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The inwardly rectifying potassium (Kir) channel Kir4.1 in brain astrocytes mediates spatial K+
buffering and regulates neural activities. Recent studies have shown that loss-of-function
mutations in the human gene KCNJ10 encoding Kir4.1 cause epileptic seizures, suggesting
a close relationship between the Kir4.1 channel function and epileptogenesis. Here, we
performed expressional analysis of Kir4.1 in a pilocarpine-induced rat model of temporal
lobe epilepsy (TLE) to explore the role of Kir4.1 channels in modifyingTLE epileptogenesis.
Treatment of rats with pilocarpine (350 mg/kg, i.p.) induced acute status epilepticus, which
subsequently caused spontaneous seizures 7–8 weeks after the pilocarpine treatment.
Western blot analysis revealed thatTLE rats (interictal condition) showed significantly higher
levels of Kir4.1 than the control animals in the cerebral cortex, striatum, and hypothalamus.
However, the expression of other Kir subunits, Kir5.1 and Kir2.1, remained unaltered.
Immunohistochemical analysis illustrated that Kir4.1-immunoreactivity-positive astrocytes
in the pilocarpine-induced TLE model were markedly increased in most of the brain regions
examined, concomitant with an increase in the number of glial fibrillary acidic protein
(GFAP)-positive astrocytes. In addition, Kir4.1 expression ratios relative to the number
of astrocytes (Kir4.1-positive cells/GFAP-positive cells) were region-specifically elevated in
the amygdala (i.e., medial and cortical amygdaloid nuclei) and sensory cortex. The present
study demonstrated for the first time that the expression of astrocytic Kir4.1 channels was
elevated in a pilocarpine-induced TLE model, especially in the amygdala, suggesting that
astrocytic Kir4.1 channels play a role in modifying TLE epileptogenesis, possibly by acting
as an inhibitory compensatory mechanism.

Keywords: Kir4.1 channel, astrocytes, temporal lobe epilepsy, status epilepticus, spatial potassium buffering,
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INTRODUCTION
The spatial K+ buffering by astrocytes removes excess extracellu-
lar K+ at synapses and transports them into regions of low K+
concentration such as blood vessels, regulating neuronal activities
(Walz, 2000; Kofuji and Newman, 2004; Simard and Neder-
gaard, 2004; Butt and Kalsi, 2006). The K+ buffering currents
are mediated by inwardly rectifying potassium (Kir) channels
which are expressed in astrocytes (Tanemoto et al., 2000; Hibino
et al., 2004; Kofuji and Newman, 2004; Simard and Nedergaard,
2004; Butt and Kalsi, 2006). These comprise Kir4.1 channels,
homo-tetramers of Kir4.1 subunits, and Kir4.1/5.1 channels,
hetero-tetramers of Kir4.1 and Kir5.1 subunits, which conduct
large inward K+currents at potentials negative to K+ equilibrium
potential (Tanemoto et al., 2000; Ohno et al., 2007; Su et al., 2007;
Furutani et al., 2009). In addition, spatial K+ buffering is linked
to glutamate uptake and/or aquaporin-4-mediated water trans-
port by astrocytes (Nagelhus et al., 1999; Amiry-Moghaddam and
Ottersen, 2003; Puwarawuttipanit et al., 2006; Djukic et al., 2007;
Kucheryavykh et al., 2007).

Abbreviations: GFAP, glial fibrillary acidic protein; GTC, generalized tonic-clonic;
Kir, inwardly-rectifying potassium; SE, status epilepticus; TLE, temporal lobe
epilepsy.

Recent clinical studies have shown that mutations in the
human gene KCNJ10 encoding Kir4.1 cause EAST (epilepsy,
ataxia, sensorineural deafness, and tubulopathy) or SeSAME
(seizures, sensorineural deafness, ataxia, mental retardation,
and electrolyte imbalance) syndrome consisting of generalized
tonic-clonic (GTC) seizures, ataxia, hearing loss, and abnor-
mal renal excretion of electrolytes (Bockenhauer et al., 2009;
Scholl et al., 2009). The most frequent mutation of KCNJ10 was
R65P at the cytoplasmic end of transmembrane region (TM)-
1 and others include G77R (TM-1), C140R (extracellular loop
between TM-1 and TM-2), T164I, A167V (cytoplasmic end of
TM-2), R175Q, R199X, and R297C (C-terminal domain; Rei-
chold et al., 2010; Sala-Rabanal et al., 2010; Tang et al., 2010).
All these mutations caused drastic decreases in K+ currents
mediated by Kir4.1 and Kir4.1/5.1 channels, suggesting that
the impaired functioning of astrocytic Kir4.1 channels causes
epileptic seizures by disrupting spatial K+ buffering. In addi-
tion, several SNPs of KCNJ10 have been shown to be associated
with temporal lobe epilepsy (TLE) with febrile seizures (Heuser
et al., 2010). Expressional analysis also revealed pathophysio-
logical alterations in Kir4.1 expression in patients with TLE
(Das et al., 2012; Heuser et al., 2012; Steinhäuser et al., 2012),
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suggesting a potential involvement of Kir4.1 channels in TLE
epileptogenesis. However, information on the modulatory role
of Kir4.1 in the generation and/or development of TLE is still very
limited.

In the present study, we performed expressional analy-
sis of Kir4.1 in a pilocarpine-induced rat model of TLE to
explore the pathophysiological role of Kir4.1 channels in TLE
epileptogenesis. The expressions of Kir5.1 and Kir2.1, other
Kir subunits expressed in astrocytes, were also evaluated for
comparison.

RESULTS
PILOCARPINE-INDUCED TLE MODEL
All the TLE rats (N = 11) used herein experienced pilocarpine
(350 mg/kg, i.p.)-induced status epilepticus (repeated and sus-
tained clonic seizures) and showed spontaneous seizures (i.e., wild
running/jumping and GTC seizures) 7–8 weeks after the pilo-
carpine treatment. The animals, which were given pilocarpine
but did not experience status epileptics and any seizure activity
thereafter (7–8 weeks), were used as the control (N = 11). Four
and seven animals in each group were subjected to Western blot
and immunohistochemical analysis, respectively.

WESTERN BLOT ANALYSIS
As reported previously (Connors et al., 2004; Seifert et al., 2009;
Harada et al., 2013), Kir4.1 was detected primarily as a tetramer
(∼160 kDa) in all brain regions examined in TLE and control
rats (Figure 1A). Two-way ANOVA revealed no significant inter-
action [F(1, 60) = 1.61, P = 0.13], but significant main effects of
groups [F(1, 60) = 23.24, P < 0.01] and regions [F(9, 60) = 10.80,
P < 0.01]. Expression levels of Kir4.1 were relatively high in the
striatum (St) and pons/medulla oblongata (P/MO). As compared
to control animals, TLE rats showed significantly higher Kir4.1
levels in the frontal cortex (fCx, P < 0.05), occipito-temporal
cortex (otCx, P < 0.05), St (P < 0.01), hypothalamus (Ht,
P < 0.05), and P/MO (P < 0.01; Figures 1A,B). These changes
were region-specific and the Kir4.1 levels in other brain regions
[i.e., parieto-temporal cortex (ptCx), hippocampus (Hpc), tha-
lamus (Th), midbrain (Mid), and cerebellum (Cer)] remained
unaltered.

In contrast to Kir4.1, Kir5.1 and Kir2.1 subunits were detected
mainly as monomers (Kir5.1: 50 kDa, Kir2.1: 45 kDa) in all
10 regions (Figure 1A). Levels of Kir5.1 were relatively high in
the ptCx and Mid while the Kir2.1 levels were high in the Mid
and low in the cerebral cortices and Cer (Figures 1C,D). Analy-
sis of Kir5.1 expression showed only a significant main effect of
regions [F(9, 60) = 7.97, P < 0.01] without a significant inter-
action [F(9, 60) = 0.32, P = 0.96] or a main effect of groups
[F(9, 60) = 0.77, P = 0.38]. Thus, no significant differences in
the expression levels of Kir5.1 were observed between TLE and
control rats in all 10 regions (Figure 1C). On the other hand,
analysis of Kir2.1 expression revealed significant main effects of
groups [F(1, 60) = 7.93, P < 0.01] and regions [F(9, 60) = 13.9,
P < 0.01] without a significant interaction [F(9, 60) = 1.24,
P = 0.29]. Among 10 regions, only the Kir2.1 level in the St
was significantly (P < 0.01) higher in TLE than in control rats
(Figure 1D).

FIGURE 1 | Western blot analysis for Kir4.1, Kir5.1 and Kir2.1

expression in pilocarpine-inducedTLE rats. (A) Representative Western
blots visualizing Kir4.1, Kir5.1, and Kir2.1 expression in the frontal cortex
(fCx), occipito-temporal cortex (otCx), striatum (St), and hypothalamus (Ht).
(B–D) Regional expression of Kir4.1 (B), Kir5.1 (C), and Kir2.1 (D) in
pilocarpine-induced TLE rats. Kir expression was expressed as relative
optical density (ROD) to β-actin. fCx, frontal cortex; ptCx, parieto-temporal
cortex; otCx, occipito-temporal cortex; St, striatum; Hpc, hippocampus; Th,
thalamus; Ht, hypothalamus; Mid, midbrain; P/MO, pons/medulla
oblongata; Cer, cerebellum. Each column represents the mean ± SEM of
four animals. *P <0.05, **P <0.01, significantly different from the control
rats.

IMMUNOHISTOCHEMICAL ANALYSIS FOR KIR4.1 EXPRESSION
Since Western blot analysis revealed that pilocarpine-induced TLE
rats showed elevated Kir4.1 expression in the fCx and otCx,
we further conducted immunohistochemical analysis for Kir4.1
expression using frontal (Bregma +1.68 mm level) and occipito-
temporal (Bregma −3.00 mm level) brain slices (Figure 2A).
With regard to the expression patterns of Kir4.1-immunoreactivity
(IR), we have previously shown that Kir4.1 was primarily stained
in astrocytes which typically show a stellate-shape and were
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FIGURE 2 | Immunohistochemical analysis of Kir4.1- and

GFAP-immunoreactivity (IR)-positive cells in pilocarpine-inducedTLE

rats. (A) Schematic illustrations of the brain sections selected for quantitative
analysis of Kir4.1- and GFAP-IR-positive cells. Squares in each section
indicate the area analyzed for counting of Kir4.1- and GFAP-IR-positive
cells. The distance from the Bregma is shown on the bottom of each
section. MC, motor cortex; SC, sensory cortex; AID, agranular insular
cortex; Pir, piriform cortex; dmST, vmST, dlST and vlST, dorsomedial,
ventromedial, dorsolateral, and ventrolateral striatum, respectively; AcbC

and AcbSh, core and shell regions of nucleus accumbens, respectively;
Ect-PRh, ectorhinal–perirhinal cortex; MePV and MePD, medial amygdaloid
nucleus, posteroventral and posterodorsal part; BLP, basolateral amygdaloid
nucleus, posterior part; BMP, basomedial amygdaloid nucleus, posterior part;
PMCo, posteromedial cortical amygdaloid nucleus; CA1, CA3, and DG: CA1,
CA3, and dentate gyrus of the hippocampus. (B) Representative photographs
illustrating the Kir4.1 (upper panels)- and GFAP (lower panels)-positive cells in
the sensory cortex (SC) and the medial amygdaloid nucleus, posterodorsal
part (MePD). Scale bar: 50 μm.

specifically co-stained with glial fibrillary acidic protein (GFAP;
an astrocyte marker; Harada et al., 2013; also see Figure A1
in Appendix). Although Kir4.1-IR was also found in a small
population of round-shaped (small) cells, which might possi-
bly represent oligodendrocyte precursor cells (Maldonado et al.,
2013), we omitted them from the analysis and solely counted
the stellate-shaped astrocytes probe with anti-Kir4.1 antibody. In
addition, to evaluate changes in the total number of astrocytes
per se and the Kir4.1 expression ratio relative to the total number
of astrocytes, we also performed immunohistochemical analysis
of GFAP using paired successive slices obtained from the same
animal.

In accordance with previous studies (Connors et al., 2004;
Seifert et al., 2009; Harada et al., 2013), Kir4.1 was mostly

expressed in stellate-shaped cells (Figure 2B). Two-way
ANOVA revealed significant interaction groups × regions [F(21,
264) = 1.91, P < 0.05] and significant main effects of groups
[F(1, 264) = 410.45, P < 0.01] and regions [F(21, 264) = 3.50,
P < 0.01]. In pilocarpine-induced TLE rats, Kir4.1 expression
was significantly elevated in all brain regions examined [dentate
gyrus of the Hpc (DG) and dorsomedial St (dmST): P < 0.05,
other regions: P < 0.01] except for the agranular insular cortex
dorsal part (AID; Figures 2–4). The number of Kir4.1-IR-positive
astrocytes increased two to four times the control levels in TLE
animals and these changes were prominent in the sensory cortex
(SC), lateral St, and amygdala (Figures 3A and 4A). In addition,
the number of GFAP-IR-positive astrocytes per se also increased
in pilocarpine-induced TLE rats (Figures 3B and 4B). Analysis
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of GFAP expression showed significant main effects of groups
[F(1, 264) = 333.16, P < 0.01] and regions [F(21, 264) = 6.26,
P < 0.01] without a significant interaction [F(1, 264) = 0.86,
P = 0.65]. The numbers of GFAP-IR-positive cells in all 22 brain
regions examined were significantly [piriform cortex (Pir) B+1.68:
P < 0.05, other regions: P < 0.01] higher in TLE than in con-
trol rats. We then compared the Kir4.1 expression ratios relative
to the number of astrocytes (Kir4.1-IR-positive cells/GFAP-IR-
positive cells). Two-way ANOVA revealed significant interaction
[F(21, 264) = 1.78, P < 0.05] and significant main effects
of groups [F(1, 264) = 12.82, P < 0.01] and regions [F(21,
264) = 2.36, P < 0.01]. The relative Kir4.1 expression ratios in
astrocytes were 0.3–0.8 in most regions of the brain in the con-
trol animals (0.557 ± 0.022), but the values were significantly
(P < 0.01) increased in TLE group (0.652 ± 0.019). These changes
were region-specific and significant increases were observed in
the posteroventral (MePV, P < 0.05) and posterodorsal (MePD,
P <0.01) parts of the medial amygdaloid nucleus, the posterome-
dial cortical amygdaloid nucleus (PMCo, P <0.05), ventrolateal
St (vlST, P <0.05), SC (P <0.01), and Pir (P <0.05; Figures 3C
and 4C).

DISCUSSION
Temporal lobe epilepsy is the most common type of partial com-
plex seizure in adulthood (Hauser et al., 1996; Wieser, 2004). The
main features of TLE include (1) localization of seizure foci in
the limbic structures (e.g., Hpc and amygdala), (2) existence of
a “latent period,” a seizure-free time interval following the ini-
tial precipitating injury, (3) incidence of mesial sclerosis leading
to atrophy (e.g., neuronal loss and gliosis) in the limbic struc-
tures (Mathern et al., 1997; Bartolomei et al., 2005; Curia et al.,
2008). The pilocarpine-induced TLE model shares important
features of human TLE such as (1) presence of a latent period fol-
lowed by spontaneous recurrent seizures, (2) occurrence of wide
spread brain injuries resembling human TLE, (3) similarity of
drug responses to human TLE (e.g., relatively resistant to con-
ventional antiepileptics; Leite et al., 1990; Cavalheiro et al., 1991;
Glien et al., 2002; Löscher, 2002; Wieser, 2004; Chakir et al., 2006;
Curia et al., 2008). The present study demonstrated for the first
time that expression of astrocytic Kir4.1 channels mediating spa-
tial K+ buffering was markedly elevated in a pilocarpine-induced
TLE model. The elevation of Kir4.1 expression in the TLE model
was characterized by the following points, (1) subunit-specificity
for Kir4.1, (2) a partial association with an increase in the num-
ber of astrocytes (i.e., astrogliosis) and (3) the most prominent
elevation in the amygdala.

In this study, Western blot analysis revealed that the
pilocarpine-induced TLE model exhibits a subunit-specific
increase in the Kir4.1 expression with negligibly affecting the level
of Kir5.1 and Kir2.1 subunits. Kir5.1 subunits, like Kir4.1, are
expressed in astrocytes and form heteromeric Kir4.1/5.1 chan-
nels with Kir4.1, mediating K+ buffering (Tanemoto et al., 2000;
Hibino et al., 2004; Kofuji and Newman, 2004). In contrast,
Kir2.1 subunits are predominantly expressed in neurons to reg-
ulate the resting membrane potential while several reports show
that astrocytes also express Kir2.1 to some degree in several brain
regions (e.g., Pir and olfactory bulb; Howe et al., 2008; Kang et al.,

FIGURE 3 |Topographical expression of Kir4.1 and GFAP in the cortical

regions of pilocarpine-inducedTLE rats. (A,B) Number of Kir4.1 (A)- or
GFAP (B)-immunoreactivity (IR)-positive cells. (C) Relative Kir4.1 expression
ratios in astrocytes. A pair of successive slices in each region from the
same animal was stained with anti-Kir4.1 or anti-GFAP antibody. The
Kir4.1 expression ratios were calculated as the ratios of Kir4.1-positive
astrocytes relative to the total number of astrocytes (Kir4.1-positive
cells/GFAP-positive cells) in each animal. MC, motor cortex; SC, sensory
cortex; AID, agranular insular cortex, dorsal part; Ect-PRh, ectorhinal-
perirhinal cortex; Pir, piriform cortex. Each column represents the
mean ± S.E.M. of seven animals. *P <0.05, **P < 0.01, significantly
different from control rats.

2008). Our results suggest that, among astrocytic Kir channels,
Kir4.1 channels play the most important role in modulating TLE
epileptogenesis.

Elevation of Kir4.1 expression in the pilocarpine-induced TLE
model was widely spread throughout brain regions examined
and these changes were generally associated with an increase in
the number of astrocytes, which was probably due to astroglio-
sis following status epilepticus-induced brain injury (Leite et al.,
1990; Cavalheiro et al., 1991; Borges et al., 2003; Curia et al.,
2008). Although astrogliosis may also contribute to epilepto-
genesis, it can compensate abnormal discharges and promote
tissue repair. Astrocytes can reduce abnormal neural excitation
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FIGURE 4 |Topographical expression of Kir4.1 and GFAP in the basal

ganglia and limbic regions of pilocarpine-inducedTLE rats. (A,B) Number
of Kir4.1 (A)- or GFAP (B)-immunoreactivity (IR)-positive cells. (C) Relative
Kir4.1 expression ratios in astrocytes. A pair of successive slices in each
region from the same animal was stained with anti-Kir4.1 or anti-GFAP
antibody. The Kir4.1 expression ratios were calculated as the ratios of
Kir4.1-positive astrocytes relative to the total number of astrocytes
(Kir4.1Kir4.1-positive cells/GFAP-positive cells) in each animal. dmST, vmST,

dlST, and vlST, dorsomedial, ventromedial, dorsolateral, and ventrolateral
striatum, respectively; AcbC and AcbSh, core and shell regions of the nucleus
accumbens, respectively; MePV and MePD, medial amygdaloid nucleus,
posteroventral and posterodorsal part; BLP, basolateral amygdaloid nucleus,
posterior part; BMP, basomedial amygdaloid nucleus, posterior part; PMCo,
posteromedial cortical amygdaloid nucleus; CA1, CA3, and DG, CA1, CA3, and
dentate gyrus of the hippocampus. Each column represents the mean ± SEM
of seven animals. *P <0.05, **P 0.01, significantly different from control rats.

by spatial buffering of potassium and by taking up synapti-
cally released glutamate. In addition, they can secrete growth
factors [e.g., glial cell line-derived neurotrophic factor (GDNF)
and nerve growth factor (NGF)] and cytokines (e.g., TNF-α)
that mediate neuronal survival, axonal/dendritic sprouting, and

homeostatic plasticity (Borges et al., 2003; Fellin, 2009). Thus,
the up-regulation of Kir4.1 associated with status epilepticus-
induced astrogliosis might negatively regulate the TLE epilep-
togenesis by normalizing extracellular K+ ([K+]o) and gluta-
mate ([glutamate]o). Furthermore, significantly higher Kir4.1

Frontiers in Cellular Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 104 | 5

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00104” — 2013/7/3 — 20:26 — page 6 — #6

Nagao et al. Astrocytic Kir4.1 in pilocarpine-TLE model

expression ratios relative to the number of astrocytes (Kir4.1-
IR-positive cells/GFAP-IR-positive cells) were observed region-
specifically in the amygdaloid nuclei (i.e., MePV, MePD, and
PMCo). These results illustrate the important role of amygdalar
Kir4.1 channels in modifying status epileptics-induced epilepto-
genicity in TLE. Since deficit or knockdown of astrocytic Kir4.1
channels is known to impair K+- and glutamate-uptake into
astrocytes and facilitate seizure generation (Djukic et al., 2007;
Kucheryavykh et al., 2007; Bockenhauer et al., 2009; Scholl et al.,
2009; Reichold et al., 2010; Sala-Rabanal et al., 2010; Tang et al.,
2010), up-regulation of Kir4.1 channels in the pilocarpine TLE
model seemed to occur as a compensatory mechanism to the lim-
bic hyperexcitability in TLE epileptogenesis. Indeed, the medial
amygdaloid and cortical amygdaloid nuclei are known to be
closely linked to kindling epileptogenesis and human epileptic
disorders including TLE (Hosford et al., 1995; Morimoto et al.,
2004). Although it is known that pilocarpine-induced status
epilepticus causes neural damage, sclerosis, and rewiring not
only in the amygdala, but also in the Hpc, changes in the rel-
ative Kir4.1 expression ratios were not significant in the Hpc
(i.e., CA2). This may be due to the relatively low expression
level of Kir4.1 in the Hpc as compared to other brain regions
(see Figure 2).

Evidence is accumulating that dysfunction of astrocytic Kir4.1
channels is causative of seizure activity generation. Specifically,
loss-of-function mutations in human Kir4.1 gene (KCNJ10) cause
the EAST syndrome, including GTC seizures and ataxia (Bock-
enhauer et al., 2009; Scholl et al., 2009; Reichold et al., 2010;
Sala-Rabanal et al., 2010; Tang et al., 2010). It is also suggested
that the down-regulation of Kir4.1 expression in the amygdala is
related to seizure induction in an animal model of GTC seizures
(Harada et al., 2013). Furthermore, recent studies showed the
down-regulation and/or impaired functioning of Kir4.1 channels
in specimens from patients with TLE (Das et al., 2012; Heuser et al.,
2012; Steinhäuser et al., 2012), suggesting a close relationship of
Kir4.1 to human TLE. The present results (Kir4.1 up-regulation)
in the pilocarpine-induced TLE model, however, were different
from the findings of Kir4.1 expression (Kir4.1 down-regulation)
in patients with TLE. Although the reasons for this discrep-
ancy are currently uncertain, it may result from the difference in
the etiological basis between human TLE and pharmacologically
evoked seizure. In fact, we also observed that Kir4.1 expression
in the paralimbic cortex was gradually increased during the kin-
dling development induced by pentylentetrazole (Mukai et al.,
2013). Alternatively, it may be due to the temporal changes in
Kir4.1 expression. Since the present study analyzed the Kir4.1
expression shortly after the occurrence of spontaneous seizures,
the down-regulation of Kir4.1 may occur at a more advanced
(delayed) stage in the pilocarpine-induced TLE model. Indeed,
a recent study showed that Kir4.1 expression was down-regulated
by local inflammatory events after TLE-associated brain injury,
implying that the down-regulation of Kir4.1 could be a con-
sequence, and not a primary cause, of seizures (Zurolo et al.,
2012). Further studies are required to delineate the time course
of the Kir4.1 expressional changes and the mechanisms under-
lying the Kir4.1 up-regulation in the pilocarpine-induced TLE
model.

In conclusion, we performed expressional analysis of Kir4.1
in a pilocarpine-induced rat model of TLE to explore the patho-
physiological role of Kir4.1 channels in epileptogenesis. Western
blot analysis revealed that Kir4.1 levels of TLE rats under an
interictal state were significantly increased in the cerebral cor-
tex, St, and Ht while the levels of other Kir subunits, Kir5.1 and
Kir2.1, were unaltered. Immunohistochemical analysis demon-
strated that TLE rats showed a widespread elevation in Kir4.1
expression which accompanied an increase in the number of
astrocytes per se. In addition, the Kir4.1 expression ratio rel-
ative to the increase in the astrocyte number was also elevated
region-specifically in the amygdaloid nuclei in a pilocarpine TLE
model. The present findings suggest that astrocytic Kir4.1 chan-
nels play a modulatory role in TLE epileptogenesis, possibly
by acting as an inhibitory compensatory mechanism. Further
studies using patch-clamp and/or microdialysis techniques are
necessary to delineate the functional alterations (e.g., changes
in Kir4.1-mediated potassium currents, extracellular levels of
K+ and glutamate) of up-regulated Kir4.1 channels in the TLE
model.

MATERIALS AND METHODS
ANIMALS
Male SD rats (7 weeks old; Japan SLC, Shizuoka, Japan) were
used. Animals were kept in air-conditioned rooms under a 12-h
light/dark cycle (light on: 6:00 AM) and allowed ad libitum access
to food and water. The housing conditions of the rat and animal
care methods complied with the NIH guide for the care and use
of laboratory animals. The experimental protocols of this study
were approved by the Experimental Animal Research Committee
at Osaka University of Pharmaceutical Sciences.

PILOCARPINE-INDUCED TLE MODEL
A pilocarpine-induced TLE model was prepared according to
methods reported previously (Cavalheiro, 1995; Liu et al., 2008).
Briefly, animals were first treated with methyl-scopolamine
(1 mg/kg, i.p., Sigma-Aldrich, St. Louis, MO, USA) to reduce
peripheral cholinergic side effects and, 30 min later, pilo-
carpine (350 mg/kg, i.p., Sigma-Aldrich) was injected to induce
acute status epilepticus. Pilocarpine-induced status epilepticus
was then terminated by the injection of diazepam (10 mg/kg,
i.p., CERCINE® INJECTION, Takeda Pharmaceutical Co. Ltd.,
Osaka, Japan) at 5, 20, 80, 300, and 420 min after the onset
of status epilepticus (repeated and sustained clonic seizures).
Animals which did not show any seizure activity (status epilep-
tics) within 20 min after the pilocarpine injection were used
as the control and treated with diazepam in the same man-
ner as the status epilepticus-experienced rats. All animals were
fed for 7–8 weeks after the pilocarpine treatment. Eleven out
of the twelve rats which experienced pilocarpine-induced sta-
tus epilepticus showed spontaneous seizures, (i.e., wild run-
ning/jumping and GTC seizures) and were defined as TLE rats.
One animal which showed pilocarpine-induced status epilepti-
cus but did not any spontaneous seizure was excluded from the
analysis. None of the control animals (N = 11) showed any
seizures or abnormal behavior during the 7–8 weeks observation
period.
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WESTERN BLOT ANALYSIS
Temporal lobe epilepsy rats under interictal conditions (N = 4)
or control rats (N = 4) were deeply anesthetized with pento-
barbital (80 mg/kg, i.p.). The brain was then removed from
the skull, chilled in ice-cold saline and dissected into the fol-
lowing 10 regions (fCx, ptCx, otCx, St, Hpc, Th, Ht, Mid,
P/MO, and Cer). Brain samples were then homogenized in
an ice-cold lysis buffer (pH 7.5) containing: (in mM) Tris 20,
NaCl 150, MgCl2 10, EDTA 1.0, EGTA 1.0, 1% Triton X-
100, and a mixture of protease inhibitors (leupeptin, aprotinin,
E-64, pepstatin A, bestatin, and 4-(2-aminoethyl) benzenesul-
fonyl fluoride hydrochloride; Nacalai Tesque, Kyoto, Japan).
The homogenate was centrifuged at 15,000g, 4◦C for 30 min
and the supernatant was stored at −80◦C for the Western blot
analysis.

Western blots were performed as published previously (Ohno
et al., 2009; Harada et al., 2013). Briefly, samples were incubated
with a sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) sample buffer for 5 min at 95◦C. Each sample
(40 μg/lane) was then subjected to SDS-PAGE and separated
proteins were transferred for 60 min to a PVDF membrane
(GE Healthcare, Buckinghamshire, UK). The membrane was
first incubated with a blocking solution containing 0.3–2% skim
milk, 25 mM Tris, 150 mM NaCl, and 0.1% Tween 20 (pH
7.5) for 60 min, then with the corresponding primary anti-
bodies overnight (4◦C), followed by a 60 min-incubation with
the secondary antibody, a goat anti-rabbit IgG-HRP conju-
gate (1:2000, Santa Cruz Biotechnology, CA, USA) for Kir4.1,
a donkey anti-goat IgG-HRP conjugate (1:2000, Santa Cruz
Biotechnology) for Kir5.1 or Kir2.1, or a sheep anti-mouse
IgG-HRP conjugate (1:2000, GE Healthcare) for β-actin. The
primary antibodies used were a rabbit polyclonal antibody
against Kir4.1 (1:500, Alomone Labs., Jerusalem, Israel), a goat
polyclonal antibody against Kir5.1 (N-12; 1:400, Santa Cruz
Biotechnology), a goat polyclonal antibody against Kir2.1 (1:400,
Santa Cruz Biotechnology) and mouse monoclonal antibodies
against β-actin (1:1000, Sigma-Aldrich). Final detection was
performed with the enhanced chemiluminescence methodology
(Amersham ECL Western blotting detection reagents and anal-
ysis system, GE Healthcare) using a lumino imaging analyzer
(LAS-3000, FUJIFILM, Tokyo, Japan). To normalize for pro-
tein loading, chemiluminescence of the bands in each lane was
standardized to the intensity of the β-actin band in the same
lane.

IMMUNOHISTOCHEMICAL ANALYSIS
Brains were obtained from TLE rats (interictal status; N = 7)
or control rats (N = 7) in the same manner as for the Western

blot analysis. After fixation in a 4% paraformaldehyde solution
for 24 h, brain samples were dehydrated and embedded in
paraffin. Formalin-fixed and paraffin-embedded tissue samples
were cut into 4-μm thick sections and a pair of successive
slices in each brain region was immunohistochemically stained
with anti-Kir4.1 or anti-GFAP antibody using the avidin–biotin
complex (ABC) method (Ohno et al., 2009, 2012; Harada et al.,
2013). Briefly, the fronto- and occipito-temporal brain sections
were deparaffinized in xylene and then rehydrated in ethanol.
Sections were autoclaved for 10 min to retrieve the antigen.
After cooling to room temperature, endogenous peroxidase activ-
ity was quenched by 3% H2O2 and non-specific binding was
blocked using a 5% skim milk solution. Sections were then incu-
bated overnight (4◦C) with a rabbit anti-Kir4.1 antibody (1:100,
Alomone Labs) and a mouse anti-GFAP antibody (1:100, Progen)
in the 5% skim milk solution. Thereafter, they were incubated with
a biotinylated goat anti-rabbit IgG secondary antibody (1:400,
Vector Laboratories, Burlingame, CA, USA) and a goat anti-
mouse IgG secondary antibody (1:400, Sigma-Aldrich) for 60 min
and with an avidin-biotinylated horseradish peroxidase complex
(Vectastain ABC Kit) for an additional 60 min. Kir4.1- and
GFAP-IR was visualized by the diaminobenzidine–nickel staining
method.

The number of Kir4.1- or GFAP-IR-positive cells was counted
in a 350 × 350 μm2 grid laid over various regions of the brain
(Figure 4), which included the following regions: the motor
cortex (MC), SC, AID, ectorhinal–perirhinal cortex (Ect-PRh),
Pir, dorsolateral St (dlST) and dmST, vlST and ventromedial St
(vmST), core (AcbC) and shell (AcbSh) regions of the nucleus
accumbens, MePV, MePD, basolateral amygdaloid nucleus pos-
terior part (BLP), basomedial amygdaloid nucleus posterior part
(BMP), PMCo, and CA1, CA3, and the DG of the Hpc. Relative
expression rate of Kir4.1 was defined as a percentage of the number
of Kir4.1-positive cells relative to that of GFAP-positive cells.

STATISTICAL ANALYSIS
All data are expressed as the mean ± SEM. Expressional changes in
Kir channel subunits determined by Western blot or immunohis-
tochemical analysis were compared by two-way ANOVA followed
by Tukey multiple comparison test. Differences were considered
to be statistically significant for values of P < 0.05.
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APPENDIX

FIGURE A1 | Expressional patterns of Kir4.1 in the rat hippocampus.

Typical photograph illustrating a double staining of Kir4.1 with GFAP in
the hippocampal CA1 field. The hippocampal section was incubated
anti-GFAP antibody (Progen, Heidelberg, Germany) for 24 h at 4◦C
and then incubated with a FITC (fluorescein isothiocyanate; green
fluorescence)-conjugated goat anti-rabbit IgG secondary antibody
(Sigma-Aldrich) or TRITC (tetramethylrhodamine-5- (and 6)-isothiocyanate;
red fluorescence)-conjugated goat anti-mouse IgG secondary antibody

(Sigma-Aldrich) to probe Kir4.1 and GFAP, respectively. Immunofluorescence
images were obtained with a confocal laser scanning microscope. Scale
bar: 50 μm. All the Kir4.1-immunoreactivity (IR)-positive cells with the
stellate-shape were double-stained with anti-GFAP antibody (yellow
in a merged picture). Kir4.1-IR was occasionally found in a few
round-shaped cells with no GFAP-IR [also negative to a neuronal marker,
neuronal nuclear antigen (NeuN)], which were omitted from the
analysis.
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