies indicate that single genes may not be suffi-
cient to cause schizophrenia. Instead, multiple “susceptibility”
genes could possibly work together to trigger disease onset with
each susceptibility gene coding for a subtle molecular abnormality
in transmitter receptors, enzymes, protein kinases, transcription,
and translation (Harrison and Weinberger, 2005). These subtle
changes could disrupt neurodevelopment, intracellular signaling
pathways and neurotransmission, consequently resulting in dis-
turbed information processing in brain circuits that mediate the
symptoms of schizophrenia. It is therefore not surprising that
many of the susceptibility genes for schizophrenia regulate not
only neuronal proliferation, neuronal migration, and synaptoge-
nesis during early development, but also have functions linked
to glutamate neurotransmission, especially the NMDA receptor,
in postnatal development (Straub and Weinberger, 2006; Karam
et al., 2010).

Numerous susceptibility genes have been shown to be able
to regulate various elements of NMDAR mediated signaling.
Dysbindin, neuregulin, and DISCI all function to affect NMDAR
function through a variety of mechanisms. Both dysbindin

and neuregulin regulate the formation and function of the
postsynaptic density (PSD), a set of proteins that interacts with
the postsynaptic membrane to provide structural and functional
regulatory elements for neurotransmission and for NMDARs
(Numakawa et al., 2004; Hahn et al., 2006). Neuregulin also acti-
vates an Erb signaling system that is co-localized with NMDARs
(Hahn et al., 2006). This Erb signaling system is a member of
the receptor tyrosine kinase and neurotrophin signal transduc-
tion system, interacts with PSD, and is involved in neuroplas-
ticity mediated by NMDARs (Huang et al., 2000). Furthermore,
neuregulin has been shown to alter NMDAR expression (Ozaki
et al., 1997; Li et al., 2007; Mei and Xiong, 2008; Banerjee
et al., 2010) [see (Geddes et al., 2011) for detail]. Preventing
NRG1/ErbB4 signaling leads to loss of NMDA synaptic currents
and dendritic spines (Li et al., 2007). Dysbindin also regu-
lates the activity of the vesicular glutamate transporter, vGluT
(Fanous et al., 2005), and may contribute to NMDAR dysfunction
(Karlsgodt et al., 2011). Furthermore, the degree of dysbindin-
induced NR1 degradation correlates with impairment in spatial
working memory performance (Karlsgodt et al., 2011). This is
strong evidence that dysbindin’s effects on NMDAR expression
could contribute to the cognitive symptoms of schizophrenia.

DISC1 affects presynaptic glutamate release from axonal ter-
minals (Maher and LoTurco, 2012), and regulates cyclic adeno-
sine monophosphate (cAMP) signaling, which would affect
the functions of glutamate neurotransmission mediated by
metabotropic glutamate receptors (mGluR) (Millar et al., 2005).
DISC1 also binds to and stabilizes serine racemase (SR), the
enzyme that generates D-serine, an endogenous co-agonist of the
NMDA receptor. In a mouse model of selective and inducible
expression of mutant DISCI in astrocytes, the main source of
D-serine in the brain, Ma et al. found that mutant DISC1 leads
to SR degradation, resulting in D-serine deficiency that coincides
with behavioral changes indicative of altered NMDAR neuro-
transmission (Ma et al., 2012). While not yet specifically tested,
these changes would likely lead to reduced function of NMDARs
at synapses. In addition, the DAOA gene encodes a protein
that activates the enzyme D-amino acid oxidase, which degrades
the co-transmitter D-serine that acts at glutamate synapses and
at NMDARs. DAOA activates this enzyme, so abnormalities
in this gene would be expected to alter the metabolism of
D-serine, which in turn would alter glutamate neurotransmission
at NMDARs (Stahl, 2007a).

Thus, there is strong evidence that the known susceptibility
genes for schizophrenia converge on glutamate synapses, specif-
ically at NMDARs. These observations support the notion that
the NMDAR hypofunction hypothesis is a plausible theory for
schizophrenia (Stahl, 2007a) and NMDAR dysfunction is a con-
vergence point for schizophrenia (Kantrowitz and Javitt, 2010).
Genes that code for any subtle molecular abnormalities linked
to NMDAR function in specific brain circuits theoretically could
create inefficient information processing at glutamate synapses
that can produce the symptoms of schizophrenia, especially cog-
nitive dysfunctions. If these genetically mediated abnormalities
occur simultaneously in a permissive environment, the syndrome
of schizophrenia could be induced and onset of symptoms will be
triggered (Stahl, 2007D).
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MOLECULAR MECHANISMS ASSOCIATED WITH NMDAR
REGULATION AND NMDAR HYPOFUNCTION IN
SCHIZOPHRENIA

As discussed above, there are many risk genes associated with
schizophrenia. However, changes in their expression and func-
tion are unlikely to entirely account for the pathophysiology of
schizophrenia. A fundamental question is what causes the alter-
ation of NMDAR during neurodevelopment in schizophrenia.
In addition to genetic modifications, there are several possi-
ble mechanisms, including altered transcription/translation and
posttranslational modifications that could contribute to NMDAR
hypofunction in schizophrenia. For example, NMDAR hypofunc-
tion could result from reduced levels of mRNA and transla-
tion and in fact, there is evidence of reduced mRNA levels of
some NMDAR subunits in postmortem tissue of schizophren-
ics (Dracheva et al., 2001; Beneyto and Meador-Woodruff, 2008;
Weickert et al., 2012) but plenty of evidence also suggests an
increase or no change in some subunits (Akbarian et al., 1996;
Geddes et al., 2011; Weickert et al., 2012). Given the complexity
of the disorder and the numerous risk genes involved, it is likely
that several mechanisms work in concert. Fortunately, substantial
knowledge exists as to how NMDARs are translated, trafficked
to synaptic membranes, stabilized, exocytosed, and removed for
recycling or degradation (Sans et al., 2003; Wenthold et al., 2003;
Perez-Otano and Ehlers, 2004; Lau and Zukin, 2007). However,
any disruption of this well-regulated process can lead to NMDAR
hypofunction and contribute to altered development and symp-
tomatology seen in schizophrenia. Thus, it becomes a daunt-
ing challenge to understand the pathophysiological processes
involved.

An exciting avenue of research in schizophrenia and other
psychiatric disorders is evaluating the epigenetic changes that
occur in these illnesses. Epigenetics is a broad term that describes
changes to chromatin which alter the frequency of gene tran-
scription without changing the genetic sequence. These changes
include DNA methylation and a variety of histone modifica-
tions. In general, increasing DNA methylation, particularly at
CpG islands of promoter sequences, will decrease gene expres-
sion (Bird, 2002). Therefore, even if a gene is not found to be
definitively altered in human schizophrenic patients by standard
genome-wide association study (GWAS)), it is possible that epige-
netic changes are contributing to altered neurodevelopment and
cognitive symptoms in schizophrenia (Borrelli et al., 2008; Day
and Sweatt, 2011; Rodenas-Ruano et al., 2012). Indeed, a role
for histone acetylation and methylation in cognition is increas-
ingly being appreciated (Jeremy Day and Sweatt, 2011). Other
data suggest that chromatin modifications by histone deacety-
lases (HDACs) may underlie cognitive dysfunctions in a variety
of mental disorders (Fischer et al., 2010). Thus far, epigenetic
modulation of several genes, including GAD1 and RELN, has
been found to be altered in schizophrenia (Abdolmaleky et al.,
2005; Ruzicka et al., 2007). Additionally, the DNA methylating
enzyme, DNA-methyltransferase 1 (DNMT1), showed increased
expression in cortical interneurons in postmortem tissue from
schizophrenics (Veldic et al., 2005). This change in DNMT1 cor-
related with the alterations in GAD1 and RELN. However, it
is possible that other genes and associated interacting proteins

are also similarly affected. For example, animal research has
shown that NMDAR subunit expression can be altered through
various epigenetic changes (Stadler et al, 2005; Jiang et al.,
2010; Rodenas-Ruano et al., 2012). Furthermore, DNA methy-
lation changes have been found in the promoter sequence for
NR3B in major psychosis (Mill et al., 2008). These studies sug-
gest that epigenetic regulation of NMDARs could contribute to
the pathophysiology of schizophrenia. Still, it is unclear how epi-
genetic factors control the expression of NMDARSs, particularly
mRNA expression of individual subunits. It is possible that CpG
islands in the promoter region of a NMDAR subunit are regulated
by chromatin modification (Rodenas-Ruano et al., 2012). Gene
mutation or environmental risk factors could alter gene promoter
sequences via either DNA methylation or histone modification
and thus result in mis-expression of NMDARs.

Furthermore, NMDAR subunits undergo several post-
translation ~ modifications  including  phosphorylation,
palmitoylation, and polyubiquitination. Dysregulation of
any of these processes can greatly impact channel function
and expression and consequently contribute to NMDAR hypo-
function. The most-studied posttranslational modification of
NMDARs is phosphorylation, which is a well-characterized
means for regulating synaptic localization, stabilization, and
channel kinetics. Therefore, changes in NMDAR phosphoryla-
tion have important implications both for synaptic plasticity and
cognitive symptoms in schizophrenia (Rosenblum et al., 1996;
Lu et al., 1998; Li et al., 2009). This dynamic process not only
involves the direct phosphorylation of NMDARSs, but also kinase
activation and subsequent phosphorylation of other synaptic
proteins (Lau and Zukin, 2007; Lau et al., 2010). Moreover,
the NR2 subunit’s large C-terminus has many putative sites for
phosphorylation which can affect channel gating and stabiliza-
tion at the synapse (Monyer et al.,, 1992; Kornau et al., 1995).
NMDAR subunits are phosphorylated at serine or threonine and
at tyrosine residues (Raymond et al., 1994; Wang and Salter, 1994;
Kohr and Seeburg, 1996; Tingley et al., 1997). These sites are
substrates for phosphorylation by a variety of kinases including
the Src family of kinases (SFK), cAMP-dependent protein kinase
A (PKA), protein kinase C (PKC), cyclin-dependent kinase 5
(Cdk5), casein kinase 2 (CK2), and CaMKII (Omkumar et al.,
1996; Raman et al., 1996; Li et al., 2001; Chung et al., 2004).
In fact, the activity and expression of many of these kinases are
altered in postmortem tissue from human schizophrenic patients
(Aksenova et al., 1991; Engmann et al., 2011; Funk et al,, 2012).
This provides strong evidence that altered kinase signaling likely
plays a role in NMDAR function in schizophrenia.

It is clear that the interaction between synaptic scaffold-
ing proteins and the NR2 subunit C-terminal tails are criti-
cal for NMDAR synaptic targeting and thus could contribute
to NMDAR hypofunction. PDZ-containing proteins can bind
directly to NR2 subunits via PDZ recognition sequences in the
distal portions of their C-termini, and this association is crit-
ical for targeting NDMARs to the synapse (Mori et al., 1998;
Steigerwald et al., 2000; Lin et al., 2004). Further, both NR2A
and NR2B are known to interact with membrane-associated
guanylate kinase (MAGUK) family of proteins, including PSD-
95, PSD-93, and SAP102 (Al-Hallaq et al., 2007). Interestingly,
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the neuregulin receptor ErbB4 also associates with similar PDZ
domains, positioning NRG-Erb signaling to affect NMDAR func-
tion (Garcia et al., 2000). Furthermore, ErbB4 interacts with
FYN, a member of SFKs. SFKs phosphorylate tyrosine residues
on both NR2A and NR2B subunits affecting channel gating and
increasing NMDAR currents (Wang and Salter, 1994; Kohr and
Seeburg, 1996; Hisatsune et al., 1999; Nakazawa et al., 2001;
Takasu et al., 2002). NRG1-Erb signaling can prevent Src upregu-
lation of NMDAR-mediated currents by inhibiting NR2B phos-
phorylation (Li et al., 2001; Bjarnadottir et al., 2007; Pitcher
et al., 2011). Additionally, NMDAR tyrosine phosphorylation is
important for synaptic plasticity. NR2B tyrosine phosphorylation
is increased following long-term potentiation (LTP) and inhibit-
ing Src activation prevents LTP induction (Grant et al., 1992;
Rosenblum et al., 1996; Rostas et al., 1996; Lu et al., 1998). In
hippocampus, NRG-Erb signaling can suppress LTP (Kwon et al.,
2005; Pitcher et al., 2008). Therefore, NRG1 could contribute to
cognitive dysfunction in schizophrenia by altering NMDAR func-
tion and/or affecting synaptic plasticity (Mei and Xiong, 2008).
Similarly, DISC1 is a known binding partner of PDE4B, which
regulates cAMP activity and thus PKA activity (Millar et al,
2005; Clapcote et al., 2007). PKA-mediated phosphorylation of
NMDARSs can affect their release from the endoplasmic reticu-
lum, and regulate expression levels of NR2B (Scott et al., 2003;
Llansola et al., 2004). However, it has not been directly tested
whether mutations in DISCI affect NMDAR expression and func-
tion. Additionally, it remains an open question if disruption of
dysbindin would produce similar modifications in NMDARs. If
and how the schizophrenia risk genes affect NMDAR phosphory-
lation and thus expression and function is an area of research that
needs to be further explored.

Another crucial mechanism for proper NMDAR function is
the maintenance of appropriate levels of NMDARs in the synapse.
This process requires a balance between NMDAR insertion
and endocytosis. Specialized endocytic zones involving clathrin-
coated pits have been described lateral to the PSD for gluta-
matergic synapses, and serve to internalize NMDARs (Blanpied
et al., 2002; Petralia et al., 2003; Nong et al., 2004). Altered dys-
bindin expression can alter NMDAR surface expression through
clathrin-dependent endocytosis (Jeans et al., 2011). Further,
palmitoylation and ubiquitination can also regulate NMDAR
synaptic numbers. Palmitoylation is a reversible process that
involves the covalent attachment of palmitate group to proteins
via thioester bonds at cysteine residues. Palmitoylation is a crit-
ical regulator of many cellular processes involved in neuronal
development and synaptic plasticity (Fukata and Fukata, 2010).
Therefore, dysregulation of palmitoylation could contribute to
synaptic dysfunction and cognitive symptoms in schizophrenia.
Furthermore, key proteins implicated in schizophrenia, includ-
ing GADG65 and PSD-95 are known to be regulated dynamically
through palmitoylation (El-Husseini Ael et al., 2002; Kanaani
et al., 2008). More recently, it was discovered that palmitoylation
can regulate NR2A and NR2B trafficking (Hayashi et al., 2009). In
fact, palmitoylation can promote synaptic stabilization or seques-
tering of NMDARSs in the Golgi apparatus to affect the level of
NMDARSs at synapses. Interestingly, altered protein palmitoyla-
tion was found in a mouse model of 22q11.2 deletion, a high risk

factor of developing schizophrenia (Madry et al., 2008). However,
it remains unknown if NMDAR palmitoylation is disrupted in
schizophrenia and if or how other schizophrenia risk genes may
be involved.

Equally as important as trafficking and stabilizing proteins
in the synapse is the process of targeting proteins for removal
and degradation. It is known that ubiquitin-based protein degra-
dation of NMDARs is an important homeostatic regulator of
NMDAR levels at synapses (Ehlers, 2003). For example, down-
regulation of synaptic NR1 has been associated with polyu-
biquitination (Groblewski and Stafford, 2010; Bangash et al,,
2011). Additionally, ubiquitination of scaffolding proteins, such
as Shank3, is linked to NR2B downregulation (Mao et al., 2009a).
Also, NR2B itself is ubiquitinated in a Fyn dependent manner
(Jurd et al., 2008). Given NRG1-ErbB4 interactions with Fyn, it
is possible that their signaling could contribute to ubiquitination
of NR2B. However, this relationship has not been tested exper-
imentally. Therefore, while there is evidence that the ubiquitin
proteasome pathway is disrupted in schizophrenia (Nilsson et al.,
2007), it is currently unknown how ubiquitination of NMDARs
and other synaptic proteins contribute to the disease process.
Exploring this relationship as well as how schizophrenia risk genes
could alter these processes is an important line of research.

Given the diverse set of mechanisms that could contribute
to NMDAR hypofunction, it is not surprising that multi-
ple signaling pathways are implicated in schizophrenia. For
example, both PLC/IP3R/Ca?t and Ras/MEK/ERK (extracellu-
lar signal-regulated kinase) signaling pathways are involved in
the neuregulin-induced reduction of NMDAR currents, which
likely occurs through enhancing NR1 internalization via an actin-
dependent mechanism (Gu et al., 2005). While the candidate
genes discussed activate many signaling cascades to affect neu-
rodevelopment and NMDAR function, the AKT (also known as
protein kinase B) signaling pathway, and its downstream target
glycogen synthase kinase 3p (GSK-3f) may serve as a convergence
point or common pathway. AKT is a serine/threonine kinase
that serves in a variety of processes including regulation of pro-
tein synthesis, neurodevelopment, and neuronal plasticity (Sanna
et al., 2002; Jiang et al., 2005; Balu et al., 2012). Further, DISC1,
NRG1, and dysbindin all contribute to these cellular processes,
and are all known regulators of AKT and GSK3p (Lemke, 1996;
Huang et al., 2000; Kamiya et al., 2005; Ghiani et al., 2010; Lee
et al.,, 2011). DISCI regulates the AKT-GSK3f signaling path-
way to affect neurodevelopment and adult neurogenesis (Kim
et al., 2009; Mao et al., 2009b). Furthermore, knockdown of
DISC1 with siRNA caused a decrease in AKT phosphorylation,
which would in turn increase GSK3p activity (Hashimoto et al.,
2006). Interestingly, reducing GSK3p activity was able to correct
behavioral deficits in DISC1 mutant mice, strongly implicating
DISCI1 affects GSK3p in schizophrenia pathogenesis (Lipina et al.,
2011, 2012). Similarly, both NRG1 and dysbindin can regulate
AKT phosphorylation (Numakawa et al., 2004; Guo et al., 2010).
Additionally, AKT protein levels and phosphorylation of GSK38
are altered (Emamian et al., 2004) and NRG1-stimulated phos-
phorylation of AKT is reduced in schizophrenia (Keri et al., 2009).
Yet, how would regulation of the AKT/GSK3 signaling pathway
by DISC1, NRG1, and dysbindin affect NMDAR function? It was
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recently demonstrated that GSK3p activity can regulate NMDAR
expression and function (Li et al., 2009; Xi et al., 2011). While this
evidence provides a possible common link between schizophre-
nia risk genes and NMDAR hypofunction, direct experimental
evidence is still needed.

CONCLUSION AND FUTURE PERSPECTIVE

In this review, we have summarized the current literature and dis-
cussed the various mechanisms that are associated with NMDAR
regulation in schizophrenia. All of the findings derived from
the known genetic risk factors for schizophrenia suggest that
NMDARs may serve as a convergence point for the progression
and symptoms of schizophrenia. Despite such progress, there are
still many questions that need to be answered to confirm this
intriguing hypothesis. For example, it is unclear how gene muta-
tions in neurons and/or astrocytes and their interaction can lead
to NMDAR dysfunction during development. It is also unknown
how disrupted NMDAR function leads to altered neurodevel-
opment, which contributes to the progression and development
of this devastating disease. The vast majority of schizophrenia
research has focused on changes in adulthood, leaving neu-
rodevelopmental alterations relatively unexplored. So, while it
is known that proper expression and regulation of NMDARSs is
critical for cortical maturation and synaptic plasticity that under-
lie cognitive functioning, it is unknown if there is a common
signaling pathway, such as AKT/GSK-38 pathway, mediates this
pathophysiological process among the schizophrenia susceptibil-
ity genes. If yes, what are the downstream target substrates of
AKT and/or GSK-3 that contribute to the regulation of NMDAR
functions? It is possible that AKT/GSK-3f act directly upon
NMDARSs as our recent research suggests (Li et al., 2009; Xi et al.,
2011). However, given their diverse targets (Kockeritz et al., 20065
Peineau et al., 2008; Karam et al., 2010; Li and Gao, 2011), it is
also possible they indirectly affect NMDARs by acting on other
targets, such as B-catenin (Mao et al., 2009b), B-arrestin (Beaulieu
et al., 2005), DISC1 and/or PDE4 interaction (Mao et al., 2009b;
Lipina et al., 2012), as well as the AKT/mTOR signaling pathway.
Activation of mTOR has been functionally linked with local pro-
tein synthesis in synapses, resulting in the production of proteins
required for synaptic formation and maturation (Kelleher et al.,
2004; Hoeffer and Klann, 2010).

In addition, although psychosis manifests primarily in late
adolescence or early adulthood, the emerging picture from
genetic and epigenetic studies indicates that early brain devel-
opment is affected, and cognitive symptoms, such as learn-
ing and memory deficits, are evident much earlier. Specifically,
schizophrenia may progress from risk to prodrome in the early
stage until onset of psychosis and chronic disability in the late
stage (Insel, 2010). Therefore, theoretically, the key to forestall the
disorder is to detect and prevent early stages of risk and prodrome
with novel therapeutic targets for early treatment (Lieberman
et al.,, 2006; Insel, 2010). However, in general, schizophrenia-
related research has focused on how NMDAR function in adults
contributes to psychosis and cognitive symptoms. These find-
ings, although intriguing, are limited in that they do not reveal
the changes before psychosis, specifically during neurodevelop-
ment. In fact, there is no consensus among animal models to

what changes occur pre-pubertally and how the genetic sus-
ceptibilities interact. Does the process occur simultaneously or
sequentially, with various changes culminating in altered devel-
opment? If it is a sequential process, when do these changes occur
and is there a point of no return in terms of preventing cog-
nitive symptoms and psychosis? It appears that adolescence is
a critical period for onset of psychosis, but how and by what
mechanisms? Therefore, in studying molecular mechanisms that
underlie the pathophysiology of schizophrenia and related disor-
ders, a sharp focus on the specific neurodevelopmental trajectory,
especially in early development and adolescent brain matura-
tion, is vitally important (Jaaro-Peled et al., 2009; Insel, 2010).
Animal studies, particularly developmental models, will certainly
help to reveal the neurodevelopmental trajectory of schizophre-
nia, yield disease mechanisms, and eventually offer opportunities
for the development of new treatments, especially for early treat-
ment of cognitive deficits. Utilizing multiple animal models to
address similar questions will provide the greatest opportunity
for determining consistent changes that most likely contribute
to the progression of schizophrenia. It would also be important
to definitively determine which neurons express altered gluta-
mate receptor subtypes, whether these neurons are inhibitory or
excitatory, and how the circuitries are affected by these high-risk
genes.

Furthermore, it is critical to determine if there comes a point
during neurodevelopment where brain circuitry is sufficiently
altered that no therapeutics will halt the progression of the dis-
ease. At present, there are no approved medications for the
treatment of either negative symptoms or cognitive dysfunction
in schizophrenia (Ibrahim and Tamminga, 2011). However, new
pharmacological and behavioral approaches aimed at potentiat-
ing glutamatergic neurotransmission, particularly at NMDARSs,
offer new hope for future clinical development. Although many
studies support the theory of NMDAR hypofunction, they do not
address the very important conceptual question of whether early
treatment with mGluR agonists or other agents is able to pre-
vent the progression or reverse the cognitive deficits and even
psychosis that occur in the late stage of the disease. A failure
to correct mutant phenotypes with treatment administered after
symptom onset would suggest a missed critical period window
and indicate that schizophrenia is a terminally differentiated phe-
notype of altered brain development. Earlier theories supported
the notion that effective treatment for developmental disorders
such as schizophrenia and autism could only occur during the
critical developmental window, after which the brain would be
hard wired. Indeed, recent studies demonstrated that a compre-
hensive phenotype correction is possible with pharmacological
intervention (mGluR5 inhibitor) starting in young (35 postna-
tal weeks) animals, after development of the phenotype, in both
a Fragile X syndrome model (Michalon et al., 2012) and Shank-2
knockout mice (Won et al., 2012). In addition, adolescent admin-
istration of mGluR5 PAMs not only reverse adult-onset deficits,
but also prevent the emergence of cognitive impairment induced
by neonatal treatment with PCP in a developmental model of
schizophrenia (Clifton et al., 2013). These findings certainly offer
fresh hope for schizophrenia treatment, suggesting that NMDARs
could be critical targets for treatment. Currently, our experiments
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are under way to test this hypothesis in rats with gestational
methylazoxymethanol exposure (Snyder et al., 2013) and other

animal models.

Finally, if NMDAR dysfunction in schizophrenia is relative,
rather than absolute, enhanced practice might be able to over-
come reduced plasticity. Given the number of convergent mech-
anisms that may contribute to impaired NMDAR function,
ideal treatment in schizophrenia may engage optimizing func-
tion within a number of convergent pathways. Combinatorial
pharmacological and behavioral interventions, rather than simply
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