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Functional macrophage heterogeneity is recognized outside the central nervous system
(CNS), where alternatively activated macrophages can perform immune-resolving
functions. Such functional heterogeneity was largely ignored in the CNS, with respect to
the resident microglia and the myeloid-derived cells recruited from the blood following
injury or disease, previously defined as blood-derived microglia; both were indistinguishably
perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating
cells as functionally distinct from the resident microglia, and accordingly, to name
them monocyte-derived macrophages (mo-MΦ). Although microglia perform various
maintenance and protective roles, under certain conditions when they can no longer
provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as
microglial replacements but rather assistant cells, providing activities that cannot be
timely performed by the resident cells. Here, we focus on the functional heterogeneity
of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to
timely acquire the phenotype essential for CNS repair.
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INTRODUCTION
Outside the central nervous system (CNS), macrophages are
known to acquire distinct phenotypes, and accordingly, per-
form various different and even opposing functions. Macrophages
are generally polarized into two major phenotypes: Th1-related
cytokines, such as interferon-gamma (IFN-γ), and microbial chal-
lenge by products such as lipopolysaccharides (LPS) induce the
classically activated M1 phenotype, driving macrophages toward a
pro-inflammatory microbicidal function, whereas Th2 cytokines,
such as interleukin-4 (IL-4) and IL-13 polarize macrophages to
an alternatively activated M2 phenotype associated with wound
healing and immune resolution (Gordon, 2003; Gordon and Tay-
lor, 2005; Mantovani et al., 2005; Mosser and Edwards, 2008;
Auffray et al., 2009; Martinez et al., 2009; Gordon and Martinez,
2010; Sica and Mantovani, 2012). These different macrophage
populations act following various insults outside the CNS where
the CCR2+CX3CR1lowLy6Chigh subset, corresponding to the M1
phenotype, is the first recruited to the damage site and is typ-
ically pro-inflammatory, while the CCR2−CX3CR1highLy6Clow

cells, matching the M2 phenotype, subsequently terminate the
local inflammation as well as promoting regeneration and healing
(Arnold et al., 2007; Nahrendorf et al., 2007). These two polarized
phenotypes are further classified, based on their diverse sur-
face markers, phenotypes and functions, into a more continuum
spectrum of macrophage repertoire (Mosser and Edwards, 2008).

In the CNS, however, such diversity of macrophage func-
tions was largely overlooked, as microglia, the native immune
cells of the CNS, were considered its exclusive innate com-
ponents. Initially discovered by Cajal (1913) and his student

Del Rio-Hortega (1919), microglia are currently accepted as self-
renewing cells with a unique embryonic origin (Ginhoux et al.,
2010; Schulz et al., 2012; Gomez Perdiguero et al., 2013), dis-
tributed along CNS parenchymal tissues. Their primary roles are
the maintenance of normal CNS functions (Elkabes et al., 1996;
Nakajima et al., 2001; Aarum et al., 2003; Nimmerjahn et al., 2005;
Walton et al., 2006; Ziv et al., 2006; Ransohoff and Perry, 2009;
Wake et al., 2009; Sierra et al., 2010; Tremblay, 2011) and the
continuous search for alterations in homeostasis through their
constantly scanning dynamic ramifications (Nimmerjahn et al.,
2005; Hanisch and Kettenmann, 2007; Ransohoff and Perry,
2009; Kettenmann et al., 2011). Under pathological conditions,
microglial functions are largely dependent on their activation
stimuli; whereas moderate CNS damage evokes protection by
microglia (Prewitt et al., 1997; Rabchevsky and Streit, 1997; Batch-
elor et al., 1999; Chung et al., 1999; Butovsky et al., 2001; Kotter
et al., 2001; Stadelmann et al., 2002; Streit,2002; Shaked et al., 2004,
2005; Neumann et al., 2006, 2008; Schwartz et al., 2006; Yin et al.,
2006; Majumdar et al., 2007; Muzio et al., 2007; Thored et al., 2009;
Kettenmann et al., 2011), intensive acute activation (for example
in spinal cord injury, optic nerve crush, or stroke) and chronic
activation, which characterizes neurodegenerative diseases, ren-
der these cells neurotoxic, potentially impairing neuronal activity
(Munn, 2000; Stalder et al., 2001; Wegiel et al., 2001; Ekdahl et al.,
2003; Monje et al., 2003; Stirling et al., 2004; Block and Hong, 2005;
Heppner et al., 2005; Block et al., 2007; Hanisch and Kettenmann,
2007; Muzio et al., 2007; Ovanesov et al., 2008; Centonze et al.,
2009; Maezawa and Jin, 2010; Perry et al., 2010; Derecki et al., 2012,
2013; Scheffel et al., 2012). Such a phenotype not only prohibits
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microglia from resolving inflammatory damage but rather con-
tributes to the vicious cycle of toxicity and calls for additional
assistance to terminate the local inflammation.

As an immune privileged site, the CNS was, for decades, con-
sidered sealed for leukocyte entry, protected from the circulation
behind the walls of the blood–brain barrier (Wilson et al., 2010;
Ransohoff and Engelhardt, 2012). Any recruitment of immune
cells to the CNS was perceived as either a technical artifact (Ajami
et al., 2007; Mildner et al., 2007) or as part of the ongoing inflam-
matory damage (McGeer et al., 1990; Popovich et al., 1999; Gris
et al., 2004; Stirling et al., 2004; Boster et al., 2008). Further con-
fusion resulted from the fact that blood-derived myeloid cells,
recruited following CNS damage, were considered microglial rein-
forcements of comparable functions, and were accordingly termed
“blood-derived microglia” (Eglitis and Mezey, 1997; Priller et al.,
2001; Bechmann et al., 2005; Simard et al., 2006). A series of recent
innovative studies demonstrated that such infiltrating cells, which
we defined as monocyte-derived macrophages (mo-MΦ), perform
indispensable roles that cannot be provided by their resident coun-
terparts (Shechter et al., 2009, 2011; London et al., 2011). These
studies challenged the traditional perception of macrophages in
the CNS as a functionally homogeneous population. Moreover,
they set the ground for a new era of research employing sophisti-
cated techniques including parabiosis, head-protected bone mar-
row chimeras, transgenic mice, and fate mapping analysis (Carson
et al., 2007; Ginhoux et al., 2010; Saederup et al., 2010; Ajami
et al., 2011; Mildner et al., 2011; Prinz et al., 2011; Butovsky et al.,
2012; Derecki et al., 2012; Schulz et al., 2012; Colton, 2013; Gomez
Perdiguero et al., 2013), aimed at revealing the differential origin,
phenotype, and function of distinct myeloid populations within
the CNS. In this perspective, we will focus on the functional hetero-
geneity of microglia/mo-MΦ, addressing microglial functions as
the first immunological support, the failure of these cells to provide
significant protection under intensive acute or chronic activation,
and the subsequent unique contribution of the mo-MΦ.

MICROGLIA IN MAINTENANCE AND DEFENSE
Similar to other tissue-resident macrophages outside the CNS,
the primary role of microglia is to support normal tissue func-
tion, in this case neuronal integrity (Nimmerjahn et al., 2005;
Hanisch and Kettenmann, 2007; Ransohoff and Perry, 2009; Ket-
tenmann et al., 2011; Scheffel et al., 2012). The development of
in vivo two-photon microscopy revolutionized our understand-
ing of microglial functions under steady state. It allowed the
study of non-activated microglia in intact brains of living ani-
mals (Davalos et al., 2005; Hanisch and Kettenmann, 2007). In
these studies, using Cx3cr1GFP/+ or Iba1-EGFP transgenic mice, in
which microglia are fluorescently labeled (Jung et al., 2000; Hira-
sawa et al., 2005), these cells present highly motile processes, which
directly contact astrocytes, neurons, and blood vessels, allowing
the microglia to perform surveillance functions, constantly sens-
ing subtle changes in their microenvironment (Nimmerjahn et al.,
2005). Microglia provide several housekeeping functions. For
instance, these cells are involved in the maintenance of synapses;
microglial ramifications directly interact with termini, spines,
astrocytic processes, and synaptic clefts (Murabe and Sano, 1982;
Wake et al., 2009; Tremblay, 2011). These interactions enable the

recognition of neuronal activity or structural alterations, accord-
ing to which microglia facilitate synapse elimination, pruning
or maturation, thereby preserve and organize neuronal networks
(Murabe and Sano, 1982; Wake et al., 2009; Paolicelli et al., 2011;
Tremblay, 2011). Microglia have been reported to support neu-
rogenesis; they rapidly and efficiently clear out, by phagocytosis,
the numerous apoptotic neural progenitor cells (NPCs) that do
not incorporate into the circuitry (Sierra et al., 2010), direct the
migration and differentiation of NPCs, as well as secreting solu-
ble factors promoting neurogenesis (Aarum et al., 2003; Butovsky
et al., 2006c; Walton et al., 2006; Choi et al., 2008). Moreover,
microglial activation following exercise and by local interaction
with adaptive immune cells strongly supports neurogenesis and
enhances cognitive functions (Ziv et al., 2006; Ziv and Schwartz,
2008; Wolf et al., 2009; Vukovic et al., 2012). Additionally, several
in vitro and in vivo studies demonstrated the capacity of microglia
to secrete neurotrophic factors, e.g., nerve growth factor (NGF),
neurotrophin-3 (NT-3), and NT-4 (Elkabes et al., 1996; Naka-
jima et al., 2001). Under certain conditions microglia upregulate
their brain-derived neurotrophic factor (BDNF) and insulin-like
growth factor-1 (IGF-1) expression; both factors have protective
and growth-promoting effects and are essential for learning and
memory skills (Mizuno et al., 2000; Hsieh et al., 2004; Lee et al.,
2004; Butovsky et al., 2006c; Wang et al., 2012).

Being the native immune cells of the CNS, microglia act as
the first line of defense, protecting the CNS from invading agents
as well as internal enemies; microglia are involved in infection,
inflammation, autoimmune disease, trauma, ischemia, and neu-
rodegeneration. After initial exposure to a danger signal, microglia
become activated; they upregulate expression levels of certain
molecules such as CD11b and Iba1, and gain expression of
molecules associated with antigen presentation, such as major
histocompatibility complex (MHC)-II, B7.1, and B7.2 (CD80/86),
which are absent in naïve microglia. Microglia then lose their
ramified morphology and surveillance mode, and convert to
amoeboid-like, functional cells (Kettenmann et al., 2011).

Microglial functions under pathological conditions may reflect
their diverse phenotypes acquired contingent to their activation
signals. For example, activation of microglia by T cells that recog-
nize CNS antigens or T cell-derived cytokines such as IFN-γ (at
low concentrations) and IL-4 supports differentiation of NPCs
and provides neuroprotection by regulating IGF-1 and tumor
necrosis factor-alpha (TNF-α) levels. However, stimulation with
LPS, amyloid-β or high concentrations of IFN-γ diminishes these
effects. Moreover, activation of microglia by IL-4 prior to the
LPS stimulation prevents the LPS-mediated-inhibition of the
microglial neuroprotective effects (Avidan et al., 2004; Shaked
et al., 2004; Butovsky et al., 2005, 2006a,b,c; Scheffel et al., 2012).
Thus, microglia are highly versatile cells; their regulated activation
and proper termination might help in tissue preservation, repair,
and renewal, while intensive acute or chronic activation may result
in irreversible tissue loss.

Microglia exert several protective roles. These include removal
by phagocytosis of pathogens and microbes, as well as clearance
of toxic molecules, cell debris, remains of extracellular matrix,
myelin derivatives, and protein deposits (e.g., amyloid-β or p-
tau), all of which further contribute to the local inflammation
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and are inhibitory to regeneration and repair (Chung et al.,
1999; Magnus et al., 2001; Ravichandran, 2003; Shaked et al.,
2005; Liu et al., 2006; Majumdar et al., 2007; Kettenmann et al.,
2011). Microglia can promote regeneration; other than removal
of growth-inhibitory compounds (Kettenmann et al., 2011), these
cells produce classical growth factors required for remyelination
and regeneration (Kotter et al., 2001; Stadelmann et al., 2002).
Microglia were reported to support regeneration of the optic nerve
as well as sensory axons in the injured spinal cord (Prewitt et al.,
1997; Rabchevsky and Streit, 1997; Yin et al., 2006) and to induce
dopaminergic sprouting in the injured striatum (Batchelor et al.,
1999). Additionally, microglia were shown to support neurogen-
esis and reduce neuronal death following stroke (Neumann et al.,
2006; Thored et al., 2009).

MICROGLIAL MALFUNCTION FOLLOWING INTENSIVE ACUTE
OR CHRONIC ACTIVATION – A CALL FOR PERIPHERAL HELP
Substantial evident suggest that microglial activity is not always
optimal and is often not sufficient to support significant CNS
repair; on the contrary in many cases their insufficient support
turns detrimental. Under intensive acute or chronic activation,
microglia not only fail to provide the needed functions, but there
are ample evidence implying that they can be actively deleterious;
these cells secrete reactive oxygen species, nitric oxide (NO), and
pro-inflammatory cytokines that can endanger neurons, oligo-
dendrocytes, or essential structures of the extracellular matrix
(Monje et al., 2003; Stirling et al., 2004; Block and Hong, 2005;
Block et al., 2007; Hanisch and Kettenmann, 2007; Perry et al.,
2010). Microglial malfunction was suggested as a possible eti-
ology in schizophrenia, resulting in impaired pruning during
neurodevelopment, disturbance of normal neurotransmitter func-
tion, and uncontrolled production of pro-inflammatory cytokines
such as TNF and IL-6, as well as failure in clearance of neuronal
corpses (Munn, 2000). Microglial abnormal response is also evi-
dent in Rett syndrome, a neurodevelopmental disease resulting
from mutation of the gene encoding methyl-CpG binding protein
(Mecp2). Mecp2-null microglia release glutamate at neurotoxic
levels (Maezawa and Jin, 2010) and have impaired phagocytic
activity (Derecki et al., 2012, 2013), possibly contributing to dis-
ease development. Impaired microglial function is also reported in
amyotrophic lateral sclerosis (ALS), where microglia derived from
mutant superoxide dismutase 1 (SOD1) mouse, an established dis-
ease model of ALS, induce more oxidative stress and cause higher
neuronal loss compared with wt microglia (Beers et al., 2006).
Interestingly, down regulation of the mutant levels in microglia
results in reduced disease progression (Boillée et al., 2006). In
experimental autoimmune encephalomyelitis (EAE), a neurode-
generative disease model, microglial activation was inhibited by
administration of ganciclovir to chimeric mice in which only the
microglia express thymidine kinase that converts this drug into its
cytotoxic form. Such specific microglial paralysis inhibits disease
development and attenuates inflammatory CNS lesions (Heppner
et al., 2005). Moreover, in Alzheimer’s disease, characterization
of fibrillar plaque development in brains of transgenic APP(SW)
mice revealed that microglia are not only unable to clear amyloid-β
deposits, but rather, contribute to plaque formation (Stalder et al.,
2001; Wegiel et al., 2001). Additionally, microglia-derived chronic

inflammation was shown to precede neuronal loss in neonatal
borna disease virus (BDV) infection (Ovanesov et al., 2008).

Collectively, these evident suggest that under intensive acute or
chronic activation microglia fail to acquire the desired phenotype,
lose their essential functions and turn actively deleterious, and thus
cannot provide immune resolution and subsequent CNS protec-
tion. In such scenarios, the recruitment of additional myeloid cells
from the blood, comparable to microglia, is not likely. Rather,
there is a need for peripheral intervention, in the form of unique
cells, capable of providing the functions that cannot be delivered
by the resident microglia.

FUNCTIONAL MACROPHAGE HETEROGENEITY
Indeed, intensive acute or chronic microglial activation drives
these cells to produce a chemoattractive profile favoring the
recruitment of monocytes and lymphocytes (Hausler et al., 2002;
Sargsyan et al., 2009; Okamura et al., 2012). However, as the CNS
is an immune privileged site, it was assumed to exclude leuko-
cyte trafficking (Wilson et al., 2010; Ransohoff and Engelhardt,
2012). Consequently, several studies suggested that the recruit-
ment of myeloid cells to the CNS reflected non-physiological
entry, imposed by the unnatural experimental model (Ajami et al.,
2007; Mildner et al., 2007). Other studies, although recognizing
leukocyte entry to the CNS, interpreted their presence as a sign
of pathology or malfunction that is detrimental and should be
avoided (McGeer et al., 1990; Popovich et al., 1999; Gris et al.,
2004; Stirling et al., 2004; Boster et al., 2008). Moreover, the previ-
ous technical limited ability to distinguish between the infiltrating
blood-derived cells and the resident microglia resulted in the view
of the newly recruited cells as part of the microglial reservoir,
leading to their inaccurate tagging as “blood-derived microglia”
(Eglitis and Mezey, 1997; Priller et al., 2001; Bechmann et al.,
2005; Simard et al., 2006). This misleading nomenclature resulted
in the erroneous perception of these cells as phenotypically and
functionally comparable to microglia. Since then, advanced tech-
niques have been developed to allow the blood-derived cells to be
distinctly tracked and manipulated (Popovich and Hickey, 2001;
Wright et al., 2001; Carson et al., 2007; Rolls et al., 2008; Shechter
et al., 2009; Ajami et al., 2011; Colton, 2013). A series of recent
studies used head shielded [Cx3cr1GFP/+→WT] bone marrow
chimeric mice, whose wt bone marrow was replaced with that
of Cx3cr1GFP/+ mice (Jung et al., 2000). This approach allows
the infiltrating myeloid cells, derived from donor bone marrow
and labeled with GFP, to be distinguished from their resident
counterparts, while avoiding any artifacts related to brain irra-
diation (Shechter et al., 2009). These studies revealed the unique
and non-redundant functions of the newly recruited cells and
suggested the term “monocyte-derived macrophages (mo-MΦ)”
to identify these cells as an entity separate from the resident
microglia (Shechter et al., 2009, 2011; London et al., 2011). mo-
MΦ restrict amyloid-β plaques in a mouse model of Alzheimer’s
disease (Simard et al., 2006; Butovsky et al., 2007), contribute to
motor function recovery following spinal cord injury (Shechter
et al., 2009), promote survival of neurons and cell renewal in the
injured retina (London et al., 2011), and were recently shown
to arrest disease progression in Rett syndrome (Derecki et al.,
2012). These cells display immune-resolving characteristics and
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express anti-inflammatory cytokines, which are crucial for their
neuroprotective function. Moreover, they restrict accumulation
of other inflammatory leukocytes including neutrophils and resi-
dent microglia (Shechter et al., 2009; London et al., 2011), mediate
debris clearance by phagocytosis (Derecki et al., 2012), and reg-
ulate the extracellular matrix and glial scar surrounding the
damaged area (Shechter et al., 2011). Importantly, inhibition or
attenuation of the infiltration of mo-MΦ results in exacerbated
damage, indicating that the resident microglia, which were spared
in these experiments, cannot fulfill the protective functions pro-
vided by the mo-MΦ (Butovsky et al., 2007; Shechter et al., 2009,
2011; London et al., 2011).

Additional reinforcement for the disparity of these two myeloid
populations is the fact that resident microglia and mo-MΦ

development is dependent on different transcription factors.
While development of both microglia and mo-MΦ requires the
transcription factor, Pu.1 (McKercher et al., 1996), the latter
necessitates Myb and FLT3, whereas microglial development is
csf1-receptor-dependent and FLT3- and Myb-independent (Gin-
houx et al., 2010; Schulz et al., 2012; Gomez Perdiguero et al.,
2013). Each of these two myeloid populations has a unique set of
transcription factors and regulators leading to a diverse pattern of
gene expression. Advanced analysis methods compared the profile
of gene expression, microRNAs (miRNAs) and transcription fac-
tors, of splenic Ly6Chi monocytes and CD39+ resident microglia
in the SOD1 mouse, and of CD14+CD16− peripheral monocytes
in ALS patients (Butovsky et al., 2012). In this study, microglial
apoptosis was demonstrated along disease progression, while the
macrophages derived from Ly6Chi monocytes proliferated in the
spinal cord parenchyma and
were associated with motor neuron loss (Butovsky et al., 2012).
Notably, in this study, resident microglia were compared only to
the inflammatory Ly6Chi mo-MΦ population, whereas a recent
study reported the recruitment of two blood-derived macrophage
populations following spinal cord injury: the Ly6ChiCX3CR1low

pro-inflammatory and Ly6ClowCX3CR1hi anti-inflammatory
cells, which acquire their phenotype via their trafficking route
(Shechter et al., 2013). Thus, it will be interesting to characterize
the gene signature of both Ly6Chi and Ly6Clow mo-MΦ compared
to resident microglia, and also to address the issue of where, how
and when microglia acquire their phenotype.

All together, the evidence collected above indicates that under
extensive inflammatory conditions, microglia lose their beneficial
functions and instead display a deleterious role, further con-
tributing to the spread of damage. Withstanding this vicious
inflammatory cycle requires the recruitment of mo-MΦ, which
induce resolution of the local immune response, rather than sim-
ply acting as microglial reinforcements. This perception leads,
however, to the question of what drives the functional disparity
between resident microglia and mo-MΦ. Specifically, what pre-
vents microglia from acquiring the essential immune-resolving
“alternatively activated” phenotype that is provided by the mo-
MΦ? The answers to these questions may lie in the distinct
origin of the two myeloid populations; microglial progenitors are
yolk sac-derived macrophages that infiltrate the CNS during early
embryogenesis, when bone marrow-derived hematopoiesis, from
which mo-MΦ originate, is not yet established (Ginhoux et al.,

2010; Schulz et al., 2012; Gomez Perdiguero et al., 2013). Educated
in the CNS from early ontogeny, microglia were never exposed
to any other environment; they have a relatively long life-span
and undergo moderate and limited turn-over by self-renewal of
primitive myeloid precursors (Ajami et al., 2007; Ginhoux et al.,
2010; Schulz et al., 2012; Gomez Perdiguero et al., 2013). In con-
trast, mo-MΦ are freshly recruited from the circulation. Their
differences may also be related to the fact that microglia are the
first to encounter the damaged tissue, which might dictate their
phenotype, while the mo-MΦ, recruited at a slightly later stage,
acquire their nature via their trafficking route to the CNS (Shechter
et al., 2013). Interestingly, such timely recruitment of myeloid
subsets with differential functions is also evident in insults of non-
CNS organs (Arnold et al., 2007; Nahrendorf et al., 2007). Clearly,
further research is needed in order to address these issues.

FUNCTIONAL RELATIONSHIPS BETWEEN THE MICROGLIA
AND mo-Mφ – A CASCADE OF EVENTS
Based on the data reviewed above, we suggest here a cascade of
events representing microglial functions within the CNS and the
distinct contribution of mo-MΦ. Microglia enter the CNS during
early developmental stages. By continuous scanning and sampling
their environment via their dynamic processes, microglia are able
to maintain CNS homeostasis; they preserve and modify (upon
need) the synapse complex, support neurogenesis, secrete essen-
tial growth factors, and sustain normal CNS performance. Once
encountering an unbalanced milieu, microglia become fully acti-
vated; retract their long ramifications, proliferate and shift toward
a “ready to act” mode. Their subsequent function is very much
dependent on their activation signal. A short and moderate stimu-
lus will direct microglia to rapidly eliminate the source of damage
without evoking a further immune response. Such stimuli are
part of routine CNS maintenance and are generally resolved with-
out activating or affecting other systems in the body. Even when
the stimulus is stronger but short-lived, microglia can potentially
cope with the danger signal, performing clearance of neurotoxic
factors, supporting regeneration, and secreting neurotrophic fac-
tors supportive of remyelination. However, when the stimulus is
intense or chronic, microglia can no longer handle the ongoing
damage; these cells become neurotoxic and release reactive oxy-
gen species, NO, proteases and pro-inflammatory cytokines, all
of which endanger neuronal activity. Such microglial malfunc-
tion results in signals for recruitment of mo-MΦ to the damage
site, which provide functions that cannot be delivered by the
resident cells; mo-MΦ restrict the local inflammation, attenu-
ate accumulation of misfolded proteins or any other intruders,
restore homeostasis, and support healing and renewal. Unfortu-
nately, the spontaneous response of mo-MΦ is often insufficient
to achieve complete recovery. Thus, several therapeutic attempts
to boost such a protective response by either direct administra-
tion of monocytes or indirectly augmenting their recruitment are
currently underway (Figure 1).

LESSONS FROM OTHER TISSUE-SPECIFIC RESIDENT
MACROPHAGES
Although unique, microglia are not the sole tissue-specific
resident myeloid-derived cells. Many organs in the body contain
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FIGURE 1 | microglial and mo-MΦ functions – cascade of events.

(a) Resident microglia originate from yolk sac macrophages that repopulate
CNS parenchyma during early development and are self-renewed locally,
independent from bone marrow-derived monocytes, by proliferation of
primitive progenitors. (b) In the steady state microglia are constantly scanning
their environment through their highly motile processes. These
cells facilitate the maintenance of synapses (c) and neurogenesis (d),
as well as secrete growth factors essential for normal CNS performance
(e). Upon recognition of a danger signal, microglia retract their branches,
become round and ameboid, and convert into an activated mode (f). A
short or moderate signal directs microglia toward a neuroprotective
phenotype; these cells clear debris by phagocytosis (g), secrete growth

factors associated with remyelination (h) and support regeneration (i).
Intensive acute or chronic activation renders microglia neurotoxic; under such
conditions microglia fail to acquire a neuroprotective phenotype. Instead,
these cells produce reactive oxygen species (ROS), nitric oxide (NO),
proteases, and pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α, all of
which endanger neuronal activity (j). Microglial malfunction results in the
recruitment of mo-MΦ to the damage site (k). mo-MΦ secrete
anti-inflammatory cytokines such as IL-10 and TGF-β, express factors
associated with immune resolution such as manose receptor and arginase 1
(ARG1), and promote neuroprotection and cell renewal (l), all of which are
functions that cannot be provided, under these conditions, by the resident
microglia.

FIGURE 2 | Lessons from other tissue-specific resident macrophages. (A)

Langerhans cells (LCs), the resident myeloid cells of the epidermis share with
microglia their scanning capacity, their activation mode and possibly, their
embryonic origin. Different from microglia these cells migrate to the lymph
node where they act as antigen presenting cells. (B) Analogous to microglia,
intestinal macrophages act as the first line of defense, protecting the mucosa
from harmful pathogens and removing dead cells and debris. Unlike most
other tissue macrophages, upon activation by certain stimuli, these cells
produce immune-resolving factors. Distinct from microglia, circulating

monocytes are largely accepted as the source of intestinal macrophages,
however, the possibility of local self-renewal by embryonic precursors, under
steady state, was also raised. (C) Kupffer cells are the macrophages of the
liver. Similar to microglia, these cells perform clearance of host-related debris
and pathogens. Kupffer cells are classical antigen presenting cells; however
can also display immune-resolving functions. Moreover, they are largely
assumed to be self-renewed independently from circulating monocytes, but a
certain Kupffer cell subset was reported to originate from hematogenous
precursors.
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distinctive resident macrophages whose properties are tailored to
the host tissue (Figure 2). Langerhans cells (LCs), for example, are
the resident myeloid cells of the epidermis. Similar to microglia,
they have extended dendritic processes that embrace neighboring
keratinocytes (Langerhans, 1868; Bilzer et al., 2006) and scan the
epidermis for pathogens and toxic molecules (de Jong and Gei-
jtenbeek, 2010). These cells are endowed with the C-type lectin,
Langerin, used for interaction with bacteria, fungi, and viruses
(Turville et al., 2002; de Witte et al., 2007; Merad et al., 2008; de
Jong and Geijtenbeek, 2010). Like microglia, LCs descend from
embryonic precursors, possibly yolk sac macrophages or fetal
liver monocytes, and are renewed independently of the bone
marrow, by in situ proliferation upon need (Merad et al., 2002,
2008; Chorro et al., 2009; Chorro and Geissmann, 2010; Hoeffel
et al., 2012). Moreover, as in microglial activation, upon cap-
ture of pathogens, LCs undergo phenotypic changes including
increased expression of MHC-I and -II, and of the co-stimulatory
molecules CD80, CD86, and CD40 (Merad et al., 2008; de Jong
and Geijtenbeek, 2010). However, unlike microglia, which are
restricted to the CNS parenchyma, LCs upregulate the lymph
node-homing receptor, CCR7, which eventually leads to their
migration to peripheral lymph nodes where they induce a spe-
cific adaptive immune response against skin invading pathogens
(Merad et al., 2008). Intestinal macrophages are the largest popu-
lation of mononuclear phagocytes in the body (Smith et al., 2005;
Varol et al., 2010; Mowat and Bain, 2011). Similar to microglia,
they have essential functions under both normal and pathological
conditions; intestinal macrophages preserve a delicate equilib-
rium between commensal bacteria and the host, maintaining
epithelial integrity and mucosal homeostasis. These cells act as
the first line of defense protecting the highly exposed mucosa
from harmful pathogens, removing dead cells and debris, and
modulating the local inflammatory response (Smith et al., 2005;
Varol et al., 2010; Mowat and Bain, 2011). Unlike other tissue
macrophages, upon activation, for instance by certain Toll-like
receptor (TLR) ligands, intestinal macrophages do not express
high levels of co-stimulatory molecules nor do they secrete
pro-inflammatory cytokines (Rogler et al., 1998; Hirotani et al.,
2005; Uematsu et al., 2006; Mowat and Bain, 2011; Smith et al.,
2011). Rather, they produce anti-inflammatory mediators such
as IL-10 and prostaglandin E2 that restrict the local immune
response (Mowat and Bain, 2011). Unlike microglia, the replen-
ishment of intestinal macrophages is mostly associated with the
recruitment of circulating monocytes. However, the possibility
of self-renewal under steady state has also been raised (Mowat
and Bain, 2011). Kupffer cells are the macrophages of the liver.

These cells are mainly involved in clearance of pathogens and
host-derived waste; they are constantly exposed to bacterial
endotoxin (LPS) and microbial debris delivered from the gastroin-
testinal tract (Naito et al., 2004) and are involved in removal of
senescent or malformed red blood cells and phagocytosis of sol-
uble immunoglobulin G (IgG) complexes, microorganisms and
eukaryotic cells (Naito et al., 2004; Parker and Picut, 2012). In
addition to their role as phagocytes, Kupffer cells act as effec-
tive antigen presenting cells; upon Hepatitis C virus infection,
human Kupffer cells elevate MHC-I and -II expression, upregu-
late co-stimulatory molecules, and interact with T cells (Burgio
et al., 1998). However, several studies also demonstrated the
immune-resolving nature of Kupffer cells, which were shown to
suppress lymphocytes in culture (Callery et al., 1991), secrete IL-10
in response to LPS challenge (Knolle et al., 1995) and facilitate
Fas ligand (FasL)-mediated apoptosis of T cells in a liver trans-
plant model (Miyagawa-Hayashino et al., 2007). Thus, similarly
to CNS heterogeneous macrophages, Kupffer cells seem to per-
form highly versatile functions. These cells, like microglia and
LCs appear to self-renew independently of bone marrow-derived
precursors (Schulz et al., 2012; Gomez Perdiguero et al., 2013).
However, a study addressing Kupffer cell heterogeneity identi-
fied two subsets of Kupffer cells; one of them is radiosensitive
and rapidly replaced from hematogenous precursors (Klein et al.,
2007), indicating that the issue of Kupffer cell renewal is still
unresolved.

CONCLUSIONS AND FUTURE DIRECTIONS
The evidence collected in this perspective supports the concept of
functional macrophage heterogeneity within the CNS. Due to their
similar morphology, previously assumed shared origin and sub-
sequent misleading nomenclature, as well as the lack of available
techniques to distinguish between the two populations, microglia
and mo-MΦ were erroneously assumed to comprise a single pop-
ulation. Alternatively, and based on the ample findings addressed
above, our model suggests that when it comes to CNS macrophages
initial impressions can be deceiving; although they appear similar,
mo-MΦ and microglia present different gene expression patterns
and phenotypes, and are functionally distinct. Additional research
is needed in order to further reveal the different function of these
two distinct populations and the conditions that determine their
unique phenotype. Such research will help resolving the misun-
derstanding that resulted from the previously held blanket view
of these cells as homogeneously destructive, and might assist in
employing specific manipulations of the two subsets as a potential
therapeutic approach.
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