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Bone morphogenetic proteins (BMPs) make up a family of morphogens that are critical
for patterning, development, and function of the central and peripheral nervous system.
Their effects on neural cells are pleiotropic and highly dynamic depending on the stage of
development and the local niche. Neural cells display a broad expression profile of BMP
ligands, receptors, and transducer molecules. Moreover, interactions of BMP signaling
with other incoming morphogens and signaling pathways are crucial for most of these
processes. The key role of BMP signaling suggests that it includes many regulatory
mechanisms that restrict BMP activity both temporally and spatially. BMPs affect neural cell
fate specification in a dynamic fashion. Initially they inhibit proliferation of neural precursors
and promote the first steps in neuronal differentiation. Later on, BMP signaling effects
switch from neuronal induction to promotion of astroglial identity and inhibition of neuronal
or oligodendroglial lineage commitment. Furthermore, in postmitotic cells, BMPs regulate
cell survival and death, to modulate neuronal subtype specification, promote dendritic and
axonal growth and induce synapse formation and stabilization. In this review, we examine
the canonical and non-canonical mechanisms of BMP signal transduction. Moreover,
we focus on the specific role of BMPs in the nervous system including their ability to
regulate neural stem cell proliferation, self-renewal, lineage specification, and neuronal

function.
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INTRODUCTION

Bone morphogenetic proteins (BMPs) are members of the trans-
forming growth factor B (TGF-B) superfamily (Derynck and
Zhang, 2003; Shi and Massague, 2003; Miyazono etal., 2010).
BMPs were originally identified as factors that induce bone for-
mation when implanted at ectopic sites (Urist, 1965). Later, it
was shown that BMP functions exist in vertebrates as well as
in invertebrates and that they perform a wide range of biolog-
ical action in various cell types and tissues (Chen etal., 2004).
BMPs control many indispensable steps in embryogenesis, includ-
ing the formation and differentiation of the vertebrate nervous
system (Mehler et al., 1997; Kishigami and Mishina, 2005; Liu and
Niswander, 2005). At initial steps of development, BMP inhibition
is required to establish neuroectoderm from ectoderm, although
certain levels of BMP signaling are later required for neural crest
induction, neural crest cell migration, and spinal cord patterning.
At later development stages, BMP signaling promotes astrogli-
ogenesis and inhibition of neuronal or oligodendroglial lineage
commitment. Given the functions of BMPs in nervous system
development and maintenance, BMP signaling dysfunction and
modulation could have a strong impact on various nervous sys-
tem pathologies as well as their repair processes (Matsuura etal.,
2008; Sabo etal., 2009; Ma etal., 2011). In this review, we high-
light the main aspects of BMP signaling and BMP’s involvement
in neural induction and patterning, embryonic and postna-
tal neuronal differentiation, and the establishment of neuronal
connections.

SIGNALING BY BMPs

Bone morphogenetic proteins are the largest subfamily of the
TGF-B superfamily, which includes 33 members in mammals.
BMPs can be further classified into at least four subgroups:
BMP-2/4 group, BMP-5/6/7/8 group, growth and differentiation
factor-5,-6,-7 (GDF-5/6/7) group, and BMP-9/10 group (Little and
Mullins, 2009; Miyazono et al., 2010; Wagner et al., 2010). BMPs
are known to be involved in many developmental and homeo-
static processes throughout life. However, the exact function of
individual BMPs in a particular tissue and at a specific time dur-
ing development is far from clear. Due to their pleiotropic roles,
genetic manipulation often leads to embryonic lethality, thus pre-
cluding analysis of their later embryonic or postnatal functions
in multiple tissues and organs (Bragdon etal., 2011). In addition,
compensatory functional overlaps between BMPs make interpre-
tation complicated. Furthermore, although we may have a rough
estimate of the place and the timing of expression of a particu-
lar BMP, many factors present in the extracellular environment
are able to modify its exact diffusion rate, morphogen range,
and its bioavailability for a target cell (Eldar etal., 2002; Peluso
etal., 2011).

BMP SECRETION AND EXTRACELLULAR REGULATION

Bone morphogenetic proteins are synthesized as large precursor
proteins comprising an N-terminal signal peptide, which directs
the protein to the secretory pathway, a prodomain for proper fold-
ing and a C-terminal mature peptide (Sieber etal., 2009). BMPs
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are first secreted and then proteolitically cleaved upon dimeriza-
tion by serine proteases such as furin or PC6, releasing the mature
peptide (Cui etal., 1998). Active BMPs consist of two monomers
stabilized by three intramolecular disulfide bonds, known as cys-
teine knots, and an inter-dimer disulfide bond (Scheufler etal.,
1999). Mature forms may be either homo- or hetero-dimers con-
sisting of different BMP gene products. It has been shown in vivo
and in vitro that some hetero-dimerization could lead to increased
functional activity (Valera etal., 2010). In some cases, the cleaved
prodomain remains attached to the mature form, as in the case
of TGF-B, leading to reduced bioavailability and retention in the
extracellular matrix (Ramel and Hill, 2012).

This restricted availability to their membrane receptors is
mostly emphasized by the existence of highly regulated diffusible
and cell surface-bound antagonists. There are more than a dozen

diffusible antagonists that include chordin, noggin, follistatin, and
chordin-like proteins (Rider and Mulloy, 2010; Walsh etal., 2010
Zakin and De Robertis, 2010). Binding of antagonists physically
prevents BMPs from binding to their cognate receptors by mask-
ing the epitopes involved in ligand-receptor interactions (Groppe
etal., 2002; Figure 1). Subsequent cleavage of chordin by tolloid
zinc metalloproteinases triggers the release of active BMPs from
the chordin/BMP complex (Peluso etal., 2011). Twisted gastru-
lation (Tsg) has a dual role in distinct model systems, acting as
either a BMP antagonist or as an agonist. In the case of chordin,
the stability of the chordin/BMP complex is greatly increased by
Tsg (Chang etal., 2001; Ross etal., 2001).

Finally, regulation of BMP transport is crucial for its role
as a morphogen. It has been shown that BMP-2 has the abil-
ity to link directly to heparan sulfate proteoglycans (HSPGs).
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FIGURE 1| Canonical BMP signaling. BMPs bind to the BMP receptors type
|'and Il, and then type Il receptor phosphorylates and activates the type | BMP
receptor. Activated type | receptor phosphorylates R-Smads, which associate
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with the common Smad (Smad4) and enter the nucleus, where they regulate
transcriptional processes. BMP signaling can be inhibited by extracellular
antagonists, such as Noggin and Chordin, or intracellularly by I-Smads.
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In several experimental models, extracellular HSPGs and colla-
gen IV have been involved in the regulation of BMP transport
(Ruppert etal., 1996; Osses etal., 2006). Collagen IV binds to
BMP-4 and chordin homologs, sequestering them in the extracel-
lular matrix. As mentioned above, Tsg, acting as a BMP agonist,
releases chordin/BMP complexes from the collagen IV matrix,
allowing their diffusion (Sawala etal., 2012). Thus, all these events
of binding of BMPs to the extracellular matrix and/or to antago-
nists allow the formation of specific gradients through regulated
solubility and bioavailability and constitute the first level of signal
modulation.

BMP RECEPTORS AND RECEPTOR ACTIVATION

Bone morphogenetic proteins bind to a heterotetrameric com-
plex of transmembrane receptors known as type I and II ser-
ine/threonine kinase receptors (Mueller and Nickel, 2012). Both
types of receptors contain an N-terminal extracellular binding
domain, a single transmembrane region, and an intracellular
serine/threonine kinase domain (Shi and Massague, 2003; Feng
and Derynck, 2005; Miyazono etal., 2010). Strong evidence con-
firms that both type I and II receptors, acting in coordination,
are required for complete signal transduction. BMPs can bind to
type I in the absence of type II receptors but when both types are
present in the membrane of target cells their binding affinity is
highly increased (Hinck, 2012; Figure 2). Based on their struc-
tures and functions, type I BMP receptors can be divided into

the BmprlA and BmprlB group (also known as Alk3 and Alké6)
and the Acvrll and Acvrl group (also known as Alkl and Alk2;
Hinck, 2012). These groups show slight preferences for binding
to specific BMPs. For instance, BMP-2 and -4 bind preferentially
BmprlA and BmprlB whereas BMP-5, -6, and -7 additionally
bind to Acvrl (Liu etal., 1995). It is also well established that
BMPs bind to three distinct type II receptors, namely Bmpr2,
Acvr2A, and Acvr2B (Figure 2). Bmpr2 shows a unique, long
C-terminal extension that allows specific recruitment of intra-
cellular transducers. A question arises as to how such a limited
number of signaling receptors allows binding of a large number
of ligand members. One simple answer would rely on promis-
cuous interactions between shared ligands and several receptors
(Hinck, 2012; Mueller and Nickel, 2012). However, combinato-
rial interactions of different type I and II receptors should allow
selectivity and specificity of ligand binding as well as intracellular
signaling in target cells. Numerous in vivo examples confirm the
unique functions for an individual BMPs that are not shared even
for closely related ligands with similar receptor binding affini-
ties in vitro (Saremba etal., 2008; Meynard etal., 2009; Perron
and Dodd, 2011, 2012). Further study into the molecular mecha-
nisms that drive such functional specificity in living organisms is
needed.

Moreover, co-receptors have been shown to modulate
ligand binding and downstream signaling events. Mem-
bers of the repulsive guidance molecule (RGM) family are
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FIGURE 2 | Non-canonical BMP signaling. In addition to Smads, activated BMP receptors activate several intracellular pathways which modulate
BMP-dependent cellular responses. Pathways include TAK-p38, PI3-kinase, Cdc4?2 or activation of LIMK by binding to the BMPR-II cytoplasmic tail.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 87 | 3


http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Gémez etal.

BMP signaling in neural cell specification

glycophosphatidylinositol (GPI)-anchored co-receptors for BMP-
2 and -4 and enhance responses at low BMP concentrations (Xia
etal., 2007). Dragon and hemojuvelin (RGMbD and c¢, respec-
tively) also interact with BMP receptors and ligands and enhance
responses for BMP-2 and -6. It has been shown that hemojuvelin
plays a major role in regulation of iron metabolism in hepatocytes
by increasing the binding affinity of BMP receptors for BMP-6
(Babitt etal., 2006). In addition to facilitating co-receptors, other
membrane proteins function as suppressors of BMP signaling.
For instance, Bambi is a transmembrane protein, structurally
related to type I receptors that act as pseudoreceptor. Bambi
forms a stable receptor complex but, since it lacks the intracel-
lular kinase domain, inhibits transduction by titrating available
type Il receptors (Onichtchouk etal., 1999).

Type I and II BMP receptors show some ligand-independent
affinity for each other. In the absence of a ligand, small amounts
of pre-existing homo- and hetero-dimer receptor complexes are
present at the cell surface (Ehrlich etal., 2012). However, ligand
binding dramatically increases oligomerization involving type I
and II complexes. Ligand-induced oligomerization promotes type
II-dependent phosphorylation of a specific domain of type I recep-
tors (known as the GS domain; Figure 1). Upon phosphorylation
of the GS domain the type I receptor kinase is converted to its
active conformation (Wrana et al., 1994). Thus, the kinase activity
of type I receptors is the major intracellular transducer: whereas
mutated or kinase-deficient type I receptors block most of the
cellular responses to the ligand, constitutively active type I recep-
tors (induced by pathological mutations or artificially designed)
are able to signal most of the responses in the absence of type II
receptors or ligands (Wieser etal., 1995).

INTRACELLULAR Smad SIGNALING FROM BMP RECEPTORS
Smads are the main and best-known intracellular signal transduc-
ers for BMP receptors. According to their structural and functional
properties, three different types of Smads have been defined:
the receptor-regulated Smads (R-Smad) Smadl, -2,-3,-5, and -
8; a common mediator Smad, Smad4; and the inhibitory Smads
Smad6 and -7 (Shi and Massague, 2003; Sieber et al., 2009; Miya-
zono etal.,, 2010). Active type I kinases phosphorylate R-Smads
at serine residues located in their C-terminus. Specific phospho-
rylation of different R-Smads depends on the L45 loop of the
type I receptor (Feng and Derynck, 1997). All the BMP type
I receptors mentioned above (BMPR1A, BMPRIB, Acvrl, and
Acvrll) phosphorylate Smad1, Smad5, and Smad8, which are thus
defined as BMP-activated Smads. Phosphorylation and activation
of R-Smads disrupts the autoinhibitory interaction between the
N-terminal (MAD homology 1, MH1) and C-terminal (MH2)
domains of Smad monomers (Shi etal., 1997). This favors the
formation of a multimeric complex composed of two molecules
of R-Smad and one molecule of Smad4 interacting through their
MH?2 domain (Figure 1). On the new conformation, the nuclear
import signal is exposed and the complexes translocate into the
nucleus where they execute distinct transcriptional regulatory
functions (Feng and Derynck, 2005; Hill, 2009).

Intracellular BMP signaling, as shown for transduction of all
other morphogens described so far, is subjected to a growing num-
ber of cross-talk mechanisms with other extracellular ones, as

well as regulation by internal cues, in order to integrate a final
cell response. For instance, the inhibitory Smads, Smad6, and
Smad7, block BMP signaling by preventing phosphorylation of
R-Smads by type I receptors in a dominant negative fashion by
binding to active receptor complexes (Derynck and Zhang, 2003).
Another known mechanism is the degradation of Smads through
the ubiquitin—proteasome pathway. Several homologous to E6-
associated protein C-terminus (HECT)-type E3 ligases, such as
Smurf-1,-2, or Nedd4-2, interact and ubiquitinate Smads and,
when complexed with I-Smads, BMP receptors (Wicks et al., 2006).
Degradation of Smads is also regulated by mitogen-activated
protein (MAP) kinase and Gsk-3 phosphorylation allowing spe-
cific interaction with MAP kinase and Wnt signaling cascades
(Fuentealba et al., 2007).

NON-CANONICAL SIGNALING FROM BMP RECEPTORS

In addition to Smads, BMPs activate other intracellular signal-
ing pathways relevant to their cell functions. Non-canonical BMP
signaling includes Rho-like small GTPases, phosphatidylinosi-
tol 3-kinase/Akt (PI3K/Akt) or various types of MAP kinases
(Derynck and Zhang, 2003; Zhang, 2009; Figure 2). Mecha-
nistically, it is well established that BMPs regulate the Tak1/p38
pathway through recruitment and ubiquitylation of Traf6 by acti-
vated receptor complexes (Sorrentino et al., 2008; Yamashita et al.,
2008). BMPs trigger canonical and non-canonical pathways simul-
taneously, driving to a specific cellular output (Ulsamer et al., 2008;
Xu etal., 2008; Susperregui etal., 2011). Several studies indicate
that BMP-mediated cell migration or axon and dendrite growth
requires activation of the small GTPase Cdc42 and Limk activi-
ties. Most of these effects are Smad-independent, but depend on
Limk binding to the long cytoplasmatic tail of Bmpr2 complexes
(Foletta et al., 2003; Lee-Hoeflich et al., 2004). Furthermore, addi-
tional reports indicate that activation of Limk also requires the
activation of Paks through Cdc42 and PI3K, as well as p38 MAP
kinase activities (Gamell etal., 2008, 2011). The specific abilities
of distinct receptors or receptor combinations to activate these
non-canonical pathways and promote specific signaling outcomes
need to be studied.

BMPs IN NERVOUS SYSTEM DEVELOPMENT AND
MAINTENANCE

In recent years, there has been exponential progress in the clari-
fication of the role of BMPs at different stages of nervous system
development. BMP ligands and receptors are expressed in very
complex patterns throughout neural development in all regions of
the central and peripheral nervous system (Ebendal etal., 1998;
Miyagi etal., 2011). Evidence clearly demonstrates that these
pleiotropic cytokines have a very dynamic role: from the early steps
of neuralization and patterning to an instructive role in neural pre-
cursor fate commitment and neuronal wiring (Liu and Niswander,
2005). Evidence also extends their role in postnatal brain as well as
peripheral nervous system development and maintenance (Bond
etal., 2012; Figure 3).

EXPRESSION AND ROLE OF BMPs AND RECEPTORS IN TELENCEPHALIC
TISSUES

Bone morphogenetic proteins and their antagonists are expressed
throughout neural development with a complex chronological and
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FIGURE 3 | Roles of BMP signaling in neural development. Initially,
inhibition of BMP signaling is required for neuroectoderm induction. BMPs
generate a signaling gradient and promote dorsomedial identity. BMP
signaling is prominent at the dorsal telencephalic midline and in the marginal
zone neurons, where it correlates negatively with expression of the cortical
selector Lhx2, Fgf8, or Shh. In late embryogenesis and postnatally, BMP

signaling promotes astroglial commitment by activation astrocyte-specific
promoters through a Stat3-p300/CBP-Smad1 complex. At the same time
represses commitment to the other two neural lineages by inducing Ids and
Hes proteins. In adulthood, a balanced BMP signaling is required for
regulation of quiescence and differentiation of neural stem cell populations in
the SVZ and SGZ.

overlapping location that is only known to a limited extent. In
early-developing neural tissue, BMPs are expressed particularly at
the lateral edges of the neural plate and later on in the dorsal mid-
line of the neural tube (Mehler etal., 1997; Chen and Panchision,
2007). During vertebrate development, the rostral-dorsal part of
the neural plate gives rise to the telencephalon, the most complex
region of the nervous system. The two signaling centers in the
dorsal midline of the telencephalon, the roof plate and the cortical
hem, secrete several BMPs (Furuta etal., 1997). These BMPs gen-
erate a signaling gradient and promote dorsomedial identity. Mice
that are transgenic for specific BMP-dependent reporters indicate
that, at embryonic stages, high BMP signaling is prominent at the
dorsal telencephalic midline and in the marginal zone neurons,
where it correlates negatively with expression of the cortical selec-
tor Lhx2 (Doan etal., 2012). BMPs also reduce the expression of
the anterior forebrain markers Fgf8 or Shh (Anderson et al., 2002;

Figure 3). Chordin and noggin double mutant embryos further
emphasize the importance of the appeasement of BMP signaling
for proper ventral forebrain development (Anderson et al., 2002).
During further embryo development, brain expression of BMP-
2, -4, -5, -6, and -7 peaks around postnatal day 4 with a broad
expression pattern (Mehler etal., 1997; Sabo etal., 2009). Particu-
lar areas of the telencephalon, such as the hippocampus or cerebral
cortex, show strong postnatal BMP activation (Doan etal., 2012).
In adult telencephalon, there is also broad expression of BMPs
at most locations and cell types, suggesting also a pivotal role
in the adult brain. Interestingly, expression of BMPs and their
antagonists specifically remain in the two areas where neuroge-
nesis continues in the adult [the subventricular zone (SVZ) and
subgranular zones (SGZ); Bond et al., 2012]. Expression of BMPs,
from stem cells and neural progenitors, and noggin, secreted from
ependymal cells, is essential for stem cell niche maintenance and
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neuroblast survival (Lim etal., 2000; Mira etal., 2010; Figure 3).
Moreover, increased expression of BMPs occurs after distinct brain
and spinal cord injuries and suggest a role of BMP signaling in
neural cell survival and repair (Sabo etal., 2009).

Bone morphogenetic protein receptors are expressed at high
levels throughout all stages of embryonic development but show
different expression patterns. BmprlA is expressed earlier than
BmprlB. Bmpr2 is mostly restricted to proliferative regions of the
nervous system, whereas Acvr2 and Acvrl have also been detected
in early neural development and are expressed at high levels in
adult brain. BmprlA and Bmpr1B are required separately in some
development processes although in several studies of neural devel-
opment, each receptor could, at least partially, compensate for
the loss of the other. For instance, deletion of BmipriB causes
no obvious forebrain phenotype (Yi etal., 2000). However, the
requirement of BMP signaling for dorsal telencephalic develop-
ment is shown after forebrain-specific ablation of BmprIA or the
double knock-out of BmprlA and BmprlB, which leads to holo-
prosencephaly (Fernandes etal., 2007). However, later ablation
only affects formation of the dentate gyrus of the hippocampus
(Caronia etal., 2010). In adult telencephalon, expression of all
these receptors remains, with BmprlA the most abundant and
broadly expressed one (Miyagi etal.,2011). All cell types (neurons,
astroglia, oligodendroglia, or ependymal cells) express combi-
nations of these receptors (Chalazonitis etal., 2011; Bond etal.,,
2012). Interestingly, some reports suggest that their expression
pattern is differentially distributed within a single neuron, with
BmprlA mainly expressed in cell bodies and BmprlB in dendrites
(Miyagi etal., 2011).

BMPs IN EMBRYONIC AND ADULT NEURAL CELL SPECIFICATION

The central and peripheral nervous systems originate from neural
progenitor cells, which proliferate and give rise to the three main
neural cell types: neurons, astrocytes, and oligodendrocytes. The
specification and differentiation of the distinct cell types require
interactions between cell-autonomous molecular mechanisms and
external signaling cues (Mehler etal., 1997; Mehler, 2002; Liu and
Niswander, 2005). Remarkably, BMPs are critical for progeni-
tor cell specification and maintenance of a particular phenotype
through dynamic transcriptional regulation (Bond etal., 2012).
BMPs decrease proliferation of neural progenitors in cell culture
models as well as in vivo in combination with other signaling
molecules and internal cues (Chmielnicki etal., 2004; Sun etal.,
2011; Benraiss etal., 2012).

BMP role in neurogenesis

Neurogenesis is promoted by proneuronal basic helix-loop-helix
(bHLH) transcription factors including Mash1, Neurogenin, or
NeuroD, which form hetero-dimers with ubiquitously expressed
bHLH E proteins, such as the E2A gene products, E12 and
E47, through their HLH domain (Ross etal., 2003; Hsieh, 2012).
Hetero-dimers bind to DNA through their basic domain and acti-
vate the transcription of genes that have E boxes in their promoter
region (Figure 4A). One subfamily of HLH factors, known as Id
proteins, lacks this basic region. Hetero-dimerization of Id with
bHLH is sufficient to block their DNA binding and function (Nor-
ton, 2000; Ruzinova and Benezra, 2003). Moreover, Ids not only

inhibit transcriptional function but also promote the degrada-
tion of neurogenic bHLH by sequestering ubiquitous E proteins
(Vinals et al., 2004; Figure 4B). Similarly, the Hes family of bHLH
transcriptional repressors blocks neuronal differentiation through
a dominant negative function on E protein availability as well
as through direct binding on specific promoters and recruitment
of members of the Grouch family of transcriptional repressors
(Figure 4B). BMPs have been shown to be strong inducers of
both Id and Hes family members (Ross etal., 2003). Thus, Id and
Hes family members are thought to be major molecular players
in the negative effects of BMPs on commitment and differen-
tiation of neuronal precursors (Takizawa etal., 2003; Imayoshi
etal., 2008). Furthermore, BMPs have been proved to increase
the expression of the transcriptional repressor Rest/Nsrf. Expres-
sion of Rest/Nsrf allows continuous repression of the neuronal
markers in cells committed to other lineages (Kohyama etal,
2010). In addition to their effects on embryonic neurogenesis,
BMPs are widely accepted as relevant molecules in adult neuro-
genesis. In adult telencephalon, neural stem cell populations are
maintained in two niches: the SVZ and the SGZ of the dentate
gyrus. Colak etal. (2008) showed, through conditional deletion
of Smad4 or noggin infusion, that BMP signaling was required
for adult neurogenesis. Noggin can also expand hippocampal pro-
genitors in the SGZ (Bonaguidi etal., 2008). Infusion of Noggin
and genetic deletion of either BmprlA or Smad4 further demon-
strate the role of BMP signaling in regulation of quiescence of
neural stem cells from SGZ, restraining their proliferation and
allowing these niches to maintain long-term neurogenic ability
(Mira etal., 2010). BMP signaling is also required for positional
identity and neuronal subtype specification. Endogenously pro-
duced BMPs inhibit the expression of a telencephalic gene profile,
which was revealed by addition of noggin or other pharmaco-
logical signaling inhibitors (Bertacchi etal., 2013). BMPs are also
involved in regulation of a transcriptional network to generate
forebrain cholinergic neurons (Bissonnette etal., 2011). They also
determine a temporally and spatially restricted requirement for
generation of glutamatergic neurons in cerebellum (Fernandes
etal., 2012).

BMP role in oligodendrogenesis

Oligodendrocyte specification and maturation depend on the
function of transcription factors that include Oligl, Olig2, and
Sox10. Olig2 directs early oligodendrocyte specification and Oligl
promotes oligodendrocyte maturation and is required for repair
of demyelinated lesions (Lu etal., 2002; Ligon etal., 2006; Li
and Richardson, 2008). BMPs inhibit the development of sev-
eral stages of oligodendrocyte differentiation as well as the timing
of myelination as shown by expression analysis markers of oligo-
dendrocyte differentiation such as A2B5, galactocerebroside, or
myelin protein expression (Hall and Miller, 2004; Samanta and
Kessler, 2004; Chen and Panchision, 2007; See and Grinspan,
2009; Weng etal., 2012). Conversely, noggin blocks production
of astrocytes from oligodendrocyte precursors in culture (Sim
etal,, 2006). BMP-4 stimulation increases oligodendrocyte pro-
genitor proliferation in a model of induced demyelination. More
importantly, addition of noggin increases the number of mature
oligodendrocytes and increased the remyelination of injured axons
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FIGURE 4 | Model of mechanism of repression of neurogenic bHLH
transcription factors by BMPs. (A) In differentiating neurogenic precursors,
bHLH transcription factors hetero-dimerizes with E proteins, which bind to E
boxes and promote expression of neuronal genes. (B) Activation of the BMP
signaling pathway leads to increased levels of Id and Hes proteins. |d and Hes

neurogenesis /
oligodendritogenesis

neurogenesis /
oligodendritogenesis

proteins sequester E proteins away from bHLH transcription factors, which
leads to transcriptionally inactive complexes and also enhance degradation of
bHLH monomers. Furthermore Hes proteins can bind to N boxes sequences
in neural promoters and recruit the Groucho family of transcriptional
repressors.

in the corpus callosum (Sabo etal., 2011; Wu etal., 2012; Sabo
and Cate, 2013). At the molecular level, BMP-induced expression
of Id and Hes proteins seems to be also relevant in such a pro-
cess by sequestering Oligl and Olig2 which also belong to the
bHLH family of transcription factors (Cheng etal., 2007; Bili-
can etal., 2008). Additional targets of Notch, such as Jagl, Heyl,
and Hey?2, are upregulated by BMP in oligodendrocytes through
increased epigenetic modification at these loci (Wu etal., 2012).
Inhibition of Olig2 expression by direct binding of Smad4 to
the Olig2 promoter has also been demonstrated (Bilican etal.,
2008; Figure 3). Recently, it has also been shown that the Smad-
interacting protein-1 (Sipl) is an essential in vivo modulator of
myelination. Sipl antagonizes BMP signaling acting as a tran-
scriptional repressor of Smad activity, while promoting activation
of Oligl/Olig2 transcriptional activity and induction of I-Smads
(Weng etal., 2012).

BMP role in astrocytogenesis
In opposition to the repression of neuronal and oligodendrocyte
development, during the late embryonic and postnatal periods,

BMP signaling strongly induces astrocyte differentiation (Gross
etal., 1996; Mehler etal., 1997; Fukuda etal., 2007; See etal.,
2007). BMPs promote the generation of astrocytes from pre-
cursors in a variety of embryonic neural cells (Gross etal,
1996; Mehler etal., 1997; Mehler, 2002; Bonaguidi etal., 2005).
Implantation of noggin-producing cells induced the appearance
of increased numbers of oligodendrocyte precursors whereas high
BMP signaling inhibits oligodendrocyte precursors and promote
astrogliogenesis (Mabie etal., 1999; Mekki-Dauriac etal., 2002;
Wu etal., 2012). BMP signaling in the SVZ promotes astroglial
lineage commitment and block differentiation of neurons and
oligodendrocytes, whereas noggin suppresses astrocyte determi-
nation (Chmielnicki etal., 2004; Colak etal., 2008). LIF and
BMPs synergize to promote astrocytic differentiation by activating
astrocyte-specific promoters through a Stat3-p300/CBP-Smadl
complex (Nakashima etal., 1999; Figure 3). The ability of BMPs
and Stat3 to promote astrogliogenesis has been shown to be
dependent on the histone acetylation/deacetylation machinery
(Scholl etal., 2012). Another study indicated that Smad action is
not required for gliogenesis but is promoted by BMPs through
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mammalian target of rapamycin/FKBP12-rapamycin-associated
protein (mTor/Frap) phosphorylation of Stats (Rajan et al., 2003).
Interestingly, Bmpr1A or Bmpr1B signaling exerts opposing effects
on initial astrocytic hypertrophy after injury, suggesting that
distinct BMPs engaging different receptor complexes exert sep-
arate activities on gliogenesis. The ability of BMPs to promote
maturation of astroglia is further emphasized by the fact that
activation of BMP signaling inhibits the tumorigenic potential
of human glioblastoma-initiating cells (Piccirillo etal., 2006).
Furthermore, Ezh2-dependent epigenetic silencing of BmpriB
desensitizes tumor-initiating glioblastoma cells to differentiation
and contributes to their tumorigenicity (Lee etal., 2008).

BMP SIGNALING IN NEURITE AND AXON OUTGROWTH, GUIDANCE
AND SYNAPSE FORMATION

After neurogenesis has been completed, several sequential events
are needed to establish neuronal circuits: polarized outgrowth of
axons and dendrites, axon path finding toward the appropriate
synaptic partner cell and establishment and maintenance of the
synapse. Growing evidence in several experimental models points
to BMP regulation of all these events. For instance, BMP ligands
display positive regulation of the number, length, and branching
of neurites in neurons from diverse neuronal origins, including
cortical and hippocampal neurons (Le Roux etal., 1999; With-
ers etal., 2000; Lee-Hoeflich etal., 2004; Podkowa etal., 2010).
Similarly, BMPs have been included as inductive signals pro-
moting growth cone guidance as well as axonal orientation and
path finding. Most of the data arise from studies of the sensory
projection neurons of the spinal cord. BMP-7 and GDF-7 sup-
plied by the roof plate orient axons of commissural neurons away
from the roof plate and regulate their rate of extension through
the spinal cord toward the floor plate (Augsburger etal., 1999;
Butler and Dodd, 2003; Yamauchi etal., 2008, 2013; Sanchez-
Camacho and Bovolenta, 2009). Guideposts are discrete groups
of glial or neuronal cells that provide discontinuous informa-
tion in intermediate positions along the path of growing axons
(Sanchez-Camacho and Bovolenta, 2009). The corpus callosum
represents the major forebrain commissure connecting the two
cerebral hemispheres. Midline crossing of callosal axons is con-
trolled by several glial and neuronal guideposts specifically located
along the callosal path. BMP-7 has been shown to be required
at different steps of organization and differentiation of these
guidepost cells, which allows formation of the corpus callosum
(Sanchez-Camacho etal., 2011). Additional evidence also indi-
cates that BMP-7, secreted from the meninges, is involved in
a morphogenic cascade, including Wnt3a and GDF-5, allowing
correct corpus callosum development and prevents premature
axon projection (Choe etal., 2012). It is not clear which sig-
naling mechanisms are activated by BMP in these processes. In
contrast to the slow timing of neural and glial specification, the
very rapid time course of BMP-induced axonal orientation sug-
gests transcription-independent pathways, probably depending on
cytoskeletal actin remodeling and c-Jun N-terminal kinase (Jnk)-
mediated microtubule stabilization (Augsburger etal., 1999; Wen
etal., 2007; Podkowa et al., 2010; Perron and Dodd, 2011). Regu-
lation of the cytoskeleton by BMPs has been linked to activation
of Limk1 activation. Limk1 and Limk2 are closely related kinases

that phosphorylate and inactivate actin-depolymerizing proteins
such as cofilin or ADF. Limk1 has been shown to be activated by
several BMPs in neural cells through specific binding to the Bmpr2
cytoplasmic tail and a further activation mechanism that involves
Rho GTPases and PI3-kinase (Foletta etal., 2003; Lee-Hoeflich
etal., 2004; Eaton and Davis, 2005; Gamell etal., 2008). Limk
phosphorylation of cofilin/ADF is counteracted by the action of
the Slingshot phosphatase, which is activated at later times after
BMP addition and enables chemotactic responses to change from
attraction to repulsion (Wen etal., 2007).

An intriguing functional and mechanistic question is that,
whereas the closely related BMP-6 and -7 both induce the differ-
entiation of commissural neurons, only BMP-7 is able to orients
its axons in vitro and is required for appropriate axon projection
in vivo (Perron and Dodd, 2011, 2012). Both ligands have been
reported to bind hetero-dimers consisting of Acvr2A or Bmpr2
with Acvrl, BmprlA or BmprlB in numerous cellular models
(Mueller and Nickel, 2012). However, the facts that a single amino
acid swapping allows BMP-6 to orient axons and vice versa and that
binding of BMP-6 to type I receptor depends on N-glycosylation,
suggest that distinct receptor recruitment is involved in these func-
tional differences (Saremba et al., 2008; Perron and Dodd, 2012).
Changes in expression of BMP receptor subunits at growth cones
have been shown after motor neuronal differentiation (Benavente
etal., 2012). Moreover, whereas neuronal specification is a redun-
dant function of BmprlA and BmprlB, axon outgrowth and
regulation of cofilin activity only depend on BmpriB (Yamauchi
etal., 2008, 2013).

BMP role in synaptogenesis

Once axons reach their corresponding target, two-way commu-
nication between presynaptic and postsynaptic cells is needed
for synaptic establishment and homeostasis during development
and for proper synaptic plasticity. The Drosophila larval neu-
romuscular junction (NMJ) is a useful model for genetic and
biochemical studies of synaptic function (Collins and DiAntonio,
2007). Development of the synapse requires an anterograde as well
asretrograde input from the synaptic terminal and target cell. BMP
signaling is an indispensable component of retrograde signaling in
the NM]J (Henriquezetal.,2011). The muscle-secreted BMP ligand
glass bottom boat (Gbb), signals through presynaptic wishful think-
ing (Wit), the Bmpr2 homolog, and the receptor type I homologs
thick veins and saxophone (Tkv and Sax, respectively; Aberle etal.,
2002; Marques et al., 2002, 2003; Rawson et al., 2003). Wit mutant
larvae show complete presynaptic detachment, which could be
rescued by its expression in presynaptic cells (Aberle etal., 2002;
Marques et al., 2002). Similarly, Gbb expression in muscle, but not
in neurons, rescues NM]J defects observed in Gbb mutants (Mar-
ques etal., 2003). Retrograde Gbb activation of synaptic receptors
has two parallel effects. One is activation of Limkl1 that allows
stabilization of the synapse. In the absence of Limk1, synaptic foot-
prints are observed in the NMJ. In these footprints the presynaptic
components are missing (Eaton and Davis, 2005). Since presy-
naptic development precedes postsynaptic development, synaptic
footprints have been interpreted as being the remnants of mature
synaptic contacts that have formed and then retracted. The other
effect involves activation of the Smad homologs Mad and Medea
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retrograde BMP signal also involves specific translation of Smad protein in the axons.
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and their transport to the neuronal soma to regulate transcription
at the nucleus (Figure 5). There, Mad-dependent transcription of
the Rac-guanine nucleotide exchange factor (GEF) Trio is relevant
for proper NMJ growth and branching since transgenic expres-
sion of Trio partially rescues BMP signaling mutant larvae (Ball
etal.,2010). Therefore, canonical and non-canonical pathways are
involved in coordination of the synaptic growth and stability of
NMJ. Interestingly, genes related to several motor diseases such
as hereditary spastic paraplegia or amyotrophic lateral sclerosis,
have been shown to regulate BMP retrograde signaling in model
systems (Bayat etal., 2011; Henriquez etal., 2011).

An important aspect in BMP retrograde communication is how
signals at the synaptic terminal are conveyed to the nucleus to
regulate transcription. It has been shown that BMP retrograde sig-
naling along the axon requires dynein retrograde motors (McCabe
etal., 2003). Recently, retrograde transport of endocytosed BMP
receptors has been demonstrated, which suggests two populations
of phosphorylated Smad transducers, one at the synaptic terminal
and one at the cell body (Smith etal., 2012; Figure 5). However,
studies of the murine trigeminal sensory system indicate that an
effective retrograde BMP signal also involves specific translation of
Smad protein in the axon, which is transported to the cell body by
dynein motors (Ji and Jaffrey, 2012). Axonal translation of Smads
is activated by brain-derived neurotrophic factor (BDNF), thus

coupling both morphogens in the homeostasis of synapses. Some
questions remain about the exact place of Smad activation and
the role of the additional Smads translated in the axon when it is
commonly accepted that the intracellular pool of unphosphory-
lated Smads is relatively high. Another relevant aspect is the role
of glial cells in the regulation of synaptogenesis. Glia, associate
intimately with synaptic terminals and are required for synapto-
genesis. Recent work on NM]J points to a new member of the
BMP ligand family, Maverick (Mav), in controlling synthesis and
release of Gbb. Mav is released in glial cells surrounding the synapse
and reinforces BMP retrograde signaling by transcriptional regu-
lation of the synthesis of Gbb in postsynaptic cells (Fuentes-Medel
etal., 2012). Altogether, evidence points to a very relevant role of
BMP ligands in the coordination of several cell types and signaling
mechanisms during synaptogenesis.
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